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Abstract

This paper considers a networked evolutionary game. According to strategy updating rules, a method is proposed to calculate
the dynamics of the profile, which is expressed as a k-valued logical dynamic network. This dynamic model is then used as a
framework to analyze the dynamic behaviors, such as emergence etc., of the networked evolutionary game. To apply the method to
arbitrary size networks, the homogeneous networked games are then investigated. Certain interesting general results are obtained.
Finally, the control of networked evolutionary games is considered, network consensus is explored. The basic tool for this approach
is the semi-tensor product of matrices, which is a generalization of conventional matrix product.

Index Terms

Networked evolutionary game, strategy updating rule, k-valued logical dynamic network, Probabilistic network, Emergence,
Consensus.

I. INTRODUCTION

EVOLUTIONARY game was firstly introduced by biologists for describing the evolution of lives in nature [3, 32]. In

recent years, the investigation of complex networks have attracted much attention from physical, social, and system and

control communities [16, 23]. Early studies on evolutionary games were based on uniformly mixed form, i.e., assume each

player plays with all other players or randomly with some others, and various game-types for pairwise game were used. For

instance, Prisoner’s Dilemma [2, 25, 34], Public Goods Game [12, 14], Snowdrift Game (or Hawk-Dove Game) [15, 33], etc.

In the last few years, the investigation on evolutionary game on graphs, or networked evolutionary game (NEG), becomes a

very appealing research because the evolution of biological systems is naturally over a networked environment [6]. Practically,

it has very wide background in biological system, economical system, social system etc. [15, 24, 30, 36]. The theoretical

interest comes from the observation that it merges two important ideas together: (i) the interactions over a network [6]; (ii)

the dynamics forms an evolutionary approach [26].

In an NEG, a key issue is the strategy updating rule (learning rule). That is, how a player to choose his next strategy based

on his information about his neighborhood players. There are several commonly used rules such as Unconditional Imitation

(UI) [24], Femi Rule [34, 37], Moran Rule [19, 29].

In last several decades, another kind of networks, called the finitely valued logical network, have also been studied

widely. Particular interest has been put on Boolean networks [17], and k-valued logical dynamic networks [1, 38], and their

corresponding probabilistic networks [31]. The strong interest on these networks is mainly also caused by biological systems,

because they can be used to describe gene regulatory network, metabolic network etc. [18].

A recent development in the study of logical networks is the application of semi-tensor product (STP) approach [8, 20]. STP

is a new matrix product, which generalizes the conventional matrix product to arbitrary two matrices. We refer to Appendix for

a brief review. STP approach uses STP to express a logical equation into a matrix form, which makes it possible to convert a

logical dynamic system into a conventional discrete time system. Then the conventional analysis tools can be used to analyze
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and design control for logical dynamic networks. This approach has been proved very successful. [9] gives a comprehensive

introduction to this.1

Consider a networked evolutionary game (NEG), where each player plays same game pairwise with each of his neighborhood

players, and assume the strategy updating rule is the same for all players. The most challenging problem is the global

behaviors of the evolution, say, emergence. Currently, there are some efficient methods to model this. One is the statistic-

based approximation. Replicator dynamics is one of the most studied dynamics in evolutionary game theory [35, 36]. Another

one is the simulation-based analysis [24, 34]. Some experiments have also been performed to verify the emergence [27].

As mentioned in [40], since the short of proper mathematical tools, analyzing the dynamics of NEGs directly is difficult.

This paper proposes to use STP approach to the modeling, analysis, and control of NEG. Using the strategy updating rule,

we first convert the evolutionary dynamics of a networked game into a k-valued logical network, where k is the number of

actions (strategies) for each player. This converting is extremely useful because in this way we are able to provide a rigorous

mathematical model for the profile evolution of NEGs. Then the tools developed and results obtained for logical networks

are available for NEGs. Moreover, using the rigorous dynamic equation of NEGs, we are also able to consider the control of

NEGs theoretically.

The rest of this paper is organized as follows: Section 2 gives a formulation for NEGs. Three main factors of an NEG: (i)

network graph, (ii) fundamental network game, (iii) strategy updating rule are precisely introduced. Section 3 considers the

modeling of NEG. In the light of semi-tensor product approach, it is revealed that the evolutionary dynamics of a NEG can be

expressed as a k-valued logical dynamic network. This discovery provides a precise mathematical model for NEGs. Based on

their mathematical models, the dynamical properties of NEGs are analyzed in Section 4. Section 5 devotes to homogeneous

NEGs. We intend to find some general properties for arbitrary size NEGs. The control problems of NEGs are explored in

Section 6. Particularly, the consensus of NEGs is considered. Section 7 contains some concluding remarks. A brief review of

STP is given in Appendix.

II. FORMULATION OF NETWORKED EVOLUTIONARY GAMES

For statement ease, we first give some notations.

1) Mm×n is the set of m× n real matrices;

2) Coli(M) is the i-th column of matrix M ; Col(M) is the set of columns of M ;

3) Dk := {1, 2, · · · , k};
4) δin := Coli(In), i.e., it is the i-th column of the identity matrix;

5) ∆n := Col(In);

6) M ∈Mm×n is called a logical matrix if Col(M) ⊂ ∆m, the set of m× n logical functions is denoted by Lm×n;

7) Assume L ∈ Lm×n, then

L =
[
δi1m δi2m · · · δinm

]
;

and its shorthand form is

L = δm [i1 i2 · · · δm] .

8) r = (r1, · · · , rk)T ∈ Rk is called a probabilistic vector, if ri ≥ 0, i = 1, · · · , k, and

k∑
i=1

ri = 1.

The set of k dimensional probabilistic vectors is denoted by Υk.

9) If M ∈Mm×n and Col(M) ⊂ Υm, M is called a probabilistic matrix. The set of m×n probabilistic matrices is denoted

by Υm×n.

1A Mablab R© Toolbox has been created for the STP computation at http://lsc.amss.ac.cn/∼dcheng/stp/STP.zip. Numerical computation of the examples in
this paper is based on this toolbox.

http://lsc.amss.ac.cn/~dcheng/stp/STP.zip
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10) A k dimensional vector with all entries equal to 1 is denoted by

1k := (1 1 · · · 1︸ ︷︷ ︸
k

)T .

11) An B is the semi-tensor product (STP) of two matrices A and B. (Please refer to the Appendix for STP. Throughout

this paper the matrix product is assumed to be STP. Moreover, the symbol “n” is mostly omitted. That is, express

AB := AnB.

12) W[m,n] is a swap matrix. (Please refer to the Appendix for swap matrix.)

Since there are many articles on NEG and we are interested in a general framework, to avoid ambiguity, we give a general

definition for NEG. We start by specifying (i) the network graph, (ii) the fundamental network game, and (iii) the strategy

updating rule.

A. Network Graph

Given a set N and E ⊂ N ×N , (N,E) is called a graph, where N is the set of nodes and E the set of edges. If (i, j) ∈ E
implies (j, i) ∈ E the graph is undirected, otherwise, it is directed. Let N ′ ⊂ N , and E′ = (N ′ ×N ′) ∩E. Then (N ′, E′) is

called a sub-graph of (N,E). Briefly, N ′ is a subgraph of N . A network graph can be briefly called a network.

Definition II.1. A network is called a homogeneous network, if either its directed network and all its nodes have same number

of in-degree and same number of out-degree, or it is undirected and all its nodes have same number of degree. A network,

which is not homogeneous, is called a heterogeneous network.

