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I. What is STP
= Matrix-Matrix Left Semi-tensor Product (MM-L STP)

LetA € M,x,, B € M,.,. The Kronecker product of A and
Bis

Cl]lB alzB © oo dlnB
ayB apB --- a,B

AoB:=| = 7 2 (1)
anB ap,B --- a,,B

Definition 1.1

Let A € M,xn, B € M,y t=Ilcm(n,p). Then the (MM-L)
STPof Aand B is

AxB:=(A®1L,) (BRIL,). (2)
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Example 1.2(cont’d)
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y

(i) Since it is a product between two matrices, it is called

“‘MM”. “MV” will be defined later.

(ii) “Left” STP corresponds to “Right” STP, which is de-

fined right after this Remark.

(iii) The MM-L is the fundamental one, hence it is consid-

ered as the default STP.
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w MM-R, MV-L, MV-R STPs

Definition 1.4
Let A e M,xn, BE My, x € R, t =lcm(n,p).
(i) The (MM-R) STP of A and B is

AxB:=(I,;,®A) (I, ®B). (3)
(ii) The (MV-L) STP of A and x is

ARx = (AQ® L) (x® 1) . (4)
(iii) The (MV-R) STP of A and x is

AXx = (It/n ®A) (lt/p ®x) : (5)/
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Il. Properties of STP

= Basic Properties

Proposition 2.1

(In the following: e {ix, x}.)
@ (Assosiativity)

(AxB) <1 C=AX (B C). (6)

o (Distributivity)

(A+B)<C:=AxC+BxC 7)
Axi(B+C)=AxB+AxC.
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Proposition 2.1 (cont’d)

@ (Transpose)

@ (Inverse)

(A B)" =BT A",

(8)

If A and B are invertible, then A < B is invertible.

Moreover,

(AxB)'=B"'A™l

(9)

v
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Assume A € M., B € M,,, then we say
A:B:=n:p.

The STP of A and B depends only on A : B.

Definition 2.2
Assume A : B =n: p. A splitting

ALl Al2 Al Bl B2
A2l A22 A2 B2 g2
A= , B=1.
A-sl As2 AsZ B.El BZZ
is called a proper division, if
A% :BY =pn:p, i=12---,sj=1,2,

Bll‘

AZZ

Bft

(10)
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Theorem 2.3
Assume A : B = n : p, and the splitting (10) is a proper
division, then

A B = (CV), (11)

where
l
Cl=) A*wxBY.
k=1
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Corollary 2.4
Let A e M,,«, and B € M,.,. Then

AxB:=(CV]i=1,---,m;j=1,---,q9), (12)

where

CY = Row;(A) x Col;(B).

Theorem 2.3 and Corollary 2.4 are not correct for MM-R
STP. This is the major difference between MM-L SPT and
MM-R STP. Mainly because of this difference, MM-R is not
so useful as MM-L.
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Proposition 2.6

Let A, B € M., where n =[], n. If
AM?ZIXIZBD(:IZIX” VXiGAm, i:l’--- ,l’l, (13)

then

A =B.
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=z STP vs Kronecker Product

Proposition 2.7
(i) Given two column vectors X € R™, Y € R”, then

XxY=XQ®Y;
XxY=Y®X.

(i) Given two row vectors ¢ € R™, n € R”, then

EXN=nQ¢;
EXxn=ERn.
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Proposition 2.8

Assume x = x!_,x;, wherex; € A,.,i=1,2,---  n. Define
. L =1,
P B Hf;}nlv t:2,3,"‘,l’l,
. 1, t=mn,
q =
[Ty t=1,23,---,n—1.
Then for any 1 <j < n we have
xj:[1§®lnj®lgr}x, j=1,2,--+ n, (18)
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i Pseudo-Commutativity

Proposition 2.9

(i) Assume X € R'is a column vector, A is a matrix,
then

XA = (I, @ A)X. (19)
(ii) Assume w € R’is arow vector, A is a matrix, then

Av=w(;®A). (20)

<
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Definition 2.10

A swap matrix of dimension (m,n)-is defined as follows:

Wipn =L, Q6L I, @82, --- I, @ 6™] . (21)
[»] m m m

Proposition 2.11

()

Wil = Winng (22)
(i)

Wi = Wina (23)
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Proposition 2.12

(i) Let X eR" Y e R"be two column vectors. Then

W[m’n]X XY =Y xX. (24)

(ii) Let ¢ € R, n e R"be two row vectors. Then

v

Proposition 2.13

Let A e M,,. Then

{W[m,n] Vr(A) = Vc(A)7 (26)

Winm Ve(A) = V,(A).
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Proposition 2.14
The swap matrix W, , has two equivalent forms:

Wina) =
[ R S LA A A KRR I i [
(27)
(ii)
I, ®6\"
T u (28)

I, ® 6"
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Proposition 2.15

let x, e R%, i =1,---

[T-;,m, and deflne

I @ Wiy 4, © 1.

Then we have

(Zy ® Wi, +1]®1)

i= lxi:x1x2"

,n. Denote p =

“Xjp1Xj

J—
llnl

- X

q:

(29)

(30)

v
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Proposition 2.16

What = I @ W) (Wpg ® 1),
Whal = (@ W) (W ® 1)
WLDW] - (WLv,r} ® Iq)(lp ® W[q,r])7
Wipgn = Wign ® L)1 ® W, ).

(31)

(32)

| \

Proposition 2.17
LetA € M, s, B E M,,. Then

Winy) (A ® B)Wy,, = B®A.

(33)

\
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i What is the basic idea inside STP

Remark 2.18

The basic idea:

Mismatching Dim’s = Enlarging Factors = Matching Dim’s.

= Cross-dimensional Vector Space

Example 2.19

W:UN

n=1
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Example 2.19(cont’d)
XeRPCR?, YeRICR.

() p=g
<X’ Y>a = <X7 Y> = ZXzYz
(ii) p#£qgandt = lem(p, q).

(X,7), =(X®1,,,Y®11/q).

R? becomes a dimension-free inner product space.

22/51



lll. Equivalence of Matrices

Denote e
M = U U Mm><n-
m=1n=1

Then x : M x M — M, which is a monoid (i.e., a semi-
group with identity).
Consider A € Myy3, B; € Myiws, i = 1,2,3,---. By defini-
tion:

ARDbL)(Bi®L), i=1

ARL)B,®L), i=2

AD(Bi: .
(A®18>(34®]3), i=4
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= Equivalence Relation

It is easy to see that the STP is a product of two equiva-
lences:

(A) ={A, AL, AR L,---}, (B)={B,BRL,BRL,---}.

Definition 3.1

Let A, B € M be two matrices. A and B are said to be
equivalent, denoted by A ~ B, if there exist I, I,, s,t € N,
such that

AR, =B®]I,. (34)

v

Denote
(A) ={B | B~ A}.
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Theorem 3.2
(i) If A~ B,then there exists a A such that

A=A®I; B=A®L. (35)

(ii)  In the equivalence class (A), there exists a unique
A, € (A),, such that A, is irreducible. That is, there is
no I, s > 1 such that

A=B®I,.

In (34), w.l.g., we assume gcd(s, t) = 1, then we define

©:=A®L,=B®I,. (36)
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= |attice

Definition 3.3

Consider a set Q with a relation <.
Q@ (Q,<)is called a partial order set, if
(i) (self-reflect) a < q;
(i)  (non-symmetric) if a < b and b < a, then a = b;
(iii)  (transitive) if a <band b < ¢, then a <c.
Q A partial order set (Q, <) is called a total order set, if
forany a, b € Q we have eithera < b or b < a, then
(Q, <) is called a total order set.

v
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Definition 3.4

() Let Q be a partial order setand A C Q. p € Qis
called an upper boundary of A, if a < p, Va € A.

(ii) pis an upper boundary of A. p is called the least
upper boundary of A, denoted by p = sup(A), if for
any upper boundary u of A, p < u.

(iii) g € S is called a lower boundary of A, if g < a,
Va € A.

(iv) gis alower boundary of A. ¢ is called the greatest
lower boundary of A, denoted by ¢ = inf(A), if for any
lower boundary ¢ of A, ¢ < gq.

