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I. What is STP
+ Matrix-Matrix Left Semi-tensor Product (MM-L STP)

Let A ∈Mm×n, B ∈Mp×q. The Kronecker product of A and
B is

A⊗ B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
am1B am2B · · · amnB

 . (1)

Definition 1.1
Let A ∈Mm×n, B ∈Mp×q, t = lcm(n, p). Then the (MM-L)
STP of A and B is

A n B :=
(
A⊗ It/n

) (
B⊗ It/p

)
. (2)
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Example 1.2
Let

A =

 1 0 −1
2 1 0
−1 3 2

 ; B =

[
−1 0
1 3

]
.

Then t = lcm(3, 2) = 6, and

A n B = (A⊗ I2)(B× I3)

=


1 0 0 0 −1 0
0 1 0 0 0 −1
2 0 1 0 0 0
0 2 0 1 0 0
−1 0 3 0 2 0
0 −1 0 3 0 2




−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
1 0 0 3 0 0
0 1 0 0 3 0
0 0 1 0 0 3


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Example 1.2(cont’d)

=


−1 −1 0 0 −3 0
0 −1 −1 0 0 −3
−2 0 −1 0 0 0
1 −2 0 3 0 0
1 2 −3 0 6 0
3 1 2 9 0 6


Remark 1.3
(i) Since it is a product between two matrices, it is called

“MM”. “MV” will be defined later.
(ii) “Left” STP corresponds to “Right” STP, which is de-

fined right after this Remark.
(iii) The MM-L is the fundamental one, hence it is consid-

ered as the default STP.
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+ MM-R, MV-L, MV-R STPs

Definition 1.4
Let A ∈Mm×n, B ∈Mp×q, x ∈ Rp, t = lcm(n, p).
(i) The (MM-R) STP of A and B is

A o B :=
(
It/n ⊗ A

) (
It/p ⊗ B

)
. (3)

(ii) The (MV-L) STP of A and x is

A~nx :=
(
A⊗ It/n

) (
x⊗ 1t/p

)
. (4)

(iii) The (MV-R) STP of A and x is

A~ox :=
(
It/n ⊗ A

) (
1t/p ⊗ x

)
. (5)
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II. Properties of STP

+ Basic Properties

Proposition 2.1
(In the following: ./∈ {n, o}.)

(Assosiativity)

(A ./ B) ./ C = A ./ (B ./ C). (6)

(Distributivity)

(A + B) ./ C := A ./ C + B ./ C
A ./ (B + C) = A ./ B + A ./ C. (7)
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Proposition 2.1 (cont’d)
(Transpose)

(A ./ B)T = BT ./ AT . (8)

(Inverse)
If A and B are invertible§then A ./ B is invertible.
Moreover§

(A ./ B)−1 = B−1 ./ A−1. (9)
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Assume A ∈Mm×n, B ∈Mp×q, then we say

A : B := n : p.

The STP of A and B depends only on A : B.

Definition 2.2
Assume A : B = n : p. A splitting

A =


A11 A12 · · · A1`

A21 A22 · · · A2`

...
As1 As2 · · · As`

 , B =


B11 B12 · · · B1t

B21 B22 · · · A2t

...
B`1 B`2 · · · B`t


(10)

is called a proper division, if

Aiα : Bαj = n : p, i = 1, 2, · · · , s; j = 1, 2, · · · , t.
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Theorem 2.3
Assume A : B = n : p, and the splitting (10) is a proper
division, then

A n B =
(
Cij) , (11)

where

Cij =
∑̀
k=1

Aik n Bkj.
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Corollary 2.4
Let A ∈Mm×n and B ∈Mp×q. Then

A n B :=
(
Ci,j | i = 1, · · · ,m; j = 1, · · · , q

)
, (12)

where
Cij = Rowi(A) n Colj(B).