We give some examples of networks.
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Figure 1: Some standard Networks
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Fig. 1: Some Standard Networks

Example II.2. (i) Sn is a cycle with n nodes. S6 is shown in Fig. 1 (a);
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(ii) Rn is a line with n nodes. R5 is shown in Fig. 1 (b), note that we use R∞ for a line with infinite nodes (on both

directions).

(iii) Rm ×Rn is a rectangle with height m and width n. R3 ×R4 is shown in Fig. 1 (c);

(iv) In Fig. 1 (c) if we identify two nodes in pairs {1, 9}, {2, 10}, {3, 11}, {4, 12}, we have S2 ×R4. If we further identify

two nodes in pairs {1, 4}, {3, 8}, {9, 12}, then we have S2 × S3;

(v) A directed line with unified direction is denoted by ~Rn. Similarly, we can define ~Rm× ~Rn. ~R∞× ~R∞ is shown in Fig. 1

(d), where all the horizontal edges are directed to the right and all vertical edges are directed up.

Note that Sn, R∞, Sm × Sn, and ~R∞ × ~R∞ are homogeneous networks, while R5, Rm ×Rn, S2 ×R4 are not.

Next, we define the neighborhood of a node. Note that when the networked games are considered the direction of an edge

is used to determine (in a non-symmetric game) who is player one and who is player two. Hence when the neighborhoods are

considered the direction of an edge is ignored.

Definition II.3. Let N be the set of nodes in a network, E ⊂ N ×N the set of edges.

(i) j ∈ N is called a neighborhood node of i, if either (i, j) ∈ E or (j, i) ∈ E. The set of neighborhood nodes of i is called

the neighborhood of i, denoted by U(i). Throughout this paper it is assumed that i ∈ U(i).

(ii) Ignoring the directions of edges, if there exists a path from i to j with length less than or equal to r, then j is said to

be an r-neighborhood node of i, the set of r-neighborhood nodes of i is denoted by Ur(i).

Consider R∞, and assume the nodes are labeled by · · · , −3, −2, −1, 0, 1, 2, 3, · · · . Then

U(0) = {−1 , 0, 1}; U2(0) = {−2, −1, 0, 1, 2}; U3(0) = {−3, −2, −1, 0, 1, 2, 3}; · · ·

Consider ~R∞ × ~R∞. Then (ignoring the directions of edges)

U(O) = {(−1, 0), (0, 0), (0, 1), (0,−1), (1, 0)};
Ui(O) = {(α, β)|α, β ∈ Z, and |α|+ |β| ≤ i}, i = 2, 3, · · · .

B. Fundamental Network Game (FNG)

A normal finite game we considered consists of three factors [13]:

(i) n players N = {1, 2, · · · , n};
(ii) Player i has Si = {1, · · · , ki} strategies, i = 1, · · · , n, S :=

∏n
i=1 Si is the set of profiles;

(iii) Player i has its payoff function ci : S → R, i = 1, · · · , n, c := (c1, c2, · · · , cn).

Definition II.4. (i) A normal game with two players is called a fundamental network game (FNG), if

S1 = S2 := S0 = {1, 2, · · · , k}.

(ii) An FNG is symmetric, if

c1(x, y) = c2(y, x), ∀x, y ∈ S0.

Example II.5. Consider the Prisoner’s Dilemma [28]. Two players can choose strategies from

S0 = {1, 2},

where 1 means “cooperate” and 2 means “defect”. The payoff bi-matrix is as in Table I.

TABLE I: Payoffs for Prisoner’s Dilemma

P1\P2 1 2

1 (R, R) (S, T )

2 (T, S) (P, P )

This game can be chosen as an FNG, which is symmetric. In fact, it is a popularly used FNG in NEG.
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C. Strategy Updating Rule

Definition II.6. A strategy updating rule for an NEG, denoted by Π, is a set of mappings:

xi(t+ 1) = fi
(
{xj(t), cj(t)

∣∣j ∈ U(i)}
)
, t ≥ 0, i ∈ N. (1)

That is, the strategy of each player at time t + 1 depends on its neighborhood players’ information at t, including their

strategies and payoffs.

Note that (i) fi could be a probabilistic mapping, which means a mixed strategy is used by player i; (ii) when the network

is homogeneous, fi, i ∈ N , are the same.

We have mentioned several different strategy updating rules in Introduction. We refer to [12] for a detailed description.

Throughout this paper we only use the following three rules, denoted by Π− I , Π− II , and Π− III respectively.

(i) Π− I: Unconditional Imitation [24] with fixed priority: The strategy of player i at time t+ 1, xi(t+ 1), is selected as

the best strategy from strategies of neighborhood players j ∈ Ui at time t. Precisely, if

j∗ = argmaxj∈U(i) cj(x(t)), (2)

then

xi(t+ 1) = xj∗(t). (3)

When the players with best payoff are not unique, say

argmaxj∈U(i) cj(x(t)) := {j∗1 , · · · , j∗r},

then we may choose one corresponding to a priority as

j∗ = min{µ|µ ∈ argmaxj∈U(i) cj(x(t))}. (4)

This method leads to a deterministic k-valued dynamics.

(ii) Π − II: Unconditional Imitation with equal probability for best strategies. When the best payoff player is unique, it is

the same as Π− I . When the players with best payoff are not unique, we randomly choose one with equal probability.

That is,

xi(t+ 1) = xj∗µ(t), with probability piµ =
1

r
, µ = 1, · · · , r. (5)

This method leads to a probabilistic k-valued dynamics.

(iii) Π− III: Use a simplified Femi Rule [34, 37]. That is, randomly choose a neighborhood j ∈ U(i). Comparing cj(x(t))

with ci(x(t)) to determine xi(t+ 1) as

xi(t+ 1) =

xj(t), cj(x(t)) > ci(x(t))

xi(t), otherwise.
(6)

This method leads to a probabilistic k-valued dynamics.

In fact, the method developed in this paper is applicable to any strategy updating rules.

D. Networked Evolutionary Game

Definition II.7. A networked evolutionary game, denoted by ((N,E), G,Π), consists of

(i) a network (graph) (N,E);

(ii) an FNG, G, such that if (i, j) ∈ E, then i and j play FNG repetitively with strategies xi(t) and xj(t) respectively.

Particularly, if the FNG is not symmetric, then the corresponding network must be directed to show i is player one and

j is player two;

(iii) a local information based strategy updating rule, which can be expressed as (1).
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Finally, we have to specify the overall payoff for each player.

Definition II.8. Let ci,j be the payoff of the FNG between i and j. Then the overall payoff of player i is

ci(t) =
∑

j∈U(i)\i
cij(t), i ∈ N. (7)

Remark II.9. If the network is heterogeneous, the number of times played by i needs to be considered. In this case, (7) is

replaced by

ci(t) =
1

|U(i)| − 1

∑
j∈U(i)\i

cij(t), i ∈ N. (8)

For notational ease, throughout this paper, we use (7) for homogeneous case, and use (8) for heterogeneous case.

Definition II.10. Consider a networked evolutionary game ((N,E), G,Π).

(i) If the network (graph) is homogeneous, the game is called a homogeneous NEG.

(ii) If N ′ is a sub-graph of N , then the evolutionary game over N ′ with same FNG and same strategy updating rule, that

is, ((N ′, E′), G,Π), is called a sub-game of the original game.

