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Boolean networks

v The purpose of BNs v Model description of BNs



> @ The propose of Boolean netwo

he relations among

The regulatory genes in

D neural activities :
in brain can be every cell can active or
inactive other genes like
> treated by means of J

~(S-<propositional logig [1]. a switch [2.]'!

!

e X _,.f' - y : k‘ ":1;
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D) 0 S VBODIMENTS OF MIND
Mcculloch & Pitts Jacob & Monod Kauffman
D .
» @ O .
> 1943 1961 1969
M-P model of neuron Genetic regulatory networks Boolean networks [3]
< (be awarded the Nobel Prize)

[1] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The Bulletin of Mathematical Biophysics, 5(4):115-
133, 1943.

)[2] F. Jacob and J. Monod, Genetic regulatory mechanisms in the synthesis of proteins, Journal of molecular biology, 3(3):318-356,1961.

[3] S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology, 22(3):437-467, 1969.
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@ Model description of Boolean networks

~ h The feature of BNs:

ﬂ Il(t—l—1):fl(Il(t),...,:En(t))._ | |
Boolean networks | ) w2+ 1) = falea(®).....oa(t)), ~ Discretedtime models
(BNs) [3] : > State x;(t): ON (1) or OFF (0)
2 wali+ 1) = falm(t), .. ﬁwn(t))’/ > f;: Boolean function

External control
inputs l

Boolean control ﬂ‘cl(H 1) = f{(-rl(f)-.-.--.:r-n.(t)..ul(t),.....um(t))._\ The control
networks (BCNs) |} »>!+ 1) = /(). oon(t) wa(f). .. um(©)), inputs u;(t)

[4] are added.

[3] S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology,
22(3):437-467, 1969.

[4] T. Akutsu, et a/, Control of Boolean networks: Hardness results and algorithms for tree structured networks, Journal of
Theoretical Biology, 244(4): 670-679, 2007.
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D @ Model description of Boolean networks

N
A simple BCN: The signaling system
D within capillary endothelial cells [5]
( Erk(t +1) =-(GF(t) = S(t)),
D) \ D1(t+1) =-(Erk(t) — p27(1)),
O p27(t+1) = M(t) — X(¢),
5 Mitosi E(t+1) = E2F(t) — p27(t),
: : ) ( F2F(t+1) =-(E(t) — pRb(L)),
5 : Rb _
> = NS pRb(t+1) = ~(D1(t) A E(1)),
callshape ..y x %, N /-\>l A S(t+1) = -(pRb(t) — E2F(t)),
(spreadlng) . cyclin EZ E2F 7
D X ) M(t+1) =-(M(t) = 5(T)),
| X(t+1) =GF(t)NCS(t),
N
N
[5] S. Huang and D.E. Ingber, Shape-dependent control of cell growth, differentiation, and apoptosis: switching between

attractors in cell requlatory networks, Experimental Cell Research, 261(1):91-103, 2000.



Semi-tensor Product

v Definition of STP v" Algebraic Expression of BNs

v" Some Applications



, @ Definition of STP

A generalization

5

of conventional
=" :

D when m # p, Anym X Bpxq = matrix product

5

o /Definition 1 [6]: Given two matrices A € R®™™ and B € RP*4, the STP of 4 and D

denoted by A xB, is defined as:
5
5
Here, [ is the least common multiple of m and p, ® is Kronecker product of matrices.

RN /

[6] D. Cheng, et a/. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, Springer, 2010.




& Definition of STP

A calculating example:




, @ Definition of STP

5

5

Pseudo-commutative law of STP:

&finition 2 [6]: An mn X mn matrix Wy, ,1 Is called a swap matrix, if it is constructed

position ((1,]); (i,j)) is assigned as

Wan:ain) = {

In the following way: label its columns by (11,12,---,1n,---,m1,m2,---,mn) and
similarly label its rows by (11,21,:--,n1,---,1n,2n,---,mn) . Then its element in the

1, I=iand] =,
0, otherwise.

\ial € Ap, and o, € Ay, then Wiy, 101 X 0, = 0, X 0.

[6] D. Cheng, et a/. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, Springer, 2010.

.



-

.

™

M

0

M

0

N

-

0

@ Algebraic Expression of BNs

D ={1,0} ~A, = {62,62}

/Proposition 1[6]: Let f(ay, ...,a,): {1,0}" — {1, 0} be a logical function. Then there exists a unique matrix \

F € L,y,n,such that

o

f(al,...,CLn):FD(al[><°°°[><CLn,

forevery (ai,...,a,) € (A2)"™ . Here, F is called the structure matrix of f.

[6] D. Cheng, et a/. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, Springer, 2010.
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5 @ Algebraic Expression of BNs

D

D

f z1(t+1) = fi(le;()]jen, ), A

< E (9) ’.\ w
L 2t + 1) = fullzj(t)]jen, ) 00

- B

x(t) =x, x;() ( @

Algebraic expression of BNs: x(t+ 1) = Lx(t

[6] D. Cheng, et a/. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach, Springer, 2010.
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5 @ Algebraic Expression of BNs

D

D

Example 1.

There are three persons. A says "B is a liar”, B
says Cis aliar’, C says "Both A and B are liars."

~

C p: A is honest,

& q: B is honest,

& 1: C 1s honest.

o /

Only B is
honest!

x = 68§

p=0,qg=1r=0 |

Who is a liar?

'

Mepan = C,
MoqM,r = c,

P = —q, /

— q < T, ) |
T*‘;>—|p/\—|q.

-

| MerM MupMyq=c

~

)

L:}::b}x:pqr,b:c?’:dé,

L=65[8,5,2,3,4,1,5,8].
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5 @ Algebraic Expression of BNs

What is the
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D A competition between five players took place in result ?
Example 2: | a simple-rotating way, which means each player '
D has to play all others.
D
KCbeatE, \ /p:AB,q:AC,’r:AD,\
J| . A won three games, — s=AF,t=BC, u=BD,
e E won one game, _ — —
D . \’U—BE,os—CD,ﬂ—DEy
e among B, C and D, there is one player who beat the other two,
» each of B, C, and D won two games, / \
p q r s t u v o A
keaoh of A, C, D, and E won some and lost some. / ) 1 o0 1 1 1 0 1 1
D 1o 1 1 1 1 0 0 1
1 o0 1 1 1 0 1T 0 O
D
o 1 1 1 0 O 1 0 O
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5 @ Algebraic Expression of BNs

Find fixed
5 points and
: : cycles.
Example 3: [ A Boolean model of epigenetic system [7]. J
D
A(t+1) =1vC(t)VF(t)vC(t) A F(t),
D BEHli =A(t)() e ro Only 6 cycles
’ of length 6 by
> C(t+1) =B(t), [7] I
D(t+1) =1VC(t)VF@)VI(H)VC(t) A F(t)
3 J VC()NI(O)VE() AI(E)VC(E) AF(t) AL(T),
E(t+1) =D(t), — [ Exactly 10 cycles of length 6 by ]
3 F(t+1) =E(), STP
G(t+1) =1VFE(t)VI(t)VF(t) A E(t),
D H(t+1) =G(t),
I(t+1) =H(t),
D
[7] ). Heidel, J. Maloney, C. Farrow, and J. Rogers, Finding cycles in synchronous Boolean networks with applications
to biochemical systems. Int. J. Bifurcation Chaos, 13(3):535-552, 2003
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@ Stability

> Stability of Boolean networks
IS Important and interesting topic.
Especially, In biological systems
or genetic networks.

> It is important to analyze
whether systems can reach a
desirable state, such as the healthy
one, and maintain this state
afterward.

Cell Membrane

Intestinal homeostasis in Drosophila




, & The definitions of stability in linear systems

dx
< > 3= f(t x) (1.1)

5 Definition: The zero solution of (1.1) is said to be stable, if Ve > 0,Vt, € I,36 > 0 such that Vx,, ||xy|] <
5(g, ty) implies ||x(t, ty, x0)|| < & fort = t,.

<
> 0, ||xoll < 8(ty) implies |[x(t, ty, xo)|| < efort >ty +T.
-

'Definition: The zero solution of (1.1) is said to be attractive, if Vt, € I,Ve > 0,3 6(ty) > 0,3 T (¢, to,xo)J

Definition: The zero solution of (1.1) is said to be asymptotically stable, if it is stable and attractive.
-»-} _

» Common stability analysis methods

> v All eigenvalues have a negative real part ( homogeneous equation )
v Routh-Hurwitz stability criterion ( algebraic method )
5 v Evans root locus plot
v Nyquist stability criterion
5 v" Lyapunov's first method
v" Lyapunov direct method
> v’ LaSalle’s invariant principle
v Comparison principle
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G Two definitions of stability in BNs

o .. _ A

Definitionll); A Boolean network is globally stable (or called
asymptotically stable) if there exists a unique fixed point as the
\attractor with no other cycles.

J

Definition[2: A Boolean network is said to be globally stable to A
a state X*€A,n, If for any Initial state Xx,EA,n, we have

lim x(¢t, t, x,)= X*.
. lim x(t, t, o) )

[1] D. Cheng, et al., Stability and stabilization of Boolean networks , IJRNC, 21:134-156, 2011.
[2] F. L1, et al., Stability and stabilization of Boolean networks with impulsive effects, System & control
letters, 61:1-5,2012.
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> @ Three common stability analysis methods in BNs

D

D

D

@ Incidence-matrix-based stability

analysis method

@ Transition-matrix-based stability

analysis method

@ Lyapunov-based stability analysis
method



5

G Incidence-matrix-based stability analysis methodl!
» The introduce of incidence matrix

Assume a Boolean network, N is given, with its nodes . 1" ={xy, ..., x,} and edge set &.

Definition 2.7
An nxn matrix .#(N)=(bj) is called the incidence matrix of N, if

l, J:J,‘,-!:f"c'(_f,
bij= .
0  otherwise.

Example 2.8
Consider the network (9), refer to the graph within the rectangular box of Figure 1. Its incidence

matrix 1s

0 1 1 07
A(t+1)=B()VvC(1) I O 1 O
Bu+D=A0-CH) o) 10 0 1
Ct+1)=A@)AD(1)

11 1 0

D(t+1) = (A@)— B()VC(D).

Figure 1. A Boolean (control) network.

[1] D. Cheng, et al., “Stability and stabilization of Boolean networks” , IJRNC, 21:134-156, 2011.
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G Incidence-matrix-based stability analysis method
» Logical operations on Boolean matrices

Definition 3.1

I. Let X =(x;j) € Bmxn and ¢ an unary logical operator. Then ¢ : %y xn — Bmxn 1s defined by
o X =(ax;). For instance,

-

=X 1= (—x;).

Bmxn 18 defined by Xa¥ :=(xjjoy;j). For instance,

XVY :=(xjVyj), etc.

(15)

. Let X=(x3), Y =(yij) EBmxn and ¢ a binary log|ica] operator. Then &: %, n X Byysn —

(16)

. Let e and X =(x;;) € By xp. 0 1s a binary logical operator. Then 6:% X By — Bymxn

is defined by aa X :=(xox;). Similarly, 6: %, X 4 — By 1s defined by Xoo:=(x;;00).
For 1nstance,

B:

—0

1—

aAX =(aAxj); XAa=(xjAx).

T | —A=

b

AANB=

0 0
L0 0
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> G Incidence-matrix-based stability analysis method

> > Next, we consider the scalar product and the (semi-tensor) product on the set of Boolean
matrices.

D Definition 3.2

) 1. Let e 2. The scalar product of & with X € #,,«, 18

- X:=anrnX, X-a=XAcq. (18)

Note that since it coincides with the conventional real number product, we use the same
D) product symbol. For compactness, we may also even omit the symbol in the sequel.
. Let X=(xjj) EXBmxn and Y € A x4 be two Boolean matrices. Then the Kronecker product
> of X.Y 1s defined as:

2

XQY=;-Y|i=1,...om; j=1,....n)€EBpupxng- (19)
7 3. Leto, p,; €, i=1,2,...,n. The Boolean plus is defined as follows:
D a+pfi=oaVvp,
D (20)

n
& Y o= Vop VeV,
i—1
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G Incidence-matrix-based stability analysis method

4. Let X =(xjj) € #mxn and Y =(yjj) € Bnxp. Then the Boolean product of Boolean matrices
XD(B}]:ZZE‘-%HTX]!}i (21)
where

. _B

2j=" ) Xik-Vkj. i=L,...om, j=1..p.

n
k=1

5. Let A<; B (A>; B). Then the Boolean product of A, B is defined as:

AxgB =(AQI;)xgB. (AxpB:=Axpg(B®I;).)