Remark 2.5
Theorem 2.3 and Corollary 2.4 are not correct for MM-R
STP. This is the major difference between MM-L SPT and
MM-R STP. Mainly because of this difference, MM-R is not
so useful as MM-L.
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Proposition 2.6
Let A, B ∈Mm×n, where n =

∏n
i=1 ni. If

A nn
i=1 Xi = B nn

i=1 Xi, ∀Xi ∈ ∆ni , i = 1, · · · , n, (13)

then
A = B.
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+ STP vs Kronecker Product

Proposition 2.7
(i) Given two column vectors X ∈ Rm, Y ∈ Rn, then

X n Y = X ⊗ Y; (14)
X o Y = Y ⊗ X. (15)

(ii) Given two row vectors ξ ∈ Rm, η ∈ Rn, then

ξ n η = η ⊗ ξ; (16)
ξ o η = ξ ⊗ η. (17)
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Proposition 2.8
Assume x = nn

i=1xi, where xi ∈ ∆ni, i = 1, 2, · · · , n. Define

pt :=

{
1, t = 1,∏t−1

i=1 ni, t = 2, 3, · · · , n,

qt :=

{
1, t = n,∏n

i=t+1 ni, t = 1, 2, 3, · · · , n− 1.

Then for any 1 ≤ j ≤ n we have

xj =
[
1T

pj ⊗ Inj ⊗ 1T
qT

]
x, j = 1, 2, · · · , n, (18)
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+ Pseudo-Commutativity

Proposition 2.9
(i) Assume X ∈ Rt is a column vector, A is a matrix,

then

XA = (It ⊗ A)X. (19)

(ii) Assume ω ∈ Rt is a row vector, A is a matrix, then

Aω = ω(It ⊗ A). (20)
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Definition 2.10
A swap matrix of dimension (m, n)-is defined as follows:

W[m,n] :=
[
In ⊗ δ1

m, In ⊗ δ2
m, · · · , In ⊗ δm

m

]
. (21)

Proposition 2.11
(i)

WT
[m,n] := W[n,m]. (22)

(ii)

W−1
[m,n] := WT

[m,n]. (23)
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Proposition 2.12
(i) Let X ∈ Rm, Y ∈ Rn be two column vectors. Then

W[m,n]X n Y = Y n X. (24)

(ii) Let ξ ∈ Rm, η ∈ Rn be two row vectors. Then

ξ n ηW[m,n] = η n ξ. (25)

Proposition 2.13
Let A ∈ Mm×n. Then{

W[m,n]Vr(A) = Vc(A),

W[n,m]Vc(A) = Vr(A).
(26)
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Proposition 2.14
The swap matrix W[m,n] has two equivalent forms:
(i)

W[m,n] =[
δ1

n n δ1
m · · · δn

n n δ1
m · · · δ1

n n δm
m · · · δn

n n δm
m

]
.

(27)

(ii)

W[m,n] =


Im ⊗ δ1

n
T

Im ⊗ δ2
n

T

...
Im ⊗ δn

n
T

 . (28)
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Proposition 2.15

Let xi ∈ Rni, i = 1, · · · , n. Denote p =
∏j−1

i=1 ni q =∏n
i=j+2 ni, and define

Ip ⊗W[dj,dj+1] ⊗ Iq. (29)

Then we have

(Ip ⊗W[dj,dj+1] ⊗ Iq) nn
i=1 xi = x1x2 · · · xj+1xj · · · xn. (30)
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Proposition 2.16

W[p,qr] = (Iq ⊗W[p,r])(W[p,q] ⊗ Ir),
W[p,qr] = (Ir ⊗W[p,q])(W[p,r] ⊗ Iq).

(31)

W[pq,r] = (W[p,r] ⊗ Iq)(Ip ⊗W[q,r]),
W[pq,r] = (W[q,r] ⊗ Ip)(Iq ⊗W[p,r]).

(32)

Proposition 2.17
Let A ∈Mm×n, B ∈Mp×q. Then

W[m,p](A⊗ B)W[q,n] = B⊗ A. (33)
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+ What is the basic idea inside STP

Remark 2.18
The basic idea:

Mismatching Dim’s⇒ Enlarging Factors⇒ Matching Dim’s.

+ Cross-dimensional Vector Space

Example 2.19

Rσ =
∞⋃

n=1

Rn.
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Example 2.19(cont’d)
X ∈ Rp ⊂ Rσ, Y ∈ Rq ⊂ Rσ.

(i) p = q

〈X,Y〉σ := 〈X,Y〉 =

p∑
i=1

XiYi.

(ii) p 6= q and t = lcm(p, q).

〈X,Y〉σ :=
〈
X ⊗ 1t/p,Y ⊗ 1t/q

〉
.