III. MODEL OF NETWORKED EVOLUTIONARY GAMES

Theorem III.1. The evolutionary dynamics can be expressed as

xi(t+ 1) = fi({xj(t)
∣∣j ∈ U2(i)}), i ∈ N. (9)

Proof: Observing (2), cj(t) depends on xk(t), k ∈ U(j), and this is independent of strategy updating rule. According

to (1), xi(t + 1) depends on xj(t) and cj(t) , j ∈ U(i). But cj(t) depends on xk(t), k ∈ U(j). We conclude that xi(t + 1)

depends on xj(t), j ∈ U2(i), which leads to (9).

Remark III.2. (i) As long as the strategy updating rule is assigned, the fi, i ∈ N can be determined. Then (9) becomes a

k-valued logical dynamic network. It will be called the fundamental evolutionary equation.

(ii) For a homogeneous network all fi are the same.

We use some examples to show how to use strategy updating rule to determine the fundamental evolutionary equation. Note

that since (9) is a k-valued logical dynamic network, we can use the matrix expression for k-valued logical equations. Please

refer to the Appendix.

Example III.3. Assume the network is R3 and the FNG is the game of Rock-Scissors-Cloth. The payoff bi-matrix is shown in

Table II.

TABLE II: Payoff Bi-matrix (Rock-Scissors-Cloth)

P1\P2 R = 1 S = 2 C = 3

R = 1 (0, 0) (1, −1) (−1, 1)

S = 2 (−1, 1) (0, 0) (1, −1)
C = 3 (1, −1) (−1, 1) (0, 0)

(i) Assume the strategy updating rule is Π− I:

If x1(t), x2(t), x3(t) are known, then xi(t + 1) = fi(x1(t), x2(t), x3(t)) can be calculated. For instance, assume

x1(t) = 1, x2(t) = 2, x3(t) = 3, then

c1(t) = 1,

c21(t) = −1, c23(t) = 1, ⇒ c2(t) = 0,

c3(t) = −1.
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Hence,
x1(t+ 1) = f1(x1(t), x2(t), x3(t))

= xargmaxj{c1(t),c2(t)}(t) = x1(t) = 1,

x2(t+ 1) = f2(x1(t), x2(t), x3(t))

= xargmaxj{c1(t),c2(t),c3(t)}(t) = x1(t) = 1,

x3(t+ 1) = f3(x1(t), x2(t), x3(t))

= xargmaxj{c2(t),c3(t)}(t) = x2(t) = 2,

Using the same argument for each profile (x1, x2, x3), fi, i = 1, 2, 3, can be figured out as in Table III.

TABLE III: Payoffs → Dynamics

Profile 111 112 113 121 122 123 131 132 133

C1 0 0 0 1 1 1 -1 -1 -1

C2 0 1/2 -1/2 -1 -1/2 0 1 0 1/2

C3 0 -1 1 1 0 -1 -1 1 0

f1 1 1 1 1 1 1 3 3 3

f2 1 1 3 1 1 1 3 2 3

f3 1 1 3 1 2 2 3 2 3

Profile 211 212 213 221 222 223 231 232 233

C1 -1 -1 -1 0 0 0 1 1 1

C2 1/2 1 0 -1/2 0 1/2 0 -1 -1/2

C3 0 -1 1 1 0 -1 -1 1 0

f1 1 1 1 2 2 2 2 2 2

f2 1 1 3 1 2 2 2 2 2

f3 1 1 3 1 2 2 3 2 3

Profile 311 312 313 321 322 323 331 332 333

C1 1 1 1 -1 -1 -1 0 0 0

C2 -1/2 0 -1 0 1/2 1 1/2 -1/2 0

C3 0 -1 1 1 0 -1 -1 1 0

f1 3 3 3 2 2 2 3 3 3

f2 3 3 3 1 2 2 3 2 3

f3 1 1 3 1 2 2 3 2 3

Identifying 1 ∼ δ13 , 2 ∼ δ23 , 3 ∼ δ33 , we have the vector form of each fi as

xi(t+ 1) = fi(x1(t), x2(t), x3(t)) = Mix1(t)x2(t)x3(t), i = 1, 2, 3, (10)

where
M1 = δ3[1 1 1 1 1 1 3 3 3 1 1 1 2 2 2 2 2 2 3 3 3 2 2 2 3 3 3];

M2 = δ3[1 1 3 1 1 1 3 2 3 1 1 3 1 2 2 2 2 2 3 3 3 1 2 2 3 2 3];

M3 = δ3[1 1 3 1 2 2 3 2 3 1 1 3 1 2 2 3 2 3 1 1 3 1 2 2 3 2 3].

(ii) Assume the strategy updating rule is Π− II: Since player 1 and player 3 have no choice, f1 and f3 are the same as in

Π is BNS. That is,

M ′1 = M1, M ′3 = M3.

Consider player 2, who has two choices: either choose 1 or choose 3, and each choice has probability 0.5. Using similar

procedure, we can finally figure out f2 as:

M ′2 =
1 1 1

2 1 1
2

1
2 0 0 0 1 1 1

2
1
2 0 0 0 0 0 1

2
1
2 0 1

2 0 0 0 0 0

0 0 0 0 1
2

1
2 0 1

2 0 0 0 0 1
2 1 1 1

2 1 1
2 0 0 0 1

2 1 1 0 1
2 0

0 0 1
2 0 0 0 1 1

2 1 0 0 1
2 0 0 0 1

2 0 1
2

1
2

1
2 1 0 0 0 1 1

2 1


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Next, we give another example, where the payoff bi-matrix is not symmetric, and hence the network graph is directed.

Example III.4. Consider a networked game: Assume the fundamental network game is the Boxed Pigs Game [28]. The strategy

set is {P = 1, W = 2}, where P means press the panel and W means wait. It is not a symmetric game and P1 and P2

represent smaller pig and bigger pig respectively. Then the payoffs are shown in Table IV.

TABLE IV: Payoff Bi-matrix for the Boxed Pigs Game

P1\P2 P W

P (2, 4) (0, 6)

W (5, 1) (0, 0)

Next, assume there are 4 pigs, labeled by 1, 2, 3 and 4, in which Pig 1 is the smallest pig, Pig 3 is the biggest one, and

Pig 2 and Pig 4 are mid-size pigs. The network is shown in Fig. 2.

1

2

3

4

Fig. 2: The Boxed Pigs Game over a Uniformed Network

By comparing the payoffs and using Π− III , we can obtain that

x1(t+ 1) = f1(x1(t), x2(t), x3(t), x4(t))

= δ2[1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2]x1(t)x2(t)x3(t)x4(t)

:= M1x(t),

(11)

where x(t) = n4
i=1xi(t), and

M1 = δ2[1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2].

x2(t+ 1) = f2(x1(t), x2(t), x3(t), x4(t))

=


f12 = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2]x1(t)x2(t)x3(t)x4(t), p12 = 0.25

f22 = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2]x1(t)x2(t)x3(t)x4(t), p22 = 0.25

f32 = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2]x1(t)x2(t)x3(t)x4(t), p32 = 0.25

f42 = δ2[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]x1(t)x2(t)x3(t)x4(t), p42 = 0.25

:= M2x(t),

(12)

where

M2 =

[
1 1 0 0 0 0 0 0 0 0.5 0 0 0.5 0 0 0

0 0 1 1 1 1 1 1 1 0.5 1 1 0.5 1 1 1

]
.