6. Assume that Ax gA 1s well defined. Then the Boolean power LRy B
®) [ 0
AV =AxgAxpg---XgA.
0 17 : Y g 1 0 1
—1 17 —0 17 k AxpC = , Bxp(C=
10 0 1 0
OI,B=IO,C=IO.
L0 0 0 1 — 0 0 1
0 0 0] 0
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> G Incidence-matrix-based stability analysis method

> > Next, we define a partial order on 4,,x,, and a “distance’, called the vector distance on %4, «,.

5

5

Definition 3.4
Let X =(x;), ¥ =(yij)) € By xn. We sad

Definition 3.5

X<Y if x;<y;. Vi, .

Let X =(x;;), Y =(yij) € #yxn- The vector distance of X and Y, denoted by d(X, Y). 1s defined as

d(A,B)=AVB.

For x=(0 0 1 1) and y=(0 1 0 1) one obtains

0
1

d(x, y)=|,

0

(23)



G Incidence-matrix-based stability analysis method

» Now, we consider the global stability of BNs. The dynamics of a
BN Is expressed as

xi(t+1) = filxy, ..., x,)

xo(t+1) = falxr, ..., xpn)
(2)
Xp(t+1)= fu(x1,....x), X €Y,
where f;,1=1,...,n are logical functions. Let X =(x, ..., x, )I' and F=(f1, ....f”)T. Then (2)

can briefly denoted as:

X(1+1)=F(X(1)). (3)



@ Incidence-matrix-based stability analysis method

" Theorem 4.1 (Robert [13])
Let X,Y €%. Then

d(F(X), F(Y)<J(F)xpd(X.,Y),

\Where 4 (F) 1s the incidence matrix of F.

J

PrOOf 5i(f;'(x1: =rsd xn)a f;(yln ceco yn))iéi(j;(xlﬂ i

<I(F)xpd(X.,Y)

X)), [ (Vi X0,y ey X))

+0,(fi(y1> X5 ooy X)), [i(V15 V20 X35 -

g

X))

+5l(j;(y19 "'Jyn-_laxn)af;:(yl? "‘7yn—l?yn))
<b;;0,(x1,¥1)+Db;50,(x,,y,)+ ... +b;,0,(x,,y,)

In n

[13] Robert F. Discrete Iterations, A Metric Study. Translated by J. Rokne. Springer: Berlin, 1986.
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Example

Let x=(0 0 1) and y=(0 1 1) then

F(x)=(1 0 0)

and

F(y)=(1 0 1).

= @ Incidence-matrix-based stability analysis method

B(F)=

The inequality of Theorem 1 is now written as

d(F(x), F(y)) =

<

1 1
1 O
0 1

1

1
1

—

L

[ o~ )

0
1

0

=B(F)d(x,y)=]0].




@ Incidence-matrix-based stability analysis method

fTheorem 4.3 (Robert [13]) )
Let E, F:4 — % be two logical mappings. Then

I(Eo F)XS(E J(F).
. ( ISI(E)XpI(F) )

An immediate application of the above theorem is

(Corollary 4.4 A

Let & be a fixed point of (2). Then

d(X k), OYK[IL(F)P % pd(X(0), E).
. (X (k), OH<[A(F)]" x pd(X(0), &) )

mm) If Oisa fixed point of F and there exists an integer k>0 such
that [.7(F)]® =0 . Then, the system globally convergesto O .



@ Incidence-matrix-based stability analysis method

to a fixed point. In other words, it has a fixed point as the only attractor.
Example: Consider the follow system:

[Definition 4.5: System (2) is said to be globally stable if it globally converges]

x1(t+1) = fi(xa(), x3(1)),
x(t+1) = falxa(®)),
x3(t+1) = co,

x4(t+1) = fa(x3),

(32)

where f1, f2, and f3 can be any logical functions, and cp is a logical constant. Briefly, we denote
(32) as:

X(t+1D)=F(X(1), Xeco* Assume that O is a fixed point
of system (32), then it globally

The incidence matrix of F is converges to 0.

0 1 1 07

S(F)= oo .mm) [JS(F)]® =0, -I
0O 0 0 O '
0 01 0_
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. (@ Incidence-matrix-based stability analysis method

D

D

ﬁroposifion 4.7 \

Consider system (2) (equivalently, (3)). Assume that 0€ " is a fixed point of F and there exists
an integer k>0 such that

[ (F)]'Y=0, (33)
Qlen 0 1s the unique global attractor. /
(Theorem 4.9 )
The Boolean network (2) is globally convergent, iff there exists a k>0 such that
J(F¥=0. (37)

-

. The Proposition 4.7 and the method right following it are practically useful because the size
of the incidence matrix is n x n, which is of the order of O(n).

2. In Theorem 4.9, F¥ is not directly computable. It can only be calculated by the algebraic
form of F', say L, which is of size 2" x2". Hence, it is difficult to use it if n is not small.

3. From Theorem 4.3 it is clear that

J(FO<[ 7™, k>1. (38)

But in general they are not equal.



-

.

™

M

0

M

0

N

-

0

D @ Incidence-matrix-based stability analysis method

D

D

D

Recall Proposition 4.7. In fact, the condition ‘0 1s a fixed point’ 1s not necessary for stability.
Because from (38) one sees that condition (33) assures that £ is constant for s>k. Say, F*(x)=¢,
Vx and s=k. Then the system globally converges to ¢. We write it as a corollary.

Corollary 4.11
Consider the system (2). It 1s globally stable if the condition (33) holds.

Just a sufficient condition!
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> @ Three common stability analysis methods in BNs

D

D

D

@ Incidence-matrix-based stability

analysis method

@ Transition-matrix-based stability

analysis method

@ Lyapunov-based stability analysis
method



G Transition-matrix-based stability analysis method
> Reconsider system (2):

BEF1)= ey, .
x(t+1)= falxi, ...

Xn(t+1) = fu(x1, ...

s Xn)
+ Xn)
m—  x(t+1)=Lx(t), Xx€Ayn
where x(7):=x"_,x;(f) € Ay and
Xn)y,  Xi €, L € Y ynyon is the transition matrix

only if

N

2) x:62

/"Lemma 3: Consider system (2). Then,
1) X:52

IS switching reachable from x(0)= 5 at time k, if and
(L*),q >0
IS switching reachable from x(0)= 52n, If and only if

ZL )pg >

~

/

[3] D. Laschov, et al., Controllability of Boolean control networks via the Perron-Frobenius theory,
Automatica, 48(6):1218-1223, 2012
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=D G Transition-matrix-based stability analysis method

g Definition: An s xs logic matrix, M, Is said to be a matrix of A
constant mapping if there exists a §7 such that
Col(M)={d/}.
\§ J

N\

Theorem: System (2) is globally stable to state x, if and only if satisfies\
Xy =X,
and there exists an integer k>0, such that L is a constant mapping.

J




=D G Transition-matrix-based stability analysis method

Example: Consider the following system:

N
[ { r1(t+ 1) =z (1) < x2(1),

D Jig(t + 1) = I (t) \V _Iﬂjg(t).
- It 1s easy to calculate that
D L = d4[1 3 4 1].
—— We have

Léy =6,

0 and
- 9 L° =64[1111].

<

Therefore, the system is globally stable to x = dj.
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> @ Three common stability analysis methods in BNs

D

D

D

@ Incidence-matrix-based stability

analysis method

@ Transition-matrix-based stability

analysis method

@ Lyapunov-based stability analysis
method



S

G Lyapunov-based stability analysis method

v" How to define a Lyapunov function for BNs?

v How to establish a new framework of Lyapunov
stability theory for BNs?

v How to construct a Lyapunov function for BNs?



—
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x @ Stability analysis in linear systems

Theorem(d : The zero solution of (1.1) 1s uniformly asymptotically stable if and only\
If there exists a positive definite function with infinitesimal upper bounded, V (t, x) €
- av - - ..
X \61, such that along the solution of (1.1), — |(1.1) IS negative definite. )
>» Example: x(t) = —2x+ sinx (1.2)
N
We construct a Lyapunov function V(x) = x?2.
S
%“1_2) — 2x(m2x~|— SiIlX)
D — —4x? + 2xsinx
< —4x? 4 2|x|| sinx|
< —4x2 4252 How to find V(x)? LMI et al.
= —2V(¢)

_—

- [1] X.X. Liao, et al., Stability of dynamical systems, Monograph, 2007, 5(1):115.



G Lyapunov-based stability analysis method

v How to define a Lyapunov function for BNs?
» The pseudo-Boolean functions was introduced in [14], which has

wide applications in graph theory, game theory, and so on.

KDEPINITIO.\‘ 2.6 (see [15]). An n-ary pseudo-Boolean function f(xy,xa,. .. .i‘nN
15 a mapping from D" to R.

LEMMA 2.7 (see [15]). A pseudo-Boolean function f(ry, o, ..., xy) can be uniquely
represented in the multilinear polynomial form of

(2.3) flri, w9, ... o) = co+ E CL H &€,
where cqy, 1, ..., ¢y are real coefficients, A1, Ao, ..., A, are nonempty subsets of
N ={1,2....,n}, and the product is the conventional one.

kRema,rk 2.8. Forx, y € D, 1t 1s easy to see that t Ay =axy and ~x =T =1 — [/

[14] P. Hammer, et al, On the determination of the minima of pseudo-Boolean functions, Stud. Cerc. Mat.,
14:359-364,1963.
[15] P. Hammer, et al. Boolean Methods in Operations Research and Related Areas,Springer, Berlin, 1968.
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@ Lyapunov-based stability analysis method

» Algebraic expression of pseudo-Boolean functions

/ THEOREM 3.1. Assume that f(ry,20,....xy) : A" —= R is a pseudo-Boolemh
function. Then there exists a matriz My € R**?" such that

(3.1) fley,wo, .. op) = I Mp X2 @y, x; € A,

where J; = [1 0] us called the selection matriz to be used to obtain the first row of My,

\and J1 M s unique. /

Li H, Wang Y. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks[J].
SIAM Journal on Control and Optimization, 2017, 55(6): 3437-3457.
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» Algebraic expression of pseudo-Boolean functions

Proof
f(B1,%9,. .. %)

m

k=1 1€ A}
i m
= J1 |co(Eq)"(Ion & 83) XIy 2 + Z My Xy h]

i k=1

/ n . &l = n

= I \CO(Ed) (Ign @OQ)—l—ZCkﬂfk X,—1 Lj
k=1

= J1 My X 2,

where Mj, is the structural matrix of term | [, ca, Tis which can be uniquely determined
by Lemma 2.3, k=1,..., m.
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» Algebraic expression of pseudo-Boolean functions

Proof

Next, we prove that J; My € R2" i unique.

In fact, if there exists another J; ﬂ[} e R1*2" guch that (3.1) holds, then, for any

(z1,22,...,Zn) € D" with X x; = 5521, on one hand,

fa1, 22, an) = Jy M} x 65, = Coly(Jy M7}).

Thus. C-’m!;u.(JlﬂI}) = Coly(J1My¢) V E = 1.2,...,2", which implies that jlﬂf}

J1M ¢, and the proof is completed.
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Consider the following BN:

(21t + 1) = fi(zi(t), 22(t), ..., x0(t)),

| xo(t + 1) = fo(x(t), z2(t),..., (1)),

(3:2) ‘ ; ) (1) = La(t),
| Tn(t+ 1) = ful(zi(t), 22(t),. .., 2n(t)),

where z; € D, i = 1,2,....n, are logical variables, and f; : D" — D, 1 =1,2,...,n,
are logical functions.