Rσ becomes a dimension-free inner product space.
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III. Equivalence of Matrices

Denote

M =
∞⋃

m=1

∞⋃
n=1

Mm×n.

Then n : M×M →M, which is a monoid (i.e., a semi-
group with identity).
Consider A ∈ M2×3, Bi ∈ M2i×3, i = 1, 2, 3, · · · . By defini-
tion:

A n Bi =


(A⊗ I2) (B1 ⊗ I3) , i = 1
(A⊗ I4) (B2 ⊗ I3) , i = 2
(A⊗ I8) (B4 ⊗ I3) , i = 4

...
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+ Equivalence Relation

It is easy to see that the STP is a product of two equiva-
lences:

〈A〉 = {A,A⊗ I2,A⊗ I3, · · · }, 〈B〉 = {B,B⊗ I2,B⊗ I3, · · · }.

Definition 3.1
Let A, B ∈ M be two matrices. A and B are said to be
equivalent, denoted by A ∼ B, if there exist Is, It, s, t ∈ N,
such that

A⊗ Is = B⊗ It. (34)

Denote
〈A〉 = {B | B ∼ A}.
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Theorem 3.2
(i) If A ∼ B, then there exists a Λ such that

A = Λ⊗ Iβ, B = Λ⊗ Iα. (35)

(ii) In the equivalence class 〈A〉` there exists a unique
A1 ∈ 〈A〉`, such that A1 is irreducible. That is, there is
no Is, s > 1 such that

A = B⊗ Is.

In (34), w.l.g., we assume gcd(s, t) = 1, then we define

Θ := A⊗ Is = B⊗ It. (36)
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+ Lattice

Definition 3.3
Consider a set Q with a relation ≺.

1 (Q,≺) is called a partial order set, if
(i) (self-reflect) a ≺ a;
(ii) (non-symmetric) if a ≺ b and b ≺ a, then a = b;

(iii) (transitive) if a ≺ b and b ≺ c, then a ≺ c.
2 A partial order set (Q,≺) is called a total order set, if

for any a, b ∈ Q we have either a ≺ b or b ≺ a, then
(Q,≺) is called a total order set.
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Definition 3.4
(i) Let Q be a partial order set and A ⊂ Q. p ∈ Q is

called an upper boundary of A, if a ≺ p, ∀a ∈ A.
(ii) p is an upper boundary of A. p is called the least

upper boundary of A, denoted by p = sup(A), if for
any upper boundary u of A, p ≺ u.

(iii) q ∈ S is called a lower boundary of A, if q ≺ a,
∀a ∈ A.

(iv) q is a lower boundary of A. q is called the greatest
lower boundary of A, denoted by q = inf(A), if for any
lower boundary ` of A, ` ≺ q.

Definition 3.5
A partial order set (Q,≺) is a lattice, if for any two elements
a, b ∈ Q, there are sup{a, b} and inf{a, b}.
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+ Lattice Structure of 〈A〉

Definition 3.6
Let A, B ∈ 〈A〉 A ≺ B if there exists Ik such that

A⊗ Ik = B.

Theorem 3.7
(〈A〉 ,≺) is a lattice. For any A,B ∈ 〈A〉,

sup(A,B) = Θ; inf(A,B) = Λ,

where Θ and Λ are defined in (35) with gcd(α, β) = 1 and
in (36) with gcd(s, t) = 1 respectively.
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Θ

∼A B

Λ

Figure 1: A Lattice Structure: Θ = sup(A,B) Λ = inf(A,B)

Example 3.8
Let

〈A〉 = {A1,A2 = A1 ⊗ I2,A3 = A1 ⊗ I3, · · · }.

Then
sup(A4,A6) = A12; inf(A4,A6) = A2.
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+ Quotient Space

Definition 3.9
Let A,B ∈M. Define

〈A〉n 〈B〉 := 〈A n B〉 . (37)

Proposition 3.10
(i) The class product (37) is well defined. That is, if A ∼ A′

and B ∼ B′, then

A n B ∼ A′ n B′. (38)

(ii) The class product (37) is associative. That is,

(〈A〉n 〈B〉) n 〈C〉 = 〈A〉n (〈B〉n 〈C〉). (39)
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Define the quotient space as

Ω :=M/ ∼ .

Proposition 3.11
(i) (Ω,n) is a monoid (simi-group with identity).