Similarly, we have

x3(t+ 1) = f3(x1(t), x2(t), x3(t), x4(t)) := M3x(t), (13)

where

M3 =

[
1 0 0 0 0 0 0 0 1 0.5 0 0 0.5 0 0 0

0 1 1 1 1 1 1 1 0 0.5 1 1 0.5 1 1 1

]
.
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x4(t+ 1) = f4(x1(t), x2(t), x3(t), x4(t)) := M4x(t), (14)

where

M4 =

[
1 0 0 0 1 0 0 0 0 0.5 0 0 0.5 0 0 0

0 1 1 1 0 1 1 1 1 0.5 1 1 0.5 1 1 1

]
.

IV. ANALYSIS OF NETWORKED EVOLUTIONARY GAMES

A. Algebraic Form of the Evolutionary Dynamics

As we mentioned in previous section that (9) is a k-valued logical network. Hence, as long as (9) is obtained, the techniques

developed for k-valued logical networks are applicable to the analysis of evolutionary games. We briefly review this.

In an evolutionary dynamic game assume S0 = {1, · · · , k}. Identifying i ∼ δik, i = 1, · · · , k, then Theorem A.8 says that

for each equation in (9), we can find for each i a matrix Mi ∈ Lk×k`i (where `i = |U2(i)|), such that (9) can be expressed

into its vector form as

xi(t+ 1) = Mi nj∈U2(i) xj(t), i ∈ N, (15)

where Mi is the structure matrix of fi, i ∈ N . (In probabilistic case, Mi ∈ Υk×k`i .)
Next, assume |N | = n < ∞. To add some dummy variables into each equation of (15), we need the following lemma,

which can be proved by a straightforward computation.

Lemma IV.1. Assume X ∈ Υp and Y ∈ Υq . We define two dummy matrices, named by “front-maintaining operator” (FMO)

and “rear-maintaining operator”(RMO) respectively, as:

Dp,q
f = δp[1 · · · 1︸ ︷︷ ︸

q

2 · · · 2︸ ︷︷ ︸
q

· · · p · · · p︸ ︷︷ ︸
q

],

Dp,q
r = δq[1 2 · · · q︸ ︷︷ ︸ 1 2 · · · q︸ ︷︷ ︸ · · · 1 2 · · · q︸ ︷︷ ︸︸ ︷︷ ︸

p

].

Then we have

Dp,q
f XY = X. (16)

Dp,q
r XY = Y. (17)

Using Lemma IV.1, we can express each equation in (15) as a function with all xi as its arguments. We use a simple example

to depict this.

Example IV.2. Assume

xi(t+ 1) = Mixi−2(t)xi−1(t)xi(t)xi+1(t)xi+2(t). (18)

Using Lemma IV.1, we have

xi(t+ 1) = MiD
ki−3,k5

r x1(t)x2(t) · · ·xi+2(t)

= MiD
ki−3,k5

r Dki+2,kn−i−2

f nnj=1 xj(t)

:= M̃ix(t),

(19)

where x(t) = nnj=1xj(t).

Now, instead of (15), we can assume that the strategy dynamics has the following form

xi(t+ 1) = Mix(t), i = 1, · · · , n. (20)

Multiplying all the n equations together, we have the algebraic form of the dynamics as [10]

x(t+ 1) = MGx(t), (21)
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where MG ∈ Lkn×kn (in probabilistic case, MG ∈ Υkn×kn ) is called the transition matrix of the game, and is determined by

Colj(MG) = nnk=1 Colj(Mk), j = 1, · · · , kn.

Let M ∈Mp×s and N ∈Mq×s. Define the Khatri-Rao product of M and N , denoted by M ∗N , as [10, 22]

M ∗N = [Col1(M) n Col1(N) Col2(M) n Col2(N) · · · Cols(M) n Cols(N) ] ∈Mpq×s. (22)

Using this notation, we have

MG = M1 ∗M2 ∗ · · · ∗Mn. (23)

B. Emergence of Networked Games

Now all the properties of the evolutionary dynamics can be revealed from (21), equivalently, from the game transition matrix.

For instance, we have the following result.

Theorem IV.3. [21] Consider a k-valued logical dynamic network

x(t+ 1) = Lx(t), (24)

where x(t) =
∏n
i=1 xi(t), L ∈ Lkn×kn . Then

(i) δik is its fixed point, if and only if the diagonal element `ii of L equals to 1. It follows that the number of equilibriums

of (24), denoted by Ne, is

Ne = Trace(L). (25)

(ii) The number of length s cycles, Ns, is inductively determined by
N1 = Ne

Ns =
Trace(Ls)− ∑

t∈P(s)

tNt

s , 2 ≤ s ≤ kn.
(26)

Note that in (26) P(s) is the set of proper factors of s. For instance, P(6) = {1, 2, 3}, P(125) = {1, 5, 25}.
We refer to [21] for many other dynamic properties of k-valued logical dynamic networks. Then we use some examples to

demonstrate the dynamics of NEGs.

Example IV.4. Recall Example III.3.

(i) Consider the case when Π− I is used: Using (10), we can get the game transition matrix immediately as

MG = M1 ∗M2 ∗M3

= δ27[1 1 9 1 2 2 27 23 27 1 1 9 10 14 14 15 14 15 25 25 29 10 14 14 27 23 27].
(27)

Then we have the evolutionary dynamics as

x(t+ 1) = MGx(t). (28)

(Because of the space limitation, we skip MG.) Since

Mk
G = δ27[1, 1, 27, 1, 1, 1, 27, 14, 27, 1, 1, 27, 1, 14, 14, 14, 14, 14, 27, 27, 27, 1, 14, 14, 27, 14, 27], k ≥ 2,

We can figure out that:

• if x(0) ∈ {δ127, δ227, δ427, δ527, δ627, δ1027 , δ1127 , δ1327 , δ2227}, then x(∞) = x(2) = δ127 ∼ (1, 1, 1):

• if x(0) ∈ {δ827, δ1427 , δ1527 , δ1627 , δ1727 , δ1827 , δ2327 , δ2427 , δ2627}, then x(∞) = x(2) = δ1427 ∼ (2, 2, 2);

• if x(0) ∈ {δ327, δ727, δ927, δ1227 , δ1927 , δ2027 , δ2127 , δ2527 , δ2727}, then x(∞) = x(2) = δ2727 ∼ (3, 3, 3).

So the network converges to one of three uniformed strategy cases with equal probability (as the initial strategies are

randomly chosen with equal probability).
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(ii) Consider the other case when Π− II is used: we have the transition matrix as

MG = M1 ∗M ′2 ∗M3. (29)

Then the dynamics of NEG is

x(t+ 1) = MGx(t). (30)

(Here MG is also skipped.) We can show that

Mk
G = δ27[1, 1, 27, 1, 1, 1, 27, 14, 27, 1, 1, 27, 1, 14, 14, 14, 14, 14, 27, 27, 27, 1, 14, 14, 27, 14, 27], k ≥ 16.

This means the emergence is exactly the same as in case 1, where Π− I is used. The only difference is: using Π− II ,

the profile converges much slower than that of Π− I . Obviously, it is reasonable.

Example IV.5. Recall Example III.4. We have

x(t+ 1) = MGx(t),

where

MG = M1 ∗M2 ∗M3 ∗M4

=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1
8 0 0 1

8 0 0 0

0 0 0 0 0 0 0 0 0 1
8 0 0 1

8 0 0 0

0 0 0 0 0 0 0 0 0 1
8 0 0 1

8 0 0 0

0 1 0 0 0 0 0 0 0 1
8 0 0 1

8 0 0 0

0 0 0 0 0 0 0 0 0 1
8 0 0 1

8 0 0 0

0 0 0 0 0 0 0 0 1 1
8 0 0 1

8 0 0 0

0 0 0 0 1 0 0 0 0 1
8 0 0 1

8 0 0 0

0 0 0 1 0 1 1 1 0 1
8 1 1 1

8 1 1 1



.