In general, the system (3.2) has a few attractors, including fixed points and/or cycles.
We denote by O, the set of fixed points and by & the set of points located in both fixed points
and cycles. Obviously, O, C S.
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What is the form of Lyapunov function of BN (3.2)?

> Pseudo-Boolean function

V(zi,z9,...,2p) =co+c1x1 + 2z + -+ + ey,

:3.:?) _|_ C?l 1I1I2 + e _|_ an—lrlrz e ;I:'?’I.-_u
_I_

where the total number of terms is C) + C} + ... + C" =2": ¢;, i =0,1,...,2" — 1
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v Lyapunov functions of Boolean networks

4 THEOREM 3.3. The BN (3.2) is asymptotically stable at x. if there exists a pseudo-\
Boolean function in the form of (3.3) satisfying
(i) V(zy,22,...,2n) >0 for V (z1,22,...,2,) # T € D", and V(z,) = 0;

(ii) along the trajectories of the system (3.2), AV (x1(t),...,xzn(t)) : =V (x1(t+1),
o xp(t1))=V(x(t), ..., xn(t)) <0 holds for (x1(t),...,xn(t)) # e, and
\ AV(xzy(t),...,xn(t)) =0 holds for (x(t),....z,(t)) = x.. /
Proof. Assume that V(rq,xo,...,x,) in the form of (3.3) satisfies (i) and (ii).
Using the vector form of logical variables and setting x = X' ;x;. 1t can be seen from
Theorem 3.1 and [4] that V (zy,xq,...,x,) can be expressed as
(34) I”T(M{f) = Jlﬂfv K?:l A

where J; My € RY%2" | z2(t) € Agn

Li H, Wang Y. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks[J]. SIAM Journal on Control and

) Optimization, 2017, 55(6): 3437-3457.

[4] D. Cheng, H. Qi, and Z. Li, Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach, Springer, London, 2011.
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. Thus, along the trajectories of the BN (3.2), we have
| AV (z(t))

— V(z1(t+1),...,20(t+ 1)) = V(z1(8), ..., zn(2))
> = ]1_7\[1I(IL + l) — ]l:“[‘u*r(f)

— J, My La(t) — J, My x(t)
D = Ji My (L — Iyn)x(t),

o N _ ) [ co = Colon (J1 My ) = 0;

Conditions (i) and (i) Col,(J, J[Tu) S0V1I<i<or—1:
y  mm\ Coly(J My (L —Isn)) < 0¥ 1<i<2m —1;
C'olon (Jy My (L — Ion)) = 0.

(3.6)

\

5

< Now, we show that x, in the vector form of 62, is a fixed point of the BN (3.2)
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v Lyapunov functions of Boolean networks

In fact, if 02::, is not a fixed point of the system (3.2), then LOZZ:: = O4n, 1 # 27,
Thus, we have

?.‘n p— 1I9on ) — ] — . T
Folonll — Ban =0z« . 50 1 0, oail;—1]

Using (3.6), we obtain

Colyn (Jy My (L — I5n))
= JiMyColon (L — I3n)
= Col;(J1My) — Colon (J1 My )
= Col;(J1My) > 0,

which is a contradiction with Colyn (J; My (L — Isn)) = 0 (see (3.6)). Therefore, 62,
is a fixed point of the system (3.2).
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Next, we prove that the system (3.2) is asymptotically stable at z..

- Let 2(0) = O;,% be any initial point. If 5 OZn._. then we obtain z(1) = Lz(0) =
0ok If 0% # 63., then we have x(2) = Lr(l) — §2%.... Keeping going, we obtain

r(k) = Lx(k —1) = 6%, .... Thus, we get the sequence
(3.7) r(0) = z(l) > x(2) > - > x(k) > ---. 1

Since x(k) = 5;’;& € Aon, k£ € N, and Asn is a finite set. we conclude that there
exists an integer kg (0 < ko < 2" — 1) such that x(kg) = Ozz: which implies the
sequence (3.7) converges to .. From the arbitrariness of x(0), the system (3.2) is
globally asymptotically stable at x..
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v Lyapunov functions of Boolean networks
Based on Theorem 3.3, we give the following definition:

-

(i) and (ii) in Theorem 3.3.
-

DEFINITION 3.4. A pseudo-Boolean function V(xy,...,x,): D" — R in the form\
of (3.3) is called a strict-Lyapunov function of the BN (3.2) if it satisfies conditions

J

of (3.3) is called a Lyapunov function of the BN (3.2) if

V(_J:l, e ,.L'n) SN O

\ rn(t)) €S.

/ DEFINITION 3.5. A pseudo-Boolean function V(xq,...,: tn): D™ — R wn the fc}r?h
(1) V(eg,...,xn) > 0, V(ry,...,. tn) € D"\ O, and V(xy,...,x,) = 0 holds

(ii) along the trajectories of the system (3.2), AV (w1(t),....xn(t)) <0 holds for

(z1(t)....,: rn(t)) € S, and AV (xy(t),....2,(t)) = 0 holds for (xy(t).....

/

With Definition 3.4 and Theorem 3.3, we have the following corollary.

|

COROLLARY 3.7. If the BN (3.2) has a strict-Lyapunov function in the form of

(3.3), then the system is globally asymptotically stable at ..

|
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Erample 3.8. Consider the following BN:
(38) Il(f—Fl)_Il(T)\?Ig f)_
o Iz(f—Fl)__lIl )

2(t)),

where x; € D, 1 =1, 2.

Choose V (x1,x9) = 201 +3x5—4x25. Then, it is easy to check that V' (zy,25) > 0
for (z1,22) # (0,0) € D?, and V(0,0) = 0. On the other hand, we can easily
check that along the trajectories of the BN (3.8), AV (x((t),x2(t)) < 0 holds for
(z1(t),z2(t)) # (0,0), and AV (xy(t),z2(t)) = 0 holds for (x(t),x2(t)) = (0,0).
Thus, V(x1,x2) is a strict-Lyapunov function of the system (3.8). By Corollary 3.7,
the system (3.8) is globally convergent to (0,0).

Li H, Wang Y. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks[J].
SIAM Journal on Control and Optimization, 2017, 55(6): 3437-3457.
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v Construction of Lyapunov functions for Boolean networks

> In this subsection, we present two methods to construct a
Lyapunov function for a given BN:

e Definition-based method

e Structure-based method

Li H, Wang Y. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks[J].
SIAM Journal on Control and Optimization, 2017, 55(6): 3437-3457.
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v Construction of Lyapunov functions for Boolean networks

> First, we present the definition-based method

D Assume that a Lyapunov function V (zy,z2,...,z,) of the system is given in the form of (3.3),

< where ¢;, 7 =0,1,....2" — 1, are real coefficients to be determined.

Set
‘H,II (39) ]1:\[1 = [a.l, az, ..., don|.
) Since
< (( V(1,1,...,1,1)=co+ci+-+-+con_q = ay,

V1. 10)=cot -+ en Theorem 3.1

a - +C-_1_’_°°°:a'21 o . :

- 5-10) ] o m=) [, is nonsingular
L I/T(O,O, ...,O,O)ICU = a9on,
‘} P
there exists a 2" x 2" matrix P, such that ‘ [Co, ' [T an-_l]T = P.n__l[a.l, s, ..., Aon T.

-

P.lco, c1y ...y con1]! = a1, as, ..., agn
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v Construction of Lyapunov functions for Boolean networks
¢ Denote the index set of all the fixed points in L by Z. = {iy, do,..., ir}
¢ S is the set of points in all the attractors of the BN (3.2)

& Denote by Zs the index set of &

J1 My should satisfy

Coly(JiMy) >0, ie{1,2,...,2"}\ L: (a;=0,i€eT,

Col;(J1My) = i € Tp: ) a; >0, -316{1_:2,...,2”}\15, | (3.13)

Col;(Jy My (L — fgn)<o b J1:95 oo PP VT o ['5‘«1*.”-1_ﬂ?ﬂ]g_;ﬂgi(é_?”)zg‘ ";EI_? -

Coly(JiMy (L —In)) =0, i€ Ts, | a1,y age] Coli(L = Ipn) <0, i€ {1,..., 2"} \ Is.

Whether equations (3.13) are solvable?



.

™

M

0

M

0

N

-

0

X @ Lyapunov-based stability analysis method

v Construction of Lyapunov functions for Boolean networks

{PROPOSITION 3.10. The set of inequalities/equations (3.13) is always solvable. ]

P?"oof.‘ The proof is given by reduction to absurdity. If the set of inequali-
ties/equations (3.13) is not solvable, then there exists at least one couple of incom-
patible inequalities in (3.13), which is in the form of

(3.14) (1): { i >0, D { @ip = jo;
@iy <0 Qig < Qjg,
where a;, # 0 and a;, # 0, ip # jo € {1,2,...,2"}.

If the couple is case (I), the inequality a;, < 0 must come from the last one
of (3.13), that is, |ay, aa,..., asn|Col;(L — I3n) < 0. On the other hand, for any
a; # 0, it is easy to see from the structure of L — Is» that the terms related to a;
in [ai, az, ..., azn]Coli(L — Isn) < 0 should take the form of a; —a; < 0 (> 0) or

—a; < 0, where a; # 0 and j # 7, which implies that the inequality a;, < 0 does not
appear in (3.13). This is a contradiction.
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v Construction of Lyapunov functions for Boolean networks

<
D If the couple is in the form of {a;, = a;, and a;, < a;,}, then it is easy to see
from (3.13) and the equation a;, = aj, that jo € Zs. On the other hand, from the
inequality a;, < a;,, we know that jo € {1,2,....2"} \ Zs. This is a contradiction.
< Thus, case (II) should take the form of
(ITy: & o = @jo:
) Aiy < ajg -
<
<
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v Construction of Lyapunov functions for Boolean networks

If the couple is the case (II)’, then the two incompatible inequalities must come

from the last one of (3.13), that is, |ay, as, ..., asn|Col;(L — I5n) < 0. Since a;, # 0
and aj, # 0, it can be seen from the structure of L — Iy~ that there exist {85, = - = |
and {aj,,...,a;,} such that both

Qi > Qi > 0 > Q. > Q4

L L v v
V(65%) >V (05h) > -+ >V (05m)>V(d50)

and
a;, < ajy e BEE SO aj, % aj,

v v v v
V(ogn)<V(dm)< -+ <V(632) <V (d3n)
hold one after the other along the trajectories of the system, which implies that

Si0 . §i1 $i1 __ §io Sir . £J0
L'O2fn__ — 02?11 L'O2-n_ T 02?1 ) I LOzn — 0271, 5

Lo = 65, Lo =03, ..., Léh = 6.
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v Construction of Lyapunov functions for Boolean networks

Thus,
S0 571 STr 5J0
{02?1 _> 027’1 % e % azn _> 02?1_ }

and
70 o5 c71 c10
{02?1 ? Ogn P > Ozn ? 02?1}

are two parts of the trajectories of the BN (3.2). Therefore, 5;?1 and (5%?1 are in the
same cycle of the system. From the third equation of (3.13), we obtain a;, = aj,,
which is a contradiction with (IT)".

Summarizing the above, we know that the set of inequalities/equations (3.13) is

solvable. 0
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v Construction of Lyapunov functions for Boolean networks

> With (3.13) and (3.11), we have the following algorithm to construct the desired
D Lyapunov function V (zy,zs,...,x,) for the BN (3.2).

ALGORITHM 3.11. |Consider the BN (3.2) and assume that V(xq,...,

0 Ty ) in the form of (3.3) is a Lyapunov function of the system to be found. To construct

< V(xy,...,xy), we can take the following steps:

' 1. Compute the matriz L | and find out the index sets I, and Zg from L.

0 2. Solve the set of inequalities /equations (3.13) and obtain a solution (ay, as, ...,

'“J C{-Qn).