Definition 3.5

A partial order set (Q, <) is a lattice, if for any two elements
a, b € Q, there are sup{a, b} and inf{a, b}.
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i Lattice Structure of (A)

Definition 3.6

Let A, B € (A) A < B if there exists I, such that

A®QI =B.

Theorem 3.7
((A), <) is a lattice. Forany A, B € (A),

sup(A,B) = ©; inf(A,B) = A,

where © and A are defined in (35) with ged(a, 8) = 1 and
in (36) with gcd(s, t) = 1 respectively.

y
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Figure 1: A Lattice Structure: © = sup(A,B) A = inf(A, B)

Example 3.8
Let

(A ={A1,A, =A L, A=A R L, }.
Then

sup(A4,A6) = A]z; il’lf(A4,A6) = Az.
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= Quotient Space

Definition 3.9

Let A,B € M. Define

(A) x (B) := (A x B). (37)

| \

Proposition 3.10

(i) The class product (37) is well defined. Thatis, if A ~ A’
and B ~ B, then

AxB~A XxB. (38)

(i) The class product (37) is associative. That is,
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Define the quotient space as

Qi=M/~.

Proposition 3.11

(i) (2, x) is a monoid (simi-group with identity).
(ii) Let M; = {M € M | M is invertible}, Q; = M,/ ~.
Then (2, x) is a group.

Note that in 2 the identity element is

e=(1)={L|n=123-}
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IV. Generalized STP

= Matrix Multiplier
Recalling the MM-L STP, for A € M,,, and B € M,

AxB=(A®1I) (B®1Ly,). (40)
Where the set

I = {1712a13a"'}

are called a matrix multiplier.
Q: Can we find another set of matrices to replace this set?

Fundamental Requirements:

(i) Using this set, the new STP is a generalization of con-
ventional matrix product.

(ii) The new STP is associative.
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Definition 4.1
A set of matrices

I ={lL, e My, | n>1}
is called a matrix multiplier, if
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iz Multiplier-based STP

Definition 4.2

Assume [' = {[},, | n > 1} is a multiplier, A € M,,xn,
B € M,.,. Then the multiplier I" based left STP of A and
B is defined as

where t = lem(n, p).
The multiplier I" based right STP of A and B is defined as

AxrB:= (I}, ®A) (I, ®B). (45)

v
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Example 4.3

Assume [' =1 := {I,}. Itis a matrix multiplier. In
fact,
Xp = KX; XNp = X.

Set

1
Jn = _1n><n7 n= 1727"' o (46)
n

It is easy to verify that "' =J :={J, |n=1,2,---}
satisfies (41)-(43), hence, it is a matrix multiplier.

w
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Example 4.3(cont’d)

Set AV € M, as:

I, i=1,andj=1,

AY) = 47
(”)’J {07 Otherwise. (47)

It is easy to verify that AV := {AV | n =1,2,---}
satisfies (41)-(43), hence, it is a matrix multiplier.

Set A? € M,, as:

I, i=n,andj=n
APy =¢7 ’ ’ 48
(A, )’J {0, Otherwise. (48)

It is easy to verify that AP := {AP | n = 1,2,---}
satisfies (41)-(43), hence, it is a matrix multiplier.

4
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i Second Matrix-Matrix (Second MM-L) STP
Using J defined by (46), we define second MM-L STP:

Definition 4.4

Using I'=J=1{J,|n=1,2,---}, the second MM-L STP
is defined as

(i) second MM-L STP:

AoyB:=(AQJym) (BRJyy,p) - (49)

(ii) second MM-R STP:

AoyB:= (Jy/y ®A) (J;, ®B) . (50)

v
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= Vector Multiplier

Definition 4.6
A vector sequence

is called a vector multiplier, if it satisfies the following:

v:{vneR [r=1}

7 =1

Yo @ Vg = Vpg-
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()

y=1:={1,|n=1,2,---}. (53)
(i)