One sees easily that there are two fixed points: (1 1 1) and (2 2 2).

To see how the evolutionary dynamics converges, it is easy to check that

Mk
G = δ16[1, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16], k ≥ 8.

From this fact we conclude that

(i) if x(0) = δ116, then x(t) = δ116, ∀t > 0. That is, if all xi(0) = δ12 , then xi(t) = δ12 forever. In other words, if the initial

strategies of all players are the first strategy, then they will stick on the first strategy forever;

(ii) if at least one player took the second strategy as his initial strategy, then with probabilistic 1 all the players will eventually

take the second strategy (precisely, it happens after 8 iterations).
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V. HOMOGENEOUS NEGS

From Examples IV.4, IV.5 it is clear that in principle, for a networked evolutionary game ((N,E), G,Π), if |N | <∞, and

the network (N,E), the fundamental network game G, and the strategy updating rule Π are known, the evolutionary dynamics

is computable; and then the behaviors of this NEG are determined. But because of the computational complexity, only in small

scale case the dynamics of NEGs can be computed and used to analyze the dynamic behaviors of the networked game. This

section considers the homogeneous NEGs, because in homogeneous case the dynamics of every nodes are the same. Then

investigating local dynamic behaviors of the network may reveal the overall behaviors of the whole network.

We start from a simple model.

Example V.1. Consider a networked evolutionary game ((N,E), G,Π), where (N,E) = Sn; G is the Prisoner’s Dilemma

defined in Example II.5 with parameters R = −1, S = −10, T = 0, P = −5; and the strategy updated rule Π− I is chosen.

(In fact, in this case Π− I and Π− II lead to same dynamics.)

We first calculate the fundamental evolutionary equation (9) for an arbitrary node i. Note that on Sn the neighborhoods of

i are U(i) = {i− 1, i, i+ 1}, U2(i) = {i− 2, i− 1, i, i+ 1, i+ 2}, hence (9) becomes

xi(t+ 1) = f(xi−2(t), xi−1(t), xi(t), xi+1(t), xi+2(t)), i = 1, 2, · · · , n. (31)

Note that on Sn we identify x−k = xn−k, and xn+k(t) = xk, 1 ≤ k ≤ n− 1.

Using the same argument as in Example III.3, f can be figured out as in Table V

TABLE V: Payoffs → Dynamics

Profile 11111 11112 11121 11122 11211 11212 11221 11222

Ci−1 -2 -2 -2 -2 -11 -11 -11 -11

Ci -2 -2 -11 -11 0 0 -5 -5

Ci+1 -2 -11 0 -5 -11 -20 -5 -10

f 1 1 2 1 2 2 2 2

Profile 12111 12112 12121 12122 12211 12212 12221 12222

Ci−1 0 0 0 0 -5 -5 -5 -5

Ci -11 -11 -20 -20 -5 -5 -10 -10

Ci+1 -2 -11 0 -5 -11 -20 -5 -10

f 2 2 2 2 2 2 2 2

Profile 21111 21112 21121 21122 21211 21212 21221 21222

Ci−1 -11 -11 -11 -11 -20 -20 -20 -20

Ci -2 -2 -11 -11 0 0 -5 -5

Ci+1 -2 -11 0 -5 -11 -20 -5 -10

f 1 1 1 2 2 2 2 2

Profile 22111 22112 22121 22122 22211 22212 22221 22222

Ci−1 -5 -5 -5 -5 -10 -10 -10 -10

Ci -11 -11 -20 -20 -5 -5 -10 -10

Ci+1 -2 -11 0 -5 -11 -20 -5 -10

f 1 2 2 2 2 2 2 2

Then it is easy to figure out that

xi(t+ 1) = L5 n2
j=−2 xi+j(t), (32)

where the structure matrix

L5 = δ2[1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2]. (33)
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Now we have

x1(t+ 1) = L5x4(t)x5(t)x1(t)x2(t)x3(t) = L5W[23,22]x(t)

x2(t+ 1) = L5x5(t)x1(t)x2(t)x3(t)x4(t) = L5W[24,2]x(t)

x3(t+ 1) = L5x1(t)x2(t)x3(t)x4(t)x5(t) = L5x(t)

x4(t+ 1) = L5x2(t)x3(t)x4(t)x5(t)x1(t) = L5W[2,24]x(t)

x5(t+ 1) = L5x3(t)x4(t)x5(t)x1(t)x2(t) = L5W[22,23]x(t),

(34)

where x(t) = n5
j=1xj(t). Finally, we have the evolutionary dynamic equation as

x(t+ 1) = M5x(t), (35)

where the strategy transition matrix M5 is

M5 =
(
L5W[23,22]

)
∗
(
L5W[24,2]

)
∗ L5 ∗

(
L5W[2,24]

)
∗
(
L5W[22,23]

)
= δ32[1 20 8 4 15 32 7 32 29 32 32 32 13 32 32 32

26 18 32 32 32 32 32 32 25 32 32 32 32 32 32 32].

(36)

We call (31) the fundamental evolutionary equation because it can be used to calculate not only the strategy evolutionary

equation for S5, but also for any Sn, n > 2. When n = 3 or n = 4, the constructing process is exactly the same as for n = 5.

Then the evolutionary dynamic properties can be found via the corresponding transition matrix. We are more interested in

large n.

Assume n > 5. We consider x1 first. Using Lemma IV.1, we have

x1(t+ 1) = L5xn−1(t)xn(t)x1(t)x2(t)x3(t)

= L5D
2n−2,22

f xn−1(t)xn(t)x1(t)x2(t) · · ·xn−3(t)

= L5D
2n−2,22

f W[2n−2,22]x1(t) · · ·xn(t)

:= H1x(t).

Similarly, we have a general expression as

xi(t+ 1) = Hix(t), i = 1, 2, · · · , n, (37)

where

Hi = L5D
25,2n−5

f W[2α(i),2n−α(i)], i = 1, · · · , n,

where

α(i) =

i− 3, i ≥ 3

i− 3 + n, i < 3.

Finally, the strategy transition matrix can be calculated by

Mn = H1 ∗H2 ∗ · · · ∗Hn. (38)

When n is relatively small, say n < 20, it is easy to calculate Mn (via laptop) and use it to investigate the properties of the

networked game as we did in previous section. But our purpose in this section is to explore general cases where n could be

very large. The following is an interesting global result via local property. We first need a lemma.

Define a set of projection matrices πi ∈ Lk×kn as

π1 := δk
[
1Tkn−1 2× 1Tkn−1 · · · k × 1Tkn−1

]
,

π2 := δk
[
1Tkn−2 2× 1Tkn−2 · · · k × 1Tkn−2 1Tkn−2 2× 1Tkn−2 · · · k × 1Tkn−2

]
,

...

πn = δk [1 2 · · · k 1 2 · · · k · · · 1 2 · · · k] .

(39)

The following projection result is straightforward verifiable.
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Lemma V.2. Let xi ∈ Υk, i = 1, 2, · · · , n. x = nni=1xi. Then

πix = xi, i = 1, 2, · · · , n. (40)

Assume N is a large scale homogeneous NEG, and a point x∗ ∈ N . Denote the j-neighborhood of x∗ by Uj , and let Mj

be the transition matrix of the dynamics of sub-game Ur, α = |U2r|. Moreover, Let β be the label of x∗ in the sub-game Ur.