' 3. Compute the matriz P, by (3.10), and then find out all the c¢; by (3.11) with
the obtained solution (ay, as, ..., asn). Then, the desired Lyapunov function

J 1S quUen as

> V(x1,...,Tp) = co + 121 + CaT2 + - -+ + Ty,

. + Cp4+1T1T2 + *+ + Can_1T1T2 * * * Ty,

where x; € D, 1=1,2,....n.
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v Construction of Lyapunov functions for Boolean networks

» By Proposition 3.10 and Algorithm 3.11, we have the following result.

[ ProrosITION 3.12.

enerqy function) in the form of (3.3).

The BN (3.2) always has a Lyapunov function (the system

)

> In the following, we give an example to show how to use Algorithm 3.11 to con-
struct a Lyapunov function for a given BN.

Erample 3.14. Construct a Lyapunov function for the following BN:

4

(3.15) <

;’ITQ(lL- + l)

¢ Ig(f + J_)

where z; € D, 1 =1.,2.3.

21(t) A (a
23(t) A (-

Il(f) A (Ig
V (mzi(t) Azs(t)),

(t) = x3(t))]
2(t) V x3(t))] V ~2a (t),
t

1(t) & @2(t))] V ~as(t),
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v Construction of Lyapunov functions for Boolean networks

Assume that the pseudo-Boolean function

V(x1,22,73) = co + c171 + cax2 + c3T3
(3.16) + C4T1 Ty + C5T1T3 + CT2T3 + C7T1T2T3
is a Lyapunov function of the system (3.15) to be found, where ¢;, 1 =0,1,...,7, are

real coefficients to be determined.

Using the vector form of logical variables and letting z(t) = x?_,z;(t), one can
easily obtain the algebraic form of the system (3.15) as x(t + 1) = Lx(t), where
L = dg[1 523251 5]. Moreover, it is easy to see from L that Z, = {1} and Zg=
{1,2,5}.
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v Construction of Lyapunov functions for Boolean networks

For this example, the set of ineqalities/equations (3.13) reduces to

(41 =0, a; >0, i=2.....8.
(3.17) 42T 9
as — ag < 0,_ as — ag4 < 0,_
ars, —ag < 0. a1 —ar <0, a; —ag < 0,

\

which has an infinite number of solutions. For example, (a1, a2, as, ay, a5, ag, a7, ag) =
(0,1,2,3,1,2,1,2), (0,2,3,4,2,6,7,8), and so on.

Choose a solution, say, (0,1,2,3,1,2,1,2). From (3.10) and (3.11), it is easy to ob-
tain [cg. ¢y, Ca, C3.Cq,C5,Cq, 7)1 = P‘;l[Ojl,Q,B,l,Q,l,QTI' = [2,1,0,—1,-2,0,0,0]".

Thus, a Lyapunov function of the system (3.15) is given as  The (strict-)Lyapunov function
of a BN is not unique. In general,

(3.18) V(ry,xo,x3) =2+ 11 — 13 — 20129, the number of (strict-)Lyapunov
functions is finite.

where z; € D, ¢ = 1,2,3. It is easy to check that (3.18) satisfies (i) and (ii) of
Definition 3.5.
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v Construction of Lyapunov functions for Boolean networks

> In this subsection, we present two methods to construct a
Lyapunov function for a given BN:

e Definition-based method

e Structure-based method

Li H, Wang Y. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks[J].
SIAM Journal on Control and Optimization, 2017, 55(6): 3437-3457.
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v Construction of Lyapunov functions for Boolean networks
» Then, we present the structure-based method

Consider the BN (3.2) and let V(x) in the algebraic form (3.4) be a Lyapunov
function of the system. It is easy to see that if Jy My is expressed as (3.9), then

V(o) =a;, i =1,2,...,
properties:

n. By Definition 3.5, V(x) or a; should have the following

(i) If 957 is a fixed point of the system (3.2) and {45}, — 0% — -+ = doh — 052
is a trajectory which converges to d5%, then

(3.19)
(ii) If {05} — 052 — -

(3.20)

aj, > iy > -+ > aq, > 0= ay,.

¥
]

- — 05 — doh } 18 a cycle of the system (3.2), then

(44 :aig:---:aik}w[}.
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v Construction of Lyapunov functions for Boolean networks

(iii) For each other point which is not a fixed point or a point in a cycle, it
should locate at a trajectory containing one attractor, say, the trajectory is
{60, — 622 — -« — 0%k — 020}, where %9 belongs to the attractor that the
trajectory converges to. Then, we have

(3.21) aj, > - > Qg > Gy,

It is noted that (3.19)—(3.21) are sets of linear inequalities/equations. On the
other hand, the ber of a e basins and trajectories ¢ e system (. 1s finite
and thev do not cross each other in backward time, This shows that (3.19)-(3.21)
are_sets of inequalities/equations of a simple relationship, not a coupled one, which
implies that the solution set of one or more equations in the form of (3.19)-(3.21) is
nonemptyv. Thus, with (i)-(iii), we can obtain a solution (ai, as, ..., asn). It should
be pointed out that the solution set is generally infinite.
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v Construction of Lyapunov functions for Boolean networks

ALGORITHM 3.16.| Consider the BN (3.2) and assume that V(xq,...,xy) in the

form of (3.3) is a Lyapunov function of the system to be found. To construct V (xq,.. ..

Iy ), we can take the following steps:

1. Calculate the matriz L, and find out all the attractors and basins of the system
(3.2) based on L by using the method of [4].

2. Based on the attractors/basins and (3.19)—(3.21), establish and solve a set of
linear inequalities/equations, and obtain a solution (ay, as, ..., asn).

3. Compute the matriz P, by (3.10), and then find out all the ¢; by (3.11) with
the obtained solution. Then, the desired Lyapunov function is given as

V(ry,...,xpn) =co+ 11 + coxg + -+ + cpiy

+ Cpg1L1Lg + *+° + Con_1L1L "+ Iy,

where ©t; € D, 1=1,2,...,n.

[4] D. Cheng, H. Qi, and Z. Li, Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach,
Springer, London, 2011.
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v Construction of Lyapunov functions for Boolean networks
Example 3.17. Consider the BN (3.15) given in Example 3.14.

Suppose that the Lyapunov function to be found is in the form of (3.16). Using
the vector form of logical variables and setting x(t) = x7_ x;(t), the system (3.15)
can be rewritten as

x(t+1)= Lx(t), L=0g[15232515].

With this L, it is easy to see that the system (3.15) has a fixed point d3 and a cycle
{63 — 03 — 03}. Meanwhile, we can obtain the entire four different trajectories
including the basins of the above attractors, which are {65 — 05}, {03 — 03 —
62}, {03 — 02}, and {065 — 03}
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D Based on (3.19)-(3.21) and the attractors/basins, we have the following set of
linear inequalities/equations that all a; satisfy:

D
X (a1 =0, ao=as >0, +— d! and {05 — 02 — 03},
' ar > aq, — {Og — (52:1;},
> { a4y > asz > a9, — {6;%6;’ —>(S§},
ag > a5, — {(55 — 5§},
D | a8 > as, «— {05 — 03},

Jwhich is a set of simple linear inequalities/equations. Obviously, it has an infinite
number of solutions, for example, (ay,as,a3,ay4,as5,a¢,a7,ag) = (0,1,2,3,1,2,1,2),

> (0,2,4.6,2,8.8,9), and so on.

N
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If we choose
(Cl-l, a‘21 C{-S, Cl-4, a‘fﬂ. a'G'.' a‘?‘.l a‘8) — (0, 13 21 3* 1‘1 21 1‘1 2)*
then by (3.10) and (3.11) we obtain

Co, C1,C2,C3,Cq, Cs, Co, C7)L = Py 1[0,1,2,3,1,2,1,2]F
3

—12,1,0,—1,—-2,0.0,0]’.
Thus, a Lyapunov function of the system (3.15) is given as
‘/T(;'I?l, Lo, iI.'-:g) =2+ ry — I3 — Ql‘ll‘z,

which is the same as (3.18).
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~ « Construction of Lyapunov functions for Boolean networks
In Corollary 3.7, a sufficient condition for the asymptotical
stability of BNs Is obtained. Whether exists a necessary and sufficient
5 condition for the asymptotical stability of BNs by using Lyapunov-
based method ?

5

<
4 THEOREM 3.18 (converse Lyapunov theorem). Consider the BN (3.2). If it is )

)| asymptotically stable at x,, then the system has a strict-Lyapunov function V(xq,. ..,

. \;r.n_) . D" +— R wn the form of (3.3). )

Proof. According to Proposition 3.12, the system (3.2) has a Lyapunov function
V(xy,...,x,) in the form of (3.3). By Algorithm 3.16, we can find out one for the
y system. Now, we prove that such a V(xq,...,x,) is also a strict-Lyapunov function,

. i.e., V(xy,...,x,) satisfies (i)—(ii) of Definition 3.4.
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> @ Lyapunov-based stability analysis method

D

D

v Construction of Lyapunov functions for Boolean networks

Using the vector form of logical variables x;, = 1,2,....n, we can obtain the
algebraic form (3.4) of V(xy,...,x,) (also see (3.9)). Since the system (3.2) is globally
convergent to x., x, is a unique fixed point and the only attractor of the system. kFrom
the construction of V' (x) or (3.19), we know that asn =0 and a; >0, 1 <7 <2™ — 1,
which implies that V(62,) = 0 and V(6%,) > 0,1 <i < 2" — 1. That is, V(z.) = 0
and V(zy,...,x,) > 0 holds V (xy,...,x,) # x. € D", which implies that (i) of
Definition 3.4 is satisfied.
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> @ Lyapunov-based stability analysis method

D

D

v Construction of Lyapunov functions for Boolean networks

Let {05 — 052 — -+ — 045 — 03n } be any trajectory converging to d3.. From
(3.19), it is easy to know that a;, > a;, > --- > a;, > 0 = as~, which implies that

V(6LL) > V(62) > ---

T'hus. we obtain

> V(64

£) > 0= V(6Z).

AV = V(65 =V (05) <0, 1<j<k-—1,

and

V(62)

which 1implies that along the trajectory.

— V() <0,

iiiiiii
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@ Lyapunov-based stability analysis method

v Construction of Lyapunov functions for Boolean networks

holds for (u1(t).....xn(t)) # x.. On the other hand, if (x1(¢).....x,(t)) = x.. then
for any 7 > ¢, (x1(7),....0,(7)) = e, which implies that AV (x1(t)....,xzn(t)) =0
for (xq(t),....xn(t)) = re. From the arbitrariness of the above trajectory, we know
that V() satisfies (ii) of Definition 3.4.

By Definition 3.4, V(x1...., 1) is a strict-Lyapunov function, and the proof is

completed. 0

With Theorems 3.3 and 3.18, we have the following result:

THEOREM 3.19. The BN (3.2) s asymptotically stable at x. if and only if the

“ﬁ{system has a strict-Lyapunov function in the form of (3.3).

|

D
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> & Several types of stability

N

D

D
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v

@ Partial stability
@ Global stability

@ Set stability
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(& Partial stability®
> Consider the following system:

(X (t+ 1) = filxy(1). xa2(1), . . .. Xn (1)),
Xo(t + 1) = fa(xy (1), Xo(1). ..., X, (1)),

- sTe(l) Xt + 1) = Lix(0), 3)
| Xp(f + 1) = fa(X1(0), X2(7). . ... Xn(7)), where Ly = My x"_, [(I ® M;)®,] € Ly alled

the structure matrix of the Boolean network (1). Specific
where x; € D,i =1,2...,n are logical variables, f; :
Dt — D, i=1,2,..., n are logical functions.

Definition 3.2: For a given state x, = X|_,x;j € Ay, the
Boolean network (1) 1s said to be partially stable to x7, Boolean network (1) is stable

if for any initial state xp = x}_,xi(0) € Az, there exists a  with respect to just some, and
positive integer T such that 7 > v implies that x" (#; xo) = x.. ot all of the state variables.

[5] H. Chen, et al, Partial stability and stabilisation of Boolean networks, International Journal of Systems
Science, 47(9):2119-2127,2016.
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D @ Partial stabilityf!