(ii) Let M1 = {M ∈ M | M is invertible}, Ω1 = M1/ ∼.
Then (Ω1,n) is a group.

Note that in Ω the identity element is

e = 〈1〉 = {In | n = 1, 2, 3, · · · }.
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IV. Generalized STP
+ Matrix Multiplier

Recalling the MM-L STP, for A ∈Mm×n and B ∈Mp×q

A n B =
(
A⊗ It/n

) (
B⊗ It/p

)
. (40)

Where the set
I = {1, I2, I3, · · · }

are called a matrix multiplier.
Q: Can we find another set of matrices to replace this set?

Fundamental Requirements:

(i) Using this set, the new STP is a generalization of con-
ventional matrix product.

(ii) The new STP is associative.
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Definition 4.1
A set of matrices

Γ := {Γn ∈Mn×n | n ≥ 1}

is called a matrix multiplier, if

Γ1 = 1; (41)

ΓnΓn = Γn; (42)

Γp ⊗ Γq = Γpq. (43)
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+ Multiplier-based STP

Definition 4.2
Assume Γ = {Γn, | n ≥ 1} is a multiplier§A ∈ Mm×n,
B ∈ Mp×q. Then the multiplier Γ based left STP of A and
B is defined as

A nΓ B :=
(
A⊗ Γt/n

) (
B⊗ Γt/p

)
. (44)

where t = lcm(n, p).
The multiplier Γ based right STP of A and B is defined as

A oΓ B :=
(
Γt/n ⊗ A

) (
Γt/p ⊗ B

)
. (45)
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Example 4.3
Assume Γ = I := {In}. It is a matrix multiplier. In

fact§
nΓ = n; oΓ = o.

Set

Jn :=
1
n

1n×n, n = 1, 2, · · · . (46)

It is easy to verify that Γ = J := {Jn | n = 1, 2, · · · }
satisfies (41)-(43), hence, it is a matrix multiplier.
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Example 4.3(cont’d)
Set ∆U

n ∈Mn×n asµ

(
∆U

n

)
i,j =

{
1, i = 1, and j = 1,
0, Otherwise.

(47)

It is easy to verify that ∆U := {∆U
n | n = 1, 2, · · · }

satisfies (41)-(43), hence, it is a matrix multiplier.
Set ∆D

n ∈Mn×n asµ

(
∆D

n

)
i,j =

{
1, i = n, and j = n,
0, Otherwise.

(48)

It is easy to verify that ∆D := {∆D
n | n = 1, 2, · · · }

satisfies (41)-(43), hence, it is a matrix multiplier.
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+ Second Matrix-Matrix (Second MM-L) STP

Using J defined by (46)§we define second MM-L STP:

Definition 4.4
Using Γ = J = {Jn | n = 1, 2, · · · }, the second MM-L STP
is defined as
(i) second MM-L STP:

A ◦` B :=
(
A⊗ Jt/n

) (
B⊗ Jt/p

)
. (49)

(ii) second MM-R STP:

A ◦` B :=
(
Jt/n ⊗ A

) (
Jt/p ⊗ B

)
. (50)
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+ Vector Multiplier

Definition 4.6
A vector sequence

γ : {γr ∈ Rn | r ≥ 1}

is called a vector multiplier, if it satisfies the following:

γ1 = 1; (51)

γp ⊗ γq = γpq. (52)
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Example 4.7
(i)

γ = 1 := {1n | n = 1, 2, · · · } . (53)

(ii)

γ = δU :=
{
δ1

n | n = 1, 2, · · ·
}
. (54)

(iii)

γ = δD := {δn
n | n = 1, 2, · · · } . (55)

Proposition 4.8
If γ = {γn | n = 1, 2, · · · } is a vector multi-
plier§then§ γ− = {γ.n | n = 1, 2, · · · } is also a vector
multiplier§where

γ′n = nkγn, n = 1, 2, · · · .
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+ Matrix-Vector (MV) STP

Definition 4.9
Let Γ be a matrix multiplier§ γ a vector multiplier, A ∈
Mm×n, x ∈ Rr§ t = n ∨ r. Then the matrix-vector STP of
A and x related with Γ and γ, denoted by ~×, is defined
as

Left MV-STPµ

A~×`x :=
(
A⊗ Γt/p

) (
x⊗ γt/r

)
. (56)

Right MV-STPµ

A~×rx :=
(
Γt/p ⊗ A

) (
γt/r ⊗ x

)
. (57)

40 / 51



+ MM vs MV

Remark 4.10
(i) MM-STP is used for composition of two linear map-

pings.
(ii) MV-STP is used for realizing linear mapping.
(iii) In classical case, they are coincide.
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+ Two Important MV- STPs

Definition 4.11
MV-1 STP:

Γ = {In | n = 1, 2, · · · }, γ = {1n | n = 1, 2, · · · }.