Then the initial values of the nodes in sub-game Ur are (x1(0), · · · , xβ(0) = x∗(0), · · ·xα(0)). Using these notations, we have

Theorem V.3. Assume there exists an r > 0 such that

Mr+1
U2(r+1)

= Mr
U2(r+1)

. (41)

Then node x∗ converges to

x∗(∞) = πβM
r
U2r

x∗(0), (42)

x∗(1)

x∗(0)

U2(r)

U2(r + 1)

t = 0

t = 1

t = r

t = r + 1

t = r + 2

...

x∗(r)

x∗(r + 1)

x∗(r + 2)

Figure 1: Mapping For x∗

1

Fig. 3: Mapping for x∗

Proof: Refer to Fig. 3. We set Vr(t) the vector consists of {x(t)|x ∈ Ur} ordered by the sub-game Ur labels. According

to (9), x∗(r) is uniquely determined by V2r(0). Hereafter, we denote the element set of a vector V = (v1, · · · , vs) by

{V } := {v1, · · · , vs}. Note that {V2r(0)} ⊂ {V2(r+1)(0)}, using (41), we have

x∗(r) = πβM
r
U2(r)

V2r(0)

= πβM
r
U2(r+1)

V2r(0)

= πβM
r+1
U2(r+1)

V2(r+1)(0) = x∗(r + 1).

Next, considering x∗(r + 2), since

{V2r(1)} ⊂
{
M2(r+1)V2(r+1)(0)

}
,

we have
x∗(r + 2) = πβM

r
U2(r+1)

V2(r+1)(1)

= πβM
r
U2(r)

V2r(1)

= πβM
r+1
U2(r+1)

V2(r+1)(0) = x∗(r + 1).
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Continuing this procedure, we finally have

x∗(∞) = x∗(r).

(42) follows immediately.

Example V.4. Recall Example V.1.

(i) Consider the evolutionary game with network Sn or R∞. Assume n is large enough. Using (37)-(38), we can calculate

M13 and prove that

M3
13 = M2

13. (43)

In one dimensional case, consider the sequential 13 points, which form the U6 for its central point. (43) verifies (41)

with r = 2. Hence Theorem V.3 claims that MU4
= M9 determined the final states of the network.

(ii) Since |U4(x∗)| = 9, and β = 5, According to (42), we define

π∞ := π5M
2
9 = δ512

[1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2

2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 1 1 1 1 2 2 1 1 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2

2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 1 1 2 1 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2].

(iii) Consider R∞. Setting randomly initial values as:

· · · , x−6(0), x−5(0), · · · , x6(0), · · ·
= · · · , 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 1, · · · .
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Using

(x−6(0), x−5(0), · · · , x2(0))

= ( 1, 2, 2, 1, 1, 1, 2, 2, 2) ∼ δ200512 .

Then we have

x−2(∞) = π∞δ
200
512 = δ12 .

Similarly, we have

x−1(∞) = π∞δ399512 = δ12 ; x0(∞) = π∞δ285512 = δ22

x1(∞) = π∞δ58512 = δ22 ; x2(∞) = π∞δ115512 = δ22 .

(iv) Since in π∞ there are 72 entries equal to δ12 and 512− 72 = 440 entries equal to δ22 , if on R the initial strategies for

i ∈ Z are distributed with equal probability, then the final stable distribution is with 14.0625% strategy 1 and 85.9372%

strategy 2.

Secondly, we consider how the payoffs affect the evolutionary dynamics. First, from the above argument we have the

following observation.

Proposition V.5. Consider a networked evolutionary game with a given FNG, G. Assume the parameters in payoff bi-matrix

is adjustable. Two sets of parameters lead the same evolutionary dynamics, if and only if they lead to same fundamental

evolutionary equation (9).

Example V.6. Recall Example V.4. All the results obtained there are based on the payoff parameters: R = −1, S = −10,

T = 0, P = −5. A careful verification via Table V shows that as long as the parameters satisfy

T > R > S,

T > P,

2R > T + P,

T + P > 2S,

T + P > R+ S,

(44)

the fundamental evolutionary equation (32) is unchanged. So the results in Example V.4 remain true. In fact, it is verifiable

that (44) is also necessary for the L5 to be as in (33).

To demonstrate how much the payoffs will affect the dynamic behaviors of the networked game, we consider Prisoner’s

Dilemma again with another set of parameters.

Example V.7. Consider the same problem as in Example V.4, but with the payoff parameters as: R = −3, S = −20, T = 0,

P = −5. Then it is easy to verify that the fundamental evolutionary equation (32) remain the same but with the parameter

matrix (33) being replaced by

L5 = δ32[1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]. (45)

It is also ready to check that this L5 remains correct, if and only if the parameters satisfy the following (46):

T > R,

T > S,

P + T > R+ S,

P + T > 2R,

P + T > 2S.

(46)
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We explore some dynamic properties of the NDG under such payment parameters. Say, choosing n = 7, then the evolutionary

transition matrix is

MG = δ128[

1 68 8 72 15 80 16 80 29 96 32 96 31 96 32

96 57 124 64 128 63 128 64 128 61 128 64 128 63 128

64 128 113 116 120 120 127 128 128 128 125 128 128 128 127

128 128 128 121 124 128 128 127 128 128 128 125 128 128 128

127 128 128 128 98 100 104 104 112 112 112 112 126 128 128

128 128 128 128 128 122 124 128 128 128 128 128 128 126 128

128 128 128 128 128 128 114 116 120 120 128 128 128 128 126

128 128 128 128 128 128 128 122 124 128 128 128 128 128 128

126 128 128 128 128 128 128 128]

It is easy to calculate that

Mk
G = δ128[

1 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128 128 128 128 128 128 128 128

128 128 128 128 128 128 128 128]

where k ≥ 3.

It is clear that unless x(0) = δ1128, which leads to x(∞) = x(3) = δ1128 ∼ (1, 1, 1, 1, 1, 1, 1), any other initial states converge

to δ128128 ∼ (2, 2, 2, 2, 2, 2, 2).

The above dynamic behavior is interesting: All trajectories will converge to one fixed point unless it started from the other

fixed point. We may ask when this will happen. In fact, for homogeneous networked games with |N | = n it is clear that there

are at least k fixed points: (δik)n, i = 1, · · · , k. Say, k = 2, and if there are only two attractors (no cycle), then each trajectory

will converge to one of these two fixed points. Then we have the following result.

Proposition V.8. Assume the dynamic equation of a NEG on Sn has only two attractors, which are fixed points (δ12)n and

(δ22)n. Moreover, if for the fundamental evolutionary equation

Colj(M5) 6= δ125 , j 6= 1,
(

or Colj(M5) 6= δ2
5

25 , j 6= 25
)
, (47)

then

xj(∞) = δ22 , j 6= 1,
(
corresp. xj(∞) = δ12 , j 6= 2n

)
. (48)

Proof: Consider the first case, (47) means if in a sequential 5 elements there is a δ22 then their images contain at least one

δ22 . Hence δ22 will not disappear. But eventually, x(t) will converge to an attractor, then it will converge to δ12n . (The alternative

case in parentheses is similar.)

Example V.9. Consider Example V.7 again. M5 can be calculated easily as

M5 = δ32[1, 20, 8, 24, 15, 32, 16, 32, 29, 32, 32, 32, 31, 32, 32, 32,

26, 28, 32, 32, 32, 32, 32, 32, 30, 32, 32, 32, 32, 32, 32, 32].
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It is clear that

Colj(M5) 6= δ132, j 6= 1.