D

D

D

Theorem 3.3: The Boolean network (1) is partially stable
fo x], = éig‘,., redl,2,...,2"}, ifand only if there exists time
T, such that for matrix Q¢ = E;7" Wy sn-r1L] € Lor xon
having equal columns as 3%}, i.e.

Only consider the first r subsystems

Q. = [85.8% ...8)]. (4)
— —
2!!



> & Global stability

D Here, we consider the following BN with disturbances:

. X1t + 1) = fil§1(€), ..., Ep(6), x1(L), - . ., Xu (L)),
(1)
X Xl + 1) = FalEa(0). - E(0). X1(0), - xa(1).
wherex; € D,i = 1,..., né§ € D,j=1,..., p are states and
> disturbance inputs, and f; : D" — D are logical functions. To
convert system (1) into an algebraic form, define x(t) = xi_,xi(t) €
> Aon and &(t) = Hlegj[f) € A,p. Assume that the structure matrix
of fi 1s F; € %n.m+p, then system (1) can be expressed as the
5 following algebraic form:
< x(t 4+ 1) = LE(t)x(t). (2)
where L € Jiﬂznx2n+p is called the transition matrix of system (1)
D and Coli(L) = x;_;Coli(Fj),i=1...., 2MTP,

0 [6] J. Zhong, et al, Global robust stability and stabilization of Boolean network with disturbances, Automatica,
84:142-148,2017.
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- 5 & Global stability®!
-

Definition 4. BN (1) with disturbances is globally robust stable
w.r.t. a fixed point X* = §),, if for any initial state x(0) € Apn
and any disturbance inputs §; € A,,...,§, € Ay, there exists an

integer k such that x(t) = 6,,,t > k.

Definition 5. A state X is a reachable state from an initial
state x(0) at the kth step if there exists a disturbance sequence
£(0), ..., E(k — 1), such that X = x(k). Then, for all possible
disturbance sequences &£(0), ..., E(k — 1), the set of all reachable
states is denoted by R’S‘(X(O)), which is called the set of robustly
reachable states from x(0) at the kth step.
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> & Global stab
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5 Some results of —

Global stability
N

D

ilityts!
Split matrix L into 2P equal blocks as L = [Lq, ..., L], where
LjEfgnxzn(jz 1,...,2P).
— Proposition 2. System (1) is globally robust stable w.r.t. the fixed
point X* = &%, if and only if there is an integer k satisfying 1 < k <
2" — 1, such that R§(Agn) = 85,.

Proposition 3. Consider BN (1) with disturbances, the m{]u mn vector
form RE(Agn) is presented as follows: RE(Apn) = Z%f:-lclﬂlj(ﬂ{m),

v 2P
L= zil 1

Theorem 1. System (1) is globally robust stable w.r.t. the fixed point

D

X* = d6n if and only if there exists an integer 1 < k < 2" — 1, such
that @;Cﬂlj(ﬂ“‘”) = &n.

2 [6] J. Zhong, et al, Global robust stability and stabilization of Boolean network with disturbances, Automatica,

84:142-148,2017.



> G Set stability!”

5

5

5

A BN with n nodes is described as

A (t+1) :f (Aq(f), ..., Ay(L))
| . —— X(+1)=Ix() ()

Definition 1 (Set Stability). Let M be a subset of A,n. BN (2) is said
to be M-stable if, for any initial state x, € Ajn, there exists a

T (xg) € Z=¢q such that
- When the subset .M is a singleton

X(t:x0) € M, ¥t >T(xo). (4) ™ stability

The denotation T (xg) refers to the smallest integer such that (4)
holds, which is called the transient period from x,. The transient
period of BN (2) is defined as Ty := maXxyea,n T (Xo).

[7] Y. Guo, et al, Set stability and set stabilization of Boolean control networks based on invariant subsets,
Automatica, 61:106-112,2015.



@ Set stability”

The analysis of set stability can be divided into two steps:

All of states finally can enter the set M

The states which enter the M always stay the set M

Definition 3 (Invariant Subset). A subset ¢ C A-,n 1s called an
invariant subset of BN (2) if x(t; xg) € C. Vt € Z~¢, Vxo € C.

Remark The union of any two invariant subsets is still an invariant subset.
The union of all the invariant subsets contained in a given set M is
called the largest invariant subset contained in M, denoted by |(M).

[7] Y. Guo, et al, Set stability and set stabilization of Boolean control networks based on invariant subsets,
Automatica, 61:106-112,2015.



5

@ Set stability”
e Forany F € %,,.,, alogical matrix F € %, «, 1S called a logical

sub-matrix of Fif F AF = F. Denote by .#(F) the set of all of the
logical sub-matrices of F, 1.e., .#(F) := {F € Zxn \ FAF=F}.

Especially, for any nonzero x € %,«1. X)) = {z € A, \
z A X = z}. For convenience, define .#" (x) := .#(x") for any
X E C%']}{n.

Proposition 1. Assume that q = |.M|. Define My as

Shns  Sn € M
The  largest C0litMo) = Lén, ﬁin & M,

Invariant subset _ _ _
| > and a collection of Boolean matrices M;, 1 <1 < q, as

M; := MoLM;_; = (MoL)'My, 1<i<gq.
Then, it holds that (M) = " [Row x(M,)].

[7] Y. Guo, et al, Set stability and set stabilization of Boolean control networks based on invariant subsets,
Automatica, 61:106-112,2015.
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- 5 (@ Set stability™

Proposition 3. BN (2)is M-stable if and only if Col(L%") € M and
in addition, there holds Ty = mingez._,{k \ Col(L¥y € M}). O
Lemma 3. Given M < Ao, BN [Zj_is M-stable if and only if it is
[(M)-stable. In addition, for any .M-stable BN, there holds T y (Xg) =
TI(J{)(XO)s VX[] e Aon. 0O

Proposition 4. The following statements are true.

(1) BN (2)is M-stable if and only if

Row s [(MoL)IMol?] = 1., (23)

whereq = |M| andp = 2" — |[[(M)].
(2\) There holds

Ty (8):) = min [k | (MoL)IMoCol;(L¥) # 0} . (24)



D @ Application of stability in synchronization

5

5

Consider a master BN as

G+ 1) = filxp(@),....xp(1)), 120 (2)

where f; : D" — D. 1 <i < n are logical functions. By Lemma 3.
letting x(r) = t><’;*=].x; (t), (2) can further be converted into the
following discrete-time system:

x(t+1)=Fx(r), t>=0 (3)

where ' = M| x!'_, [(Ion ® M;)®,] € Lonyon and M; is the
structure matrix of f;. For any given 1 </ < n, let

X (1) 2 & xi(t) = Bix(r) (4)
where
By =omll, 1,....1,2,2,...,2,....20 2" oM e Loy s
————e— e —— iy - =
zn—h zn—h zn—h

If i = n, then By = I»n and x'(1) = x(¢).



)
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r— Q Application of stability in synchronization
=D

A slave BN expressed by
vilt +1) = Li(xp (@), ..., x0(0), y1(6), ..., ya(1)), =0

stP, v+ 1) = Lx(1)y(r) (6)
= and V(1) & X yi(t) = Biy(t), 1=0 (7)

4 Definition 3 [20]: For a given 1 < h < n, (2) and (5) achieve )
h-partial synchronization for any initial states x(0) and y(0), and
and an integer k > 0, such that for all + > k, x'(r) = y'(1).

In particular, if x(r) = y(¢) for all t+ > k, complete synchronization
\of (2) and (5) occurs. -/

(5)
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D @ Application of stability in synchronization

D

> Let 2/(r) = x"(t)y'(¢) and z(r) = x(t)y(¢). Then, we have

> Proposition 1: The h-partial synchronization of (2) and (5) DCCUI‘S,\
D 1.e., there exists an integer £k > 0, such that for ¢t > &k,

X'(t) = V(1) = rﬁgh_ for some iy € €y, 1t and only if for 1 > K,
- _ <A , " ([ / : _
Q,’(i‘] — t’jzzh. where 4 = (iy — ])2.I +ir, Oy, = {1,2, ...,Zh}. Y




0 @ Application of stability in synchronization!(®

5

5

We consider the following two kinds of arrays of M delayed
coupled BNs, with each BN being an N-nodes system:

i _ fl 1 2 N
Xit+ D) =fi(X;(t—0), X50—1),.... X (t — 1)

viit =), vt —1), ..., vyt —1)) (1)
vi)  =gi(Xjm),..., XY @)

and

(2)

X' (r+1)—f-’(x (1= W XN (=), 31 (1), oy (1))
nj(r) = eJ(X .. L XY )

where X I is the ith node of the Jth BN, vy; 1s the binary output

of the jth BN, f‘ (LOYVM — 1,0}, g; : {1.O}Y — {1,0}
are Boolean fum,tlons i =1,....N,y=1,...., M, r = 0,1,
and 7 is a nonnegative integer. We simply denote by X (r)

(X}(r),X?(r), XA (r)) the states of jth BN at time mstant r.
Within the isolated N. communication delay is considered in the
process of information exchange among its nodes in both models.



— @ Application of stability in synchronization®l

- 4 Definition 2: The array of BNs 1n (1) and (7) 1s said to be syn- A
L~ chronized it for any initial states X ;(—7),..., X;(0) € {I, }N, J=
[,..., M, there 1s a positive mtecrel k, sl.u,h that t > k satisfies
— % f(r)_ J,(r) forany 1 <i,j < N. y
D : :
By STP, system (1) can be converted into the following form:
.
Xj(t+1)=FiX;({t—1)y(—71)
X v o 3)
- 1(?) G D< X (r)
D) .
where FJ,- is a 2N x 2MN matrix and G is a 2M x 2MN matrix.
.

0 [8]J. Zhong, et al, Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay,
IEEE Transaction on neural networks and learning systems, 25(12):2288-2294,2014.
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> @ Application of stability in synchronization!(®

D

D

D

Lemma 3: Let W =Wyym ony X {Mﬂz[(lzm & W[zMﬂsz])(DM]}\
and = = (@ﬂf‘leFJ;) X W ix G x Oy n. Then, we have

x 7L X+ 1) =E[x{L X -] (4)
and
7L X0 = 2P [l X g —1-1)] (5)

where p > 0 and 1 < g < v 4+ | are the unique integers satisfying

Q=P(r+1)—|—q. /




0 @ Application of stability in synchronization!(®

i Now, we present necessary and sufficient synchronization criterion

~  for an array of delay-coupled BNs in form of (1):

5 / Theorem 1: Let (3) be the algebraic representations of the array

of delayed BNs (1). Then, synchronization occurs if and only if there
D exists a positive integer k satisfying 1 < k 4 1 < kg such that
> Col(zk+1

. MAF
A; (1 —1)(2 — 1) N
D glazm i=1+4+ N d=1:2,...,2 (6)
D 1 :
kwhere ko =min{i :i > 1, Z' = Z/ for some | > i}. j

5

0 [8]J. Zhong, et al, Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay,
IEEE Transaction on neural networks and learning systems, 25(12):2288-2294,2014.
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G Boolean Control Network (BCN)

» When control inputs are added, the concept of BNs extends
naturally to that of BCNS.

ri(t+1)= f;( X(t).U(t)), i=1,2,.... n. 1
> { yi(t) =h;(X(?)), 7=1,.... P, @)

where X(0)=(,(1), X,(1), ..., x.())eD™, Ut)=(u,(t), u,(d), ..., u_(t)

eD™ and Y (1)=(y4(t), y,(1), ..., y,(t)) €DP are states, control inputs
and outputs at time t of BCN (1), and f;: D™ > D,i =1, ...,n.

» Algebraic representation:

r(t+1) = Lu(t)x(t), X(t) € Ay u(t)e Aym , LE Lynyonim (2)
y(t) = Hu(t), Y(t) € Azp, HE Lypyon
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& Sabilization o
» The global stabilization problem of attractors

system (1) is to find, If possible, {u(t)} &mﬁi/

such that the system becomes globally | desired o
convergent. attractor

> In the case of disease treatment, one may want to design therapeutic
Interventions that steer the patient to the desirable state, such as the
healthy one, and maintain this state afterward, that Is the
stabilization.