Let A ∈Mm×n, x ∈ Rr§ t = n ∨ r. Then§
(i) Left MV-1 STPµ

A~nx :=
(
A⊗ It/p

) (
x⊗ 1t/r

)
. (58)

(ii) Right MV-1 STPµ

A~ox :=
(
It/p ⊗ A

) (
1t/r ⊗ x

)
. (59)
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Definition 4.11(cont’d)
MV-2 STP:

Γ = {Jn | n = 1, 2, · · · }, γ = {1n | n = 1, 2, · · · }.

Let A ∈Mm×n, x ∈ Rr§ t = n ∨ r. Then§

(i) Left MV-2 STPµ

A~◦`x :=
(
A⊗ Jt/p

) (
x⊗ 1t/r

)
. (60)

(ii) Right MV-2 STPµ

A~◦rx :=
(
Jt/p ⊗ A

) (
1t/r ⊗ x

)
. (61)
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V. Conclusion

+ General Remark

STP is a generalization of conventional matrix prod-
uct, which keeps main properties of conventional ma-
trix product available.
STP has some further nice properties, such as pseudo-
commutativity.
STP makes (M,n) a semi-group.
Choosing proper Matrix multiplier (Matrix and Vector
multiplies), some new MM- (MV-) STP can be obtained.

Γ ⇒ MM-STP; Γ + γ ⇒ MV-STP.
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VI. Appendix

+ Proof of Associativity of STP

Consider

(A n B) n C = A n (B n C). (62)

Assume A ∈Mm×n, B ∈Mp×q, C ∈Mr×s. Denote

lcm(n, p) = nn1 = pp1, lcm(q, r) = qq1 = rr1,
lcm(r, qp1) = rr2 = qp1p2, lcm(n, pq1) = nn2 = pq1q2.
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Then

(A n B) n C = ((A⊗ In1)(B⊗ Ip1)) n C
= (((A⊗ In1)(B⊗ Ip1))⊗ Ip2)(C ⊗ Ir2)
= (A⊗ In1p2)(B⊗ Ip1p2)(C ⊗ Ir2).

A n (B n C) = A n ((B⊗ Iq1)(C ⊗ Ir1))
= (A⊗ In2) (((B⊗ Iq1)(C ⊗ Ir1))⊗ Iq2)
= (A⊗ In2) (B⊗ Iq1q2)(C ⊗ Ir1q2)) .
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Hence, to prove (62), it is enough to prove the following
three equations:

n1p2 = n2 (63a)
p1p2 = q1q2 (63b)

r2 = r1q2 (63c)

Recall the associativity of least common multiplier [?]:

lcm(i, lcm(j, k)) = lcm(lcm(i, j), k), i, j, k ∈ N, (64)

[6] L. Hua, An Introduction to Number Theory, Science
Press, Beijing, 1979 (in Chinese).
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It follows that

lcm(qn, lcm(pq, pr)) = lcm(lcm(qn, pq), pr). (65)

Using (65), we have

LHS of (63b) = lcm(qn, plcm(q, r))
= lcm(qn, pqq1)
= qlcm(n, pq1)
= qpq1q2.

RHS of (63b) = lcm(qlcm(n, p), pr)
= lcm(qpp1, pr)
= plcm(qp1, r)
= pqp1p2.

(63b) follows.
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Using (63b), we have

n1p2 = n1
q1q2
p1

= n1
q1q2p
p1p

= lcm(n,p)
n

lcm(n,pq1)
pp1

= lcm(n,pq1)
n = n2,

which shows (63a).
Similarly,

r1q2 = r1
p1p2
q1

= t1
p1p2q
q1q

= lcm(q,r)
r

lcm(r,qp1)
q1q

= lcm(r,qp1)
r = r2,

which shows (63c).
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Any Question?
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