It is easy to check that under this set of parameters M`, ` = 5, 6, 7, 8, 9, 10, 11, 12, the corresponding M` has only two

attractors, as fixed points δ12` and δ2
`

2` . According to Proposition V.8, as long as x(0) 6= δ12` , all the states converge to δ22 .

Our conjecture is: this is true for all ` ≥ 5.

VI. CONTROL OF NEGS

Definition VI.1. Let ((N,E), G,Π) be an NEG, {X,W} be a partition of N , i.e., X ∩W = ∅ and N = X ∪W . Then

((X ∪W,E), G,Π) is called a control NEG, if the strategies for nodes in W , denoted by wj ∈ W , j = 1, · · · , |W |, at each

moment t ≥ 0, can be assigned. Moreover, x ∈ X is called a state and w ∈W is called a control.

Definition VI.2. 1) A state xd is said to be T > 0 step reachable from x(0) = x0, if there exists a sequence of controls

w0, · · · , wT−1 such that x(T ) = xd. The set of T step reachable states is denoted as RT (x0);

2) The reachable set from x0 is defined as

R(x0) := ∪∞t=1Rt(x0).

3) A state xe is said to be stabilizable from x0, if there exist a control sequence w0, · · · , w∞ and a T > 0, such that the

trajectory from x0 converges to xe, precisely, x(t) = xe, t ≥ T . xe is stabilizable, if it is stabilizable from ∀x0 ∈ Dnk .

Next, we consider the dynamics of a control NEG. Assume X = {x1, · · · , xn} and W = {w1, · · · , wm}, and we set

x = nni=1xi and w = nmj=1wj , where xi, wj ∈ ∆k ∼ Dk and k = |S0|. Then for each w ∈ ∆km we can have a strategy

transition matrix Mw, which is called the control-depending strategy transition matrix. As a convention, we define

M
(
w = δikm

)
:= Mi, i = 1, 2, · · · , km. (49)

The set of control-depending strategy transition matrices is denoted by MW . Let x(0) be the initial state. Driven by control

sequence

w(0) = δi0km , w(1) = δi1km , w(2) = δi2km , · · · ,

the trajectory will be

x(1) = Mi0x(0), x(2) = Mi1Mi0x(0), x(3) = Mi2Mi1Mi0x(0), · · · .

From this observation, the following result is obvious.

Proposition VI.3. Consider a control NEG ((X ∪W,E), G,Π), with |X| = n, |W | = m, |S0| = k.

1) xd is reachable from x0, if and only if there exists a sequence {M0,M1, · · · ,MT−1} ⊂ MW , T ≤ kn, such that

xd = MT−1MT−2 · · ·M1M0x0. (50)

2) xd is stabilizable from x0, if and only if (i) xd is reachable from x0 and there exists at least one M∗ ∈MW , such that

xd is a fixed point of M∗.

An immediate consequence of Proposition VI.3 is the following:

Corollary VI.4. For any x0 ∈ Dnk , the reachable set satisfies

R(x0) ⊂ ∪M∈MW
Col(M). (51)

We use an example to depict this:

Example VI.5. Consider a game ((N,E), G,Π), where (i) N = (X ∪W ), with X = {x1, x2, x3}, W = {w}, the network

graph is shown in Fig. 4; (ii) G is Benoit-Krishna Game [4, 28]; (iii) Π = Π − I . Recall that Benoit-Krishna Game has

S0 = {1(D) : Deny, 2(W ) : Waffle, 3(C) : Confess}. The payoff bi-matrix is shown in Table VI.
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TABLE VI: Payoff Table (Benoit-Krishna)

P1\P2 D = 1 W = 2 C = 3

D = 1 (10, 10) (−1, −12) (−1, 15)

W = 2 (−12, −1) (8, 8) (−1, −1)
C = 3 (15, −1) (8, 1) (0, 0)

x1

x2

x3

w

Figure 1: BK game

1

Fig. 4: Control of BK-game

This model can be explained as follows. There is a game of three players {x1, x2, x3}. x1 is the head, who is able to contact

x2 and x3. w is a detective, who sneaked in and is able to contact only x2 and x3. The purpose of w is to let all xi to confess.

First, we calculate the control-depending strategy transition matrix by letting w = δi3, i = 1, 2, 3 respectively. Then we have

M(w = δ13) = M1 = δ27[1, 1, 9, 1, 1, 9, 27, 27, 27, 1, 1, 9, 1, 14, 18, 27, 7, 27,

25, 25, 27, 25, 26, 27, 27, 27, 27]

M(w = δ23) = M2 = δ27[1, 1, 9, 1, 5, 3, 27, 27, 27, 1, 11, 18, 13, 14, 14, 27, 14, 14,

25, 26, 27, 19, 14, 14, 27, 14, 27]

M(w = δ33) = M3 = δ27[21, 21, 27, 21, 24, 27, 27, 27, 27, 21, 1, 27, 24, 14, 14, 27, 14, 27,

27, 27, 27, 27, 14, 27, 27, 27, 27].

(52)

Then it is easy to verify the reachable set of x0. Say, x0 = δ127 ∼ (1, 1, 1). Using u(0) = δ13 or u(0) = δ23 , x(1) = δ127.

Using u(0) = δ33 , x(1) = δ2127 . Using any u(1) to δ2127 we have x(2) = δ2727 , which is a fixed point. We conclude

that R(δ127) = δ27{1, 21, 27}. Here, δn{α1, · · · , αs} is a shorthand of {δα1
n , · · · , δαsn }. Similarly, we have R(δ227) =

δ27{1, 21, 27}, R(δ327) = δ27{9, 27}, R(δ427) = δ27{1, 21, 27}, R(δ527) = δ27{1, 5, 14, 24, 21, 27}, R(δ627) = δ27{1, 3, 9, 21, 27},
R(δ727) = δ27{27}, R(δ827) = δ27{27}, R(δ927) = δ27{27}, R(δ1027) = δ27{1, 21, 27}, R(δ1127) = δ27{1, 11, 21, 27},
R(δ1227) = δ27{1, 9, 14, 18, 21, 27}, R(δ1327) = δ27{1, 13, 14, 21, 24, 27}, R(δ1427) = δ27{14}, R(δ1527) = δ27{14, 18, 27},
R(δ1627) = δ27{27}, R(δ1727) = δ27{7, 14, 27}, R(δ1827) = δ27{14, 27}, R(δ1927) = δ27{25, 27}, R(δ2027) = δ27{14, 25, 26, 27},
R(δ2127) = δ27{27}, R(δ2227) = δ27{19, 25, 27}, R(δ2327) = δ27{14, 26, 27}, R(δ2427) = δ27{14, 27}, R(δ2527) = δ27{27},
R(δ2627) = δ27{14, 27}, R(δ2727) = δ27{27}.

There are two common fixed points: x1e = δ1427 and x2e = δ2727 , so the overall system is not stabilizable. But any x(0) ∈
∆27\

{
δ1427
}

, can be stabilized to x2e = δ2727 via a proper control sequence. For example, when x(0) = δ627, we can drive it to

x2e by any one of the following control sequences:

(i) w(0) = δ33 , then the trajectory will be x(1) = M3x(0) = δ2727;

(ii) w(0) = δ23 , w(1) = δ33 , then the trajectory will be x(1) = M2x(0) = δ927, x(2) = M3M2x(0) = δ2727;

(iii) w(0) = δ13 and w(1) can choose any one of δ13 , δ
2
3 , δ

3
3 , then the trajectory will be x(1) = M1x(0) = δ927, and x(2) =

M1M1x(0) = δ2727 , or x(2) = M2M1x(0) = δ2727 or x(2) = M3M1x(0) = δ2727 .