4 Definition 1: Fora givenstate X* € {1,0}", the BCN (1) is said to

be globally stabilizable to X~ , if for every X, € {1,0}" there exist a

control sequence U : {0,1.2,...} — {1,0}™ and a positive integer

\N such that ¢ > N implies that X (#; Xo; U) = X,

J




@ Stabilization — Existing methods

Open-loop control design technique

State feedback control design technique
» Reachability set

» Control Lyapunov function
» Pinning control
P Event-triggered control

P Sampled-data control
Output feedback control design technique



G Stabilization — Existing methods

Open-loop control design technique

State feedback control design technique
» Reachability set

» Control Lyapunov function
» Pinning control
P Event-triggered control

P Sampled-data control
Output feedback control design technique
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G Open-loop control design techniquelll

» Objective: find a control sequence {u(t}< D™ such that BCN(1) can
achieve global stabilization.

> Define: LS';\,F:[I . 10...0...1...10...01eABxom, k=1, ..., n.

Ai—Kk i —Kk 21—k an—k

1.5]

s5
SN = € Bpxon.

.

—"sf}‘ —

[1] D. Cheng, H. Qi, Z. Li and J. Liu, Stability and stabilization of Boolean networks, International
Journal of Robust and Nonlinear Control, 2011, 21(2): 134-156.



G Open-loop control design techniquelt!

» From scalar form to vector form, we have
x=[(x; < sPAX2 <S5 A A(X, <5 1" Vx; ea.
» From vector form to scalar form, we have X =."x.

Example: Let x, =(1,0,1, 0). Then in vector form we have
x=[1<(1111111100000000) TA[0 <> (1111000011110000)' ]

A[1 < (1100110011001100)" A0« (1010101010101010)"]

= (1111111100000000)" A(0000111100001111)" A(1100110011001100)"
A0101010101010101)T

= (0000010000000000)".

Let X =07. Then x;="x,=(0, 1,1, 1).



G Open-loop control design techniquelt!

» we define a mapping m: #onyon — By xp as
n(L) = [[(S"LYV(S" LM )X glon, [(S"L)YV(S" L)1, @M,)]x plon,
.ony [(-_{y'?” L}Q(f/)”L)(IEH—] X M;;)] X 812”], L e 932” x 21 .

where M, Is the structure matrix of negation.

(Theorem 1. Consider the Boolean network with its algebraic form?

The Incidence matrix of F can be obtained from L by the following

formula:
L J(F)=n(L).

J




G Open-loop control design techniquelt!

Proof
From the construction of 9" it is easy to see that Ly:=.9"L is the structure matrix of
the system, resulting in scalar form. While LyM, 1s the structure matrix with x| being
replaced by —wx;. If at the i/th row they are the same, it means f; is independent of xj.
Then the ith row of [(Y"LYW(S"LM.)] will be identicallv zero. Hence the ith element of
(LYW (SLM,)]|x gplon 18 zero. Otherwise, at least one element in this row 1s 1, and
hence the ith element of [(Y"L)V(S"LM,)]x glon 1S one.
Same argument 1s applicable to other variables. The only difference is, the negation structure
matrix needs to be moved from the front of x; to the front of all variables. Then (51) follows. [
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@ Open-loop control design techniquelll

-

(Lemma 1 System (1) is stabilizable by an open-loop control u, if
mr(Lu) has a strictly lower (or upper) triangular form.

J

-

\_form. Y

Theorem 2: System (1) (or its algebraic form (2)) Is stabilizable\

by an open-loop control u, if there Is a coordinate transformation
z=Tx such that m(TL(I,mn®T")u) has a strictly lower triangular




G Open-loop control design techniquelt!

Example:  xj(r+1) = —xa(1),
X2 (1 +1) = —x4(1) <> ((x4(t) A (x2(1)Vx3(1))) Vu(r)),
x3(1+1) = =((xg(1) A(x2(1)Va3(1)) Vu(r)),

x4(t+1) = (xa(r) vV (x2(r)Vxz(t)) Au(t).

» The coordinate transformation:
71 = X4, X| = —z4. zi(t+1) = (z1(r) v za(t)) Au(t),

'

. X2V X3, X2 = 7» <> 73, 2(t+1) = —zi(1),

-
~ur

—X3, X3 = —1Z3, 3+ 1) = (1) Az() Vulr),

b
|

-

74 = TX]. X4 =7]. 24(1+1) = 22(1) < z3(1).



G Open-loop control design techniquelll

» Choose Uu(t)=0

v

z1(t+1) =0,

2(1+1) = —~z1(1), :> )=
3(t+1) = (1) Az2(1)),
24(t+41) = 22(1) <> 23(7).

0 0 0 07
O 0 O

I
I

0

I
I

I

0

—

—

System Is
stabilizable.

/

analysis.

\Disadvantage: the condition is only a sufficient one.

\

Advantage: the size of the involved matrix is small via metric-based

)




G Open-loop control design techniquelll

» Now consider the stabilization by a constant control u. Then the
control-dependent transition matrix is Lu.

> Using STP, (Lu)* =L[(Im @ L)D,, 1" 'u.

» Split L[(In@L)d, 1" " :=[L5LY ... L}.]

/T heorem 3: System (1) is stabilizable by a constant control u, ﬁ
there exists a matrix of constant mapping

L:{ l<k<2ﬂ l<‘j<2!h’

Moreover, correspondlng to each matrix of constant mapping U‘
\he stabilizing control is « —a.{m /




G Open-loop control design techniquelll

> We briefly discuss the case when the system is required to converge
to a particular state x*.

» In addition to above stability requirements, we need to assure that
x* 1s a fixed point of the control system.

/" Theorem 4: System (2) is globally stabilized to x* by an open- )

loop control u(t), t=1,2, ..., Iiff

(i) there are an integer k>0 and an L, 1<,;<2"", such that
CO](L‘E):{J:{]};

\(u) there Isan u. <A such that Lux*=x* holds. )




@ Stabilization — Existing methods

Open-loop control design technique

State feedback control design technique
» Reachability set

» Control Lyapunov function
» Pinning control
P Event-triggered control

P Sampled-data control
Output feedback control design technique



G State feedback control design techniquel]

> If u(t)=Gx(t), t=1,2, ..., Ge Lo, then the control is called the
state feedback control.

> x(r+1)=LGx*(t)=LGD,x(t), (3)

where G Is state feedback gain matrix and &,, is the power-reducing
matrix.



— @ State feedback control design techniquel!

"Theorem 5: System (1) (or its algebraic form (2)) is stabilizable by a\
closed-loop control u=Gx, If ®(LG®,,) has a strictly lower (or upper)
triangular form. Moreover, If there exists a coordinate transformation
z=Tx such that m(TLG®,T") has a strictly lower triangular form, then
\the control also stabilizes the system. Y,

/Theorem 6. System (2) Is stabilizable by a closed-loop control u:Gx,\
Iff there exists a 2™x2" logical matrix G and an integer 1<k<2n such

\that (LG®,,)¥ is a matrix of constant mapping. ,




G State feedback control design technigue—Reachable set

> The control design technique based on reachable set was proposed
by Li et al.l2], Fornasini and Valcherl3],

> Let E,(r) denote the set consisting of all the initial states that can be
steered to §,» in k steps by a control input sequence u(0), u(l), ...,
u(k-1).
Ei(r) = {xo € Agn : there are u(0),...,u(k — 1) € Agm

such that x (k; Xo;u(0),...,u(k—1)) = ban(r)}

[2] R. Li, M. Yang, and T. Chu, State feedback stabilization for Boolean control networks, IEEE Transactions on
Automatic Control, 2017, 58: 1853-1857.

[3] E. Fornasini and M. E. Valcher, On the periodic trajectories of Boolean control networks, Automatica, 2013, 49:
1506-1509.
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G State feedback control design techniqgue—Reachable setl?]

/Lemma 1: Ifban(r) € Ei(r), then Ef(r) C Egy,(r) forall k 9
1.

Lemma 2:

1) IfEl (!‘) = {52%(?)}, then Ek(r) — {(Sgn(.f)}' for all % 2 1.

2) If Ej4q(r) = E;(r) for some j > 1, then Ey(r) = E;(r) for

\ all & > 7. /

/Thearem I: Let X" = (01,...,0,) € {1,0}" and let r be tlg
integer such that ¢y X --- X &, = 6an(r). If the BCN (1) can be
globally stabilized to X™ by a state feedback controller of the form (2).
then:

1) ban(r) € E\(r):;

2) there exists an integer 1 < N < 2" — 1 such that En(7) = Aos

\_ ﬂ’)
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G State feedback control design techniqgue—Reachable setl?]

/Lemma 3: Letaj,agz,...,aomin € {1,2,...,2"} be such thax

L — 62n(f}i'| . lf]i'?, TR ﬂig-‘rn—-—n).
Then forevery 1 < r < 2" :
1) Eix(r) = {d2n(q) : 1 < q < 2", a(p—1)2n44 = 7 for some
<_: 2?]1 1

;i
H{EL(r') : 1 < v <27, 69n(r") € Ei(r)} for




G State feedback control design techniqgue—Reachable setl?]
» The principle of reachable set:

E.(r) «— Ez(r)\El(r)-(— ...... — EN(r)\EN_l(r)

/Theozﬂem 2: Let X® = (01,...,0,) € {1,0}" and let r be tlh
integer such that ¢, X --- X 6, = o= (r). Suppose that conditions
1) and 2) in Theorem 1 hold. To every 1 < ¢ < 2" corresponds a
unique mteger 1 < [; < N such that 6on(2) € Ep (r)\Ei,—1(7),
where Fo(r) = (),and let 1 < p; < 2™ besuch that oy, —1yon4; =7
if {; = 1, and d2n (v(p,—1)2n4:) € Ep,—i(r) ifl; > 2. Then the
feedback law (2) with the state feedback matrix A given by

k I{:52"’”(‘})1&})23-“:])2”) /




G State feedback control design techniqgue—Reachable setl?]

Example:

1 (f —|— ].) — U (t) A\ (Eg(t) V .Tq(f))
{ o (f —|— ].) — U (ZL) A U9 (IL) A\ I (ZL)
r3(t+ 1) = —u(8) A (uz(t) V (uz(t) Az (t))),

» Objective: designing state feedback gain matrices G which makes
system globally stabilizable to X*=(1,0,1)~ &3.
» Algebraic form: x(t+1) = Fx u(t)x x(t)

F =5:(8,8,8,8,8,8,8,8,8,8,8,8,8,8,8.8.,8,8,8, 8, 8,
3,8,8,8,8,8,8,8,8,8,8,1,1,1,5,3,3.3,7,1,1, 1,
5.3.3.3.7.3.3,3,7.4.4,4.8.4.4.4,8,4,4,4,8).



]
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@ State feedback control design techniqgue—Reachable setl?]

> Ei(3)={6s(i):1=1,2,3,5,6,7}.
E2(3) 2 (E1(3)U Ey(T)) = As.
Hence, conditions 1) and 2) in Theorem 1 are satisfied.
> Lh=b==1=Il=1; =1, [y =1s =2
p1L=p2 =p3 =1, P41 = Ps = P = P17 = ps = 0.
Then the feedback law with the state feedback matrix K given by
K =068(7,7,7,5,5,5,5,5)

globally stabilizes the BCN to X*.



— @ State feedback control design techniqgue—Reachable setl?]

.
— /[)gfinif[inn [“IA BCN (2) is stabilizable to the elementary cycle C =\
- 9 (Shs 8, ..., 8% if for every X(0) € Lon there existu(t), t € Zy,
- and T € Z, such that x(t) = 53” foreveryt > 1t,wherej € [1, k]
3, \andjz(t—r-l-l)modk. Yy

w—

w_—

— [3] E. Fornasini and M. E. Valcher, On the periodic trajectories of Boolean control networks, Automatica, 2013, 49:
1506-1509.