7:5U::{5}l|n:1,2,~-}. (54)
(iii)

y=08"={G|n=1,2,}. (59)
Proposition 4.8
f v = {w | » = 12,---} is a vector multi-
plier, then, ~— = {y., | n = 1,2,---} is also a vector

multiplier, where

V=t n=1,2,---.
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= Matrix-Vector (MV) STP

Definition 4.9

Let I' be a matrix multiplier, ~ a vector multiplier, A €
Mpsen, x € R", t =nV r. Then the matrix-vector STP of
A and x related with I" and ~, denoted by X, is defined
as

@ Left MV-STP:

AXx = (A ® F,/p) (x® 'y,/,) . (56)

@ Right MV-STP:

AX,x = (Ft/p ®A) (7,/, ®x) . (57)
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w MM vs MV

Remark 4.10

(i) MM-STP is used for composition of two linear map-
pings.
(ii) MV-STP is used for realizing linear mapping.
(iii)  In classical case, they are coincide.
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i Two Important MV- STPs

Definition 4.11
MV-1 STP:

F:{Inlnzlvza"'}u 7:{1n|n:1727'”}'

Let Ae M, x,, x€R", t=nVr. Then,
(i) Left MV-1 STP:

AXX = (A ® I,/p) (x ® lt/,) . (58)
(i) Right MV-1 STP:

AXx = (I,/p ®A) (1,/, ®X) . (59)
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Definition 4.11(cont’d)
MV-2 STP:

r={|n=12,---}, ~={1,|n=1,2,---}.
Let Ae M, x,, x€R", t=nVr. Then,
(i) Left MV-2 STP:

ASix = (A®Jyp) (x® 1) . (60)

(i) Right MV-2 STP:

AS.x = (J,, ®A) (1), ®x). (61)
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V. Conclusion

=z General Remark

@ STP is a generalization of conventional matrix prod-
uct, which keeps main properties of conventional ma-
trix product available.

@ STP has some further nice properties, such as pseudo-
commutativity.

@ STP makes (M, x) a semi-group.

@ Choosing proper Matrix multiplier (Matrix and Vector
multiplies), some new MM- (MV-) STP can be obtained.

I' = MM-STP; I' + v = MV-STP.
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VI. Appendix

iz Proof of Associativity of STP
Consider

(AxB)x C=Ax (BxC). (62)
Assume A € M,,.,, B€ M,y C € M,«,. Denote

lem(n,p) = nny, = pp, lem(q,r) = qq, = rry,
lem(r, qp1) = rry = gpip2, lem(n,pgy) = nny = pq,qs.
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Then

AxB)xC = (A®I,)B®I,)) xC
= ((AL)B®I,)) ®1,)(CRI,)
= (A ® I"1P2)<B ® Ip1pz)<c ® Irz)'

AX (BxC) Ax (B®I,)(C®I,))

(A® L) (B&1,)(C@L,)) ® 1)
(A® 1) (B ®144,)(C @ Ingr))
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Hence, to prove (62), it is enough to prove the following
three equations:

nmpy = ny 2633;
PiP2 = 4192 63b
r =riqs (63c)

Recall the associativity of least common multiplier [?]:

lcm(i, lCI’I’l(]', k)) = lcm(lcm(i,j), k)7 i7j7 ke N7 (64)

¥ [6] L. Hua, An Introduction to Number Theory, Science
Press, Beijing, 1979 (in Chinese).
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It follows that

lem(gn, lem(pq, pr)) = lem(lcm(qn, pq), pr).

Using (65), we have
LHS of (63b)

RHS of (63b)

(63Db) follows.

lem(gn, plem(q, r))

= lem(qn, pqq)

glem(n, pq,)
qpr4q.19> .

lem(glem(n, p), pr)
lem(gppy, pr)
plem(gpy, r)
papipz-
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Using (63b), we have

npz

which shows (63a).
Similarly,

rqs

which shows (63c).

T P1p
lcm&,p) lem(n,pq)
pp1
prn n27

nqu‘h =n q9192p

n
lcm(n,Pﬂh )
n

rll’lpz _ tlplpzq

1 1
lCm(qu‘) lcm(r7qpl(§
. (r ) q19

cm\r,gp1) __

r = I,
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Any Question?
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