Next, we consider the consensus of control NEGs.
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Definition VI.6. Let ξ ∈ Dk. An NEG is said to reach a consensus at ξ if it is stabilizable to xe = ξn.

The following observation is obvious.

Proposition VI.7. An NEG can not reach a consensus, if there are more than one common fixed point for all M ∈ MW . If

there is a common fixed point xe, and the NEG can reach a consensus at ξ, then ξn = xe.

Example VI.8. (i) Consider the Prisoner’s Dilemma Game over S6 with strategy updating rule Π = Π − I , where

{x1, x2, x3, x4, x5} are normal players, called the states, and x6 = w is the control, connected to x1 and x5.

The control-depending strategy transition matrices are:

M(w = δ12) = M1 = δ32[17, 2, 24, 4, 31, 32, 32, 32, 29, 32, 32, 32, 31, 32, 32, 32,

17, 18, 32, 32, 32, 32, 32, 32, 25, 32, 32, 32, 32, 32, 32, 32]

M(w = δ22) = M2 = δ32[1, 4, 8, 4, 15, 16, 7, 8, 29, 32, 32, 32, 13, 32, 15, 32,

26, 28, 32, 32, 32, 32, 32, 32, 26, 32, 32, 32, 30, 32, 32, 32].

(53)

We can see that there are two common fixed points: xe1 = δ432 and xe2 = δ3232 . Hence the NEG can not reach consensus.

(ii) Next, we add another control, i.e., x1, x2, x3, x4, x5, u1, u2 form an S7. Then the control-depending strategy transition

matrices become:

M(w1 = δ12 , w2 = δ12) = M1 = δ32[1, 1, 8, 4, 16, 16, 8, 8, 29, 29, 32, 32, 13, 16, 16, 16,

28, 25, 32, 32, 32, 32, 32, 32, 28, 32, 32, 32, 32, 32, 32, 32]

M(w1 = δ12 , w2 = δ22) = M2 = δ32[1, 1, 8, 4, 16, 16, 16, 16, 29, 29, 32, 32, 29, 32, 32, 32,

20, 17, 32, 32, 32, 32, 32, 32, 28, 32, 32, 32, 32, 32, 32, 32]

M(w1 = δ22 , w2 = δ12) = M3 = δ32[17, 17, 24, 20, 32, 32, 24, 24, 29, 29, 32, 32, 29, 32, 32, 32,

28, 25, 32, 32, 32, 32, 32, 32, 28, 32, 32, 32, 32, 32, 32, 32]

M(w1 = δ22 , w2 = δ22) = M4 = δ32[1, 1, 8, 4, 32, 32, 32, 32, 29, 29, 32, 32, 29, 32, 32, 32,

20, 17, 32, 32, 32, 32, 32, 32, 28, 32, 32, 32, 32, 32, 32, 32].

(54)

It is ready to check that there is only one common fixed point: xe = δ3232 , where xe = ξn with ξ = δ22 . Moreover, xe is

reachable from any x(0). Therefore, the NEG can reach consensus at ξ = δ22 .

VII. CONCLUSION

The networked evolutionary games were considered. First of all, it was proved that the strategy evolutionary dynamics of

an NEG can be expressed as a k-valued logical dynamic network. This expression gives a precise mathematical model for

NEGs. Based on this model the emergence properties of NEGs were investigated. Particularly, the homogeneous networked

games were studied in detail, and some general properties for arbitrary size networks were revealed. Finally, the control of

NEGs was explored, and conditions for consensus were presented.

Overall, the main contribution of this paper is the presentation of a mathematical model for NEGs. Though NEG is now

a hot topic and there are many interesting results, to the authors’ best knowledge, previous works are experience-based, (say,

mainly via simulation and/or statistics). Our model makes further theoretical study possible. However, our results are very

elementary. There are pretty of rooms for further study.
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APPENDIX

SEMI-TENSOR PRODUCT OF MATRICES

Semi-tensor product of matrices was proposed by us. It is convenient in dealing with logical functions. We refer to [9, 10]

and the references therein for details. In the follows we give a very brief survey.

Definition A.1. Let A ∈ Mm×n and B ∈ Mp×q . Denote by t := lcm(n, p) the least common multiple of n and p. Then we

define the semi-tensor product (STP) of A and B as

AnB :=
(
A⊗ It/n

) (
B ⊗ It/p

)
∈M(mt/n)×(qt/p). (55)

Remark A.2. • When n = p, AnB = AB. So the STP is a generalization of conventional matrix product.

• When n = rp, denote it by A �r B;

when rn = p, denote it by A ≺r B.

These two cases are called the multi-dimensional case, which is particularly important in applications.

• STP keeps almost all the major properties of the conventional matrix product unchanged.

We cite some basic properties which are used in this note.

Proposition A.3. 1) (Associative Low)

An (B n C) = (AnB) n C. (56)

2) (Distributive Low)

(A+B) n C = An C +B n C.

An (B + C) = AnB +An C.
(57)

3)

(AnB)T = BT nAT . (58)

4) Assume A and B are invertible, then

(AnB)−1 = B−1 nA−1. (59)

Proposition A.4. Let X ∈ Rt be a column vector. Then for a matrix M

X nM = (It ⊗M) nX. (60)
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Definition A.5.

W[n,m] := δmn [1,m+ 1, 2m+ 1, · · · , (n− 1)m+ 1, 2,m+ 2, 2m+ 2, · · · , (n− 1)m+ 2

· · · , n,m+ n, 2m+ n, · · · ,mn ] ∈Mmn×mn,
(61)

which is called a swap matrix.

Proposition A.6. Let X ∈ Rm and Y ∈ Rn be two column vectors. Then

W[m,n] nX n Y = Y nX. (62)

Finally, we consider how to express a Boolean function into an algebraic form.

Theorem A.7. Let f : Bn → B be a Boolean function expressed as

y = f(x1, · · · , xn), (63)

where B = {0, 1}. Identifying

1 ∼ δ12 , 0 ∼ δ22 . (64)

Then there exists a unique logical matrix Mf ∈ L2×2n , called the structure matrix of f , such that under vector form, by using

(64), (63) can be expressed as

y = Mf nni=1 xi, (65)

which is called the algebraic form of (63).

Assume xi ∈ Dki , i = 1, · · · , n. We identify

Dk ∼ ∆k (66)

by

1 ∼ δ1k, 2 ∼ δ2k, · · · , k ∼ δkk . (67)

Assume f(x1, · · · , xn) :
∏n
i=1Dki → Dk0 . Using identification (66)-(67), f becomes a mapping f(x1, · · · , xn) :

∏n
i=1 ∆ki →

Dk0 . We call later the vector form of f .

Theorem A.7 can be generalized as

Theorem A.8. (i) Let f(x1, · · · , xn) :
∏n
i=1Dki → Dk0 . Using identification (66)-(67), f can be expressed in its vector

form as

y = Mf nni=1 xi, (68)

where Mf ∈ Lk0×k is unique, and is called the structure matrix of f . Moreover, (68) is called the algebraic form of f .

(ii) If in (i) Dki is replaced by Υki , then the result remains true except that the transition matrix Mf in (68) is replaced by

an Mf ∈ Υk0×k.
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