G State feedback control design technigue—Reachable set [*]

Proposition ABCN  is stabilizable to the elementary cycle C A
(Sohs 850+ o 5% ) if and only if the following two conditions hold

(1) for every (ig, ip11), € S |1, k]., (with ik_+1 — 1) there exists 5“;*;1
such that 8" = L x 8 x 83 = Lj,8;

(2) 5;,1 is reachable from every initial state X(0), which amounts to
saying that

she () Rx©O).

k X(U)E£2H /




— @ State feedback control design techniqgue—Control Lyapunov function!¥

)

w_——

» Objective: design all possible state feedback gain matrices G
- which makes system (1) globally stabilizable to X*.
ﬁ)efinition 1. \
- O Given an equilibrium x* = 67, € Aw. V(x) : A — R is called a
S control Lyapunov function of system (2), if
(1) there exists u* € Ay such that V(Lu*x*) — V(x*) = 0;
.
(i1) for any x € Ay satisfying x # x*, there exists u, € A= such
=D K that V(Lu,x) — V(x) > 0. /
)

[4] H. Li and X. Ding, A control Lyapunov function approach to feedback stabilization of logical control
networks, SIAM Journal on Control and Optimization, 2019, 57(2): 810-831.



@ State feedback control design techniqgue—Control Lyapunov function!¥
N

Proposition 1.

Condition (i) of Definition 1 is equivalent to Lu*x*= x*.
- J

) Proof. Obviously, one can see from Lu*z* = &* that V(Lu*2*) — V(z*) = 0.
Now, we prove that Lu*:* = &* holds when V(Lu*x*) — V(2*) = 0.
In fact, if Lu*z* # o*, letting «! = Lu*x* # x*, by condition (ii) of Definition
1. there exists u,1 € Apm such that V(Lu,1z!) — V(z) > 0. which together with
. T k U ‘ . S
V() = V(x*) shows that V(Luyat) > V(z*). Now. letting #? = Lu,iz!, one
\ ) \ y I _ ) O T
can see that x? # x!. 22 # &*. and there exists w2 € Aum such that V(Lu,2122) >
T k T ,
V(x?) > V(a*). To keep this procedure going, we obtain a sequence of states {a* :
i € Z, } satistying «* # &7 Vi # j. This is a contradiction to the fact system ( 2 )
has £™ different states. Hence, Lu*x* = &* holds when V(Lu*x*) — V(2*)=0. 0O



)

)

- @ State feedback control design techniqgue—Control Lyapunov function!¥

/Theorem 1. )
=D System (2) is globally stabilizable to x* = ¢, by a state feed-
back control in the form of u(t) = Gx(z), if and only if sys-
tem (2) has a control Lyapunov function V(x) = Myx, where
- 5 My :=la1 ay -+ ap] € R js the structural matrix of V(x). Y
> _ c(t+1) = L x x(t),
3. ¢ The closed-loop system: { y(t) = Ha(t),
where I = LG M,y g
— For any zq = 0L, € Agn, let ¢; = min{t : Llzo = 2*,t € N}.
— =CLF: V() =[a; ay -+ agn]e,ai=—ci=1,2,... k"
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0 Q State feedback control design techniqgue—Control Lyapunov function!¥

D

D

>» Notations:

o For any o, 3 € {1.2,....k"} with o # B, {ag > an}|v, ;, means that the
inequality ag > a, holds only when u € U, g, where U, 3 = {u : 5£n =
Ludp,, u € Agm} denotes the set of controls under which the state 5fn IS
reachable from the state d5» in one step.

e {a, = a,}|y,, means the equality a, = a, holds only when u € U, ,, where
Urr ={u:0fn = Ludpn,u € Agm }.

e For any o, 8 € {1,2,... k™}, define

{(15 = (I-QHUQ’IE‘ if a 75 o, [J'T&ﬁ ;é @
ZCE—KB = {ar — ar} br?‘,’.r" j.t Y — 18 =T, L:r-r,-r % @.
() otherwise.

Then, one can see that Z,_.3 denotes an inequality /equality (maybe empty)
determined by the one step reachability from 0, to 5fn.
e Let R;(x*) be the set of initial states which can reach «* at the ith step.
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G State feedback control design techniqgue—Control Lyapunov function!¥

> Define o [ 1 2 0
JB.a =\ 0 Zoss = 0.
" Proposition 2 A
T = 55,,.1 is T-step reachable from xo = 0. if and only if
S™g.a > 0.
_ (57 )B,a > y
” Theorem 2.

exists a positive integer 7 < k" such that

\ Row,(S§™) > 0.

~

System (2) has a control Lyapunov function, if and only if there

/
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- G State feedback control design technique—Control Lyapunov function [4]

» Define i(r) ={a: Zasr #0,a0€ {1,2,..., k™}}.
for any £k = 2,3,...,

- 5 Mk (r) = {a: 3 o' € IIx_1(r) such that
Zosar 0,00 € {1.2.... k"}}.

.
[ Proposition 3: R (") = {0, 1 o € IL;(r)}. ]
.
. KI' heorem 3: )
System (2) has a control Lyapunov function, if and only if there
— exists a positive integer 7 < k" such that
=D
r e 114 (?‘), (4)
H'T(r):{laza'”akn}' /

) \




0 @ State feedback control design technique—Control Lyapunov function [4]

)
> Assume that (4) of Theorem 3 holds. Define Ao := {Z,_.,}. Ao = {r}.

y > We arbitrarily choose a nonempty set of {Z,_, : a €Il1(r)\ lg}

. denoted by A;. Set A = la: Zoor € A}

>3 For this Ay, we arbitrarilv choose a nonempty set of

~,. {Z&._m o € Thy(r) \ (Ko | JAy). ae\}

_denoted by As, which satisfies the tollowing condition: «; # as holds for any Z,, 4,
c Ao and any Za,—ay € Ao, Set ﬁ'{z ={a: Zosa € A2}

<

5
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)

)
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0 G State feedback control design techniqgue—Control Lyapunov function!¥

> . . .
» Generally, for an arbitrarily chosen nonempty set

D) s—1 N N
1'33 ‘; {Z&_}a; Ly & HS(?') \ ( U ¢\1) . th = Asl}. S E 2
1=0
which satisfies the following condition: a; # a9 holds for any Z,, 44, € Ag and any

) Zaysag € As. Set Ag = {a . Za—sar € Ast.
> » For the aforementioned AE;. 1 =0,1,...,s, we arbitrarily choose a nonempty set

IXS_|_1 *; {Z&%a" . TR H5_|_1('f')\ (U A; ) O: e \L }

< i=0
which satisfies the following condition: a3 # ag holds for any Zu, 50, € As+1 and

5

D any Zog—say € Nsx1. Set Agyy ={a:Z__ € Agi1}.
.



@ State feedback control design techniqgue—Control Lyapunov function!¥
» Obviously, A;NA; =0, Vi # j. Therefore, one can find a positive integer 7 < k"

such that
' 3 1N
{Za_m;:aEHT(r)\(U \) o € A }#@

1—=0

{Z&_,& o € Il yq(r (U x) T} =)

In this case, one cannot choose a nonempty set A-.;. Hence, we obtain a set of
inequalities Ue, o i U \; s said to be an admussible set of control Lyapunov in-

equalities if |J;_, A; {1. AP g 3
» Obviously, only the admissible set of control Lyapunov inequalities can
determine state feedback controls. Denote all of the admissible sets of control

Lyapunov inequalities by ¥; , J=1, ..., 1.

and



- G State feedback control design techniqgue—Control Lyapunov function!¥

)

_—

)

» For any j =1,2,...,1, define
o; = {( = Gpm[p1 p2 - pign]  po € Unarya = 1.2.....&’”}.

- 5 /Theorem 4 N\

S Consider system (2). Assume that (4) of Theorem 3 holds. The

set consisting of all the state feedback stabilizers is
N
I

= > ’ o=\ |,

=D \_ /= -/
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-~ Example: Consider system (2) with
=D L=04/1333221343143332)

and H = d5[1 2 2 1]. Our objective is to design all possible state feedback stabilizers
2 under which system (2) is globally stabilizable to x* = dy.

) > Zlﬁ.l — {(J_'.l — (.',1} {éi}.Zlﬁi — w = 2,3,4,
- Lo_y3 = {(Lg = {EQ} {5}5315;4{}. Lo i = @ 1 =1.2.4,
23_3,1 — {ﬂ.l - (I.g} {53153}.234,1' — @ = 2,3, 4,

Zy o ={ag > ay} {6415 Zy 3 ={a3z > ay} |{‘5i=55}"
— Zasi =0, 1=1.4.
-5 > IL(1) ={1,3}, T.(1)={1,2,3,4}, 7 >2.
. » By Theorem 3, system (2) can be globally stabilizable to x*= &3 by
~ state feedback control.



0 G State feedback control design technique—Control Lyapunov functionl®l

D » Through a simple computation, one can obtain that Ag = {Z;1}. Ay = {1};

JAL = {Z3 1}, Ay = {3}; Ay C {Z5_.3,7Z4 .3}. For the choice of Ay, we have the
following three cases.

D) e When Ay = {Zs3}. ﬂiz = {2}, we can obtain Az = {Z4_2}, Txg = {4}. Since

U2 A ={1,2,3,4},

)
i Uy = {{ar = ar} lspy. fon > as} lgsz.a9-
< {as > az} |gs51 53 613, {a2 > ag} \{53}}
p) O = {G = Oapt1 p2 p3 pal:pn € {1},
> na € {1,3,4), s € {2,3}, 14 € {4}}.



Y

)

)

)

)

)

)

)

Y

)

G State feedback control design techniqgue—Control Lyapunov function!¥

e When Ay = {Z43}. Ay = {4}, we have Az = 0. Since J7_,A; = {1.3,4} #
{1,2,3,4}, U?:o A; 1s an Imadmissible set of control Lyapunov inequalities.
Hence, we cannot find any state feedback stabilizer for this case.

e When Ay = {Z5_,3, 74 .3}, Ao = {2,4}, one can see that U?:D A; ={1,2,3,4},

and thus | J;_, A; is an admissible set of control Lyapunov inequalities. There-
fore,

11’2 — {{ﬂ-l — (,{.1} ‘{‘f’&} {(,{.1 = ﬂg} ‘{53153}.
{as > az} |{5i?52?5i}1 {as > ag} |{5i?5§}}

and



> @@ State feedback control design technique—>Control Lyapunov function
|

D Dy = {G = Oqpt1 pro p3 pa) g1 € {1},
> us € {1,3,4}, s € {2,3}, g € {1,2}}.
<
< » To sum up, we totally obtain the following 18 state feedback stabilizers which
belong to ® = & [ J P
D .
b = {G — ()4[;,{.1 [lo 13 111.4} S € {1}

-

g € {1,3,4}, us € {2,3}, g € {1.2.4}}.
<
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@ Pinning Control of Networks

(‘l

-

~

N .

e 7i(t) = f(zi(D) +e S aiTai(t) +ui(£), i=1,2,...,N Only small fraction of
Pinning control of _,Zl Y individual nodes are
complex networks | directly controlled

ith (1) = —c-a-Tx;(t), i=1,2,...,1;
\Wlt ! 0, otherwise; .

Pinning controlled
BNs [12]

N

ﬂ.ﬁltl(t + 1) = fl(xl(t): ce :ajn(t): ul(t))\

T (t+1)= fr(x1(t), ...,z (1), u, (1))
Tr1(t+1) = fror (1(t), ..., x0(F))

&-ﬂq(t +1)=fn (ajl(t): e =a:n(t)) /

What is
pinning control?

[5] F. Li, Pinning control design for the stabilization of Boolean networks, IEEE Transactions on Neural Networks & Learning Systems, 2016,

27(7): 1585-1590.

[14] J. Lu* et al. On Pinning Controllability of Boolean Control Networks, IEEE Trans. Automatic Control, 61(6): 1658-1663, 2016.



-

.

™

M

0

M

0

N

-

0

> @ Pinning Controllability of Complex Networks

D / \
Proposition 1 [15-18]: The real part of the maximum eigenvalue of coupling

D matrix changes from zero to be negative under control:
“) — - - -

air a2 -0 Q1N ajl=a a2 -0 A1N

a1 @22 ... Q2N ~ a21 a2 ... A2N
D A = —) A =
N

| ani1 anz2 - GNN | . any1 an2 -+ AaNN |

D

How to explain pinning
control from
mathematical viewpoint ?

“[15] O. Taussky, A recurring theorem on determinants, American Math. Mon. 10:672-676, 1949. y
[16] C.W. Wu, Synchronization in networks of nonlinear dynamical systems coupled via a directed graph, Nonlinearity 18:1057—1‘, 2005.
[17] X. Li, X. Wang, and G. Chen, Pinning a complex dynamical network to its equilibrium, IEEE Trans. Circuits Syst.|, 51(10):2074-2087,-2004.
‘j[18] T. Chen, X. Liu, and W. Lu, Pinning complex networks by a single controller, IEEE Trans. Circuits Syst. |, Reg. Papers,54(6):1317-1326, 2007.
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> @ Pinning Controllability of Complex Networks

@

ARTICLE

doi:10.1038/nature10011

Controllability of complex networks

Yang-Yu Liu"?, Jean-Jacques Slotine>* & Albert-LAsz16 Barabasi"*”

Why do we need
pinning control
and how to select

pinning nodes?

The ultimate proof of our understanding of natural or technological systems is reflected in our :
Although control theory offers mathematical tools for steering engineered and natural systems to
framework to control complex self-organized systems is lacking. Here we develop analyti
controllability of an arbitrary complex directed network, identifying the set of driver nodes
control that can guide the system’s entire dynamics. We apply these tools to several real networ
number of driver nodes is determined mainly by the network’s degree distribution. We sh
inhomogeneous networks, which emerge in many real complex systems, are the most difficult to co
dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we
both model and real systems the driver nodes tend to avoid the high-degree nodes.

[19] Y.Y. Liy, et. a/ Controllability of complex networks. Nature, 473(7346):167-173, 2011. -
[20] F. J. Muller, et. a/. Few inputs can reprogram biological networks. Nature, 478(7369).E4, 2011.
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’ | BRIFF COMMUNICATIONS

/~ Application of the methodology [20]
to gene regulatory networks suggests
that roughly 80% of all nodes must be
controlled to drive such a network.
This seems to contradict recent
empirical findings in the cellular
reprogramming field.

, | Few inputs can reprogr

ARISING FROM Y. Liu, J. Slotine & A. Barabasi Nature 473, 167-173 (2011)

j Liu, Slotine and Barabasi' identify subsets U of nodes in complex
networks, which are required to exert full control of these networks.
Control in this context means that for each possible state S of the

‘J network there exist inputs for all nodes in U, which are sufficient to

force the network to state S'. Application of the methodology to gene
regulatory networks suggests that roughly 80% of all nodes must be

controlled to drive such a network. This seems to contradict recent

empirical findings*™® in the cellular reprogramming field.

ranz-Josef Miiller' &
1Zentrum flir Integrative Psychiatrie, Niemannsw
Germany.

e-mail: fimueller@zip-kiel.de
D~ I ' oA ' ' T

[19] Y.Y. Liu, et. a/ Controllability of complex networks. Nature, 473(7346):167-173, 2011.

[20] F. J. Muller, et. a/. Few inputs can reprogram biological networks. Nature, 478(7369).E4, 2011.




@ Pinning Controllability of BNs

Pinning control is effective for biological networks

» Much empirical evidences show that few inputs can well capture the features or fully control a biological system
[21, 22].

> ..we have devised a practical control method that can be implemented at a single node or link to force the
system . . .. In particular, we have identified two important nodes, Wipl and Mdmz2, that are the most effective for
this control. [23].

> . . . that the number of nodes (five or fewer genes out of about 30,000) needed to fully control a biological
system . .. .[24].

» ... the control of the synchronization patterns locally by a small fraction of the network nodes by adjusting the
refractory time of only 2 out of 32 nodes [25].

[21] M. leda, et. al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. New Cell,4248(3):670-679, 2007.
[22] F. J. Muller, et. al. A bioinformatic assay for pluripotency in human cells. Nature Methods, 8(4):315-317, 2011.

[23] G. Q. Lin, et. al. Modeling and controlling the two-phase dynamics of the p53 network: A Boolean network approach. New Journal of Physics,
16(12):125010, 2014.

[24] F. J. Muller, et. al. Few inputs can reprogram biological networks. Nature, 478(7369):E4, 2011.
[25] D. P. Rosin, et. al. Control of synchronization patterns in neural-like Boolean networks. Physical Review Letters,110(10):104102, 2013.
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)

» The control based on reachable set or control Lyapunov function are
> applied to all the nodes or applied randomly to some nodes of the BN.
The cost of control to apply control to all the nodes may be greater than
just apply to a fraction of nodes.
> » Furthermore, it may not achieve the control objective to apply the control
randomly to some nodes, because it may control the wrong nodes.
In this brief, we consider the pinning control design for the stabilization
> » of BNs. Our purpose is to select a fraction of nodes by the algorithms
proposed in this brief.

[5] F. Li, Pinning control design for the stabilization of Boolean networks, IEEE Transactions on Neural
Networks & Learning Systems, 2016, 27(7): 1585-1590.

J.Q. Lu et al.. On pinning controllability of Boolean control networks. IEEE Transactions on Automatic
Control, 61(6):1658-1663, 2016.
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> BNs:
x(t+1)=Mix(t)Mrx(t)---Mux(t) :=Lx(t) (5)

> Assume that the BN with pinning control is given as

X, (t+1)=Fi(u;(t), x1(t),....,x,(t)), 1=12,...,k

xj(t+1) = fj(x1(1),..... xn(t)), 7 =k+1,....n ()
where F;. ¢ = 1,2,...,k are some logical functions and
i = 1 25 g k are feedback controls. 1 = 1,2,...,k are the

pinning nodes that will be selected in the sequel. Furthermore, the
control u; should be designed
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0 G State feedback control design technique—Pinning controll!
> » Algorithm 1:

< Step 1: Change the rth column of L to o%,.
Step 2: Denote by Ej(r) the set consisting of all the initial states
that can be steered to J‘En in k steps. That 1s Eg(r) = {xo € Ao :

> x(k; xg) = 55” b Let E(r) = Ufﬁ:[ E; (r) and calculate E(r).

Step 3: Find a 65, € E(r), i € {1,2,...,2"} and let Col;(L) be
the element of E(r).
> » By doing this, L is changed to L'and the BN is globally stable to the

~ fixed point.

5

Proposition 1: Let x* = 05,. Suppose that L is changed into L
according to Algorithm 1, then the BN (5) with the transition matrix L’

D is globally stable to x*.
- J
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> @ State feedback control design technique—Pinning controll!
> » Algorithm 2:

N Step 1: Change the ryth, rath,..., ri—1th, riyth columns of L to
| 0%, Oh3..... ook oLk . respectively.
D Step 2: Denote by Ex(€) = {xg € A : x(k;xo) = o5h} and
o 2;} > =
Step 3: Find 05, € E(%¢).1 € {l1.2,...,2"}. Let the ith column

D of L be the element of E(%).

~ » Bydoing this, L is changed to L'and € becomes a globally
attractive limit cycle.

D

Proposition 2 Suppose that L can be changed to L’ according t0
) Algorithm 2 then the BN (5) with the transition matrix L’ is globally
> attractive to the limit cycle "é’ = (r)f:,n . f),.,;:,, . aw)

\_

J
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> Now, let us give the [pinning control design for the BNs

> Assume that the transition matrix L of BN (5) is changed to L’
according to Algorithm 1 Without loss of generality,
we assume that the first,..., mth column of L alters and assume that
Ist,..., mth column of My,..., M alters. We assume that My,..., My
alter to M1..... M.

> Supposé that f1 (X1,.vesXn)s.s fr(xy,...,xn) be changed to
Firup, xg,....xp) = ur(xy,....xn) d1 f1(x1,...,Xn0),...,
Fr(up,X1,...,Xn) — U (X1, ..., Xn) Dr  fr(X1, ...y Xn)s
respectively, where @,..., @, are some logical functions,
ui,...,u, are state feedback control.
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> Fi(up,x1,....xp) = up(xy,....x0) D1 f1(x1,...,xn)
= Mg Mxy,....,xpMix1,...,Xn
= M@lMl (Ion @ M1)Dpxy, ..., Xn

> Fro(ug,X15..-,Xn) = up(X1,...,Xn) Bk fx(X1,...,Xn)
Mo, Mixy, ..., xnMpxy, ..., Xn
= Mg, My (Ion @ My )®@pxi, ..., X

where Mgy, ..., Mg, € L7444 are the structure matrices of logical
functions @1, ..., @y, respectively, A;Il, e Mk € Loyon are the
structure matrices of feedback control functions uq, ..., u; respec-
tively, @, = dy20[1,2" +2,2-2" 43, ..., (2" —=2)2" 42" —1,2%"],
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_—

_—

_—

» If we can solve Mg,,..., Mg,, My, ..., My from the following
equation:
(Mg, M (Ion ® M)®, = M|
D) :
1 (7)
=D | Mg My (Ihn @ My)®p = M,
D : .
then , one can obtain the logical
~ 9 functions of &q,..., Pk, uy, ..., ur. Hence, the Boolean control

network (6) is globally stable to the fixed point d5, (the limit
LD ya
cycle &).
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D > [Algorithm 3
1) Change the columns of the transition matrix L of (5) using

) Algorithm 1
5 2) Calculate the new structure matrices. Without loss of generality,
we assume that the first,..., mth column of My, ..., M} alter
> ‘[OM'{,...,M};.
3) Suppose that fi(xy,....xn),..., fx(x1,...,Xx,) be changed
D to Fr(uyp, X1, ... xn) =u1(x1, ..., X0) D1 f1(X1, -3 Xn)senns
Fr(upg,x1,....xn) = up(xy,... ,xn_) B fk_(xl, s Xn)s
D) respectively. Solve Mg,, ..., Mg,, My,..., My from (7).
Then , one can obtain the logical functions &1, ..., D,
D ui,...,ur. Hence, the Boolean control network (6)

is globally stable to the fixed point 05, (the limit
D cycle €).
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> Example: Consider BN (5) with L = 664152, 52, 52,52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52

52,52, 52,52, 52,52, 21,22, 21, 22, 52, 52, 52, 52, 21

22,21,22,52,52, 52,52, 52, 52, 52, 52, 41, 41, 43, 43

» 41, 41,43,43,52, 52,52, 52, 53, 54, 53, 54, 57, 57, 59
59, 61, 61,61, 611.

5

5
> Step 1 [Calculate E(52)]: Change the ’?lth 22th, 41th, -ch ’33th.
> 54th, 57th, 59th, 61st columns to r) r} c)g4 ‘)éJ]f ;j, r) )(-;4*
)aj )53 respectively.

> Hence, L is changed to L’

< L' = 66452, 52, 52,52, 52,52,52,52,52,52,52,52,52,52
52,52,52,52,52,52, 17,18, 21, 22,52, 52, 52, 52

D) 21,22,21,22,52,52,52,52,52,52,52,52,9, 41

< 11,43, 41,41, 43, 43, 52,52, 52,52, 21, 22, 53, 54, 25
57,27,59,57,61, 61, 61].
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0 @ State feedback control design technigue—Pinning control !

D : d
| » Step 2: The 21th column of L is 52! 4 that 1s c)-} X c);, X c)é < r)% X

> ()? aj The 21th column of L is ) , that 1s ()2 X< .f)j ri;], X é}', X
(JI X ()] Hence. we can perturb fumtmn f4. By doing this, it can be

0 verified that, to achieve the problem of global stabilization to .f)

- we need to perturb fi. fa1.

| » Step 3: It can be prm-'ed that the structure matrix of fj 1s changed

> from My = 6[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

l1l,,l.,,2222313,1,,1.,,123,2”2”2.,,22’3’2
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2]

M| =602,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
> 1,1, 1,2,2,2,2,1,1,1,1,2,2,2,2,2,2.2,2, 1,2
1,2,2,2,2,2,2,2,2,2,1,1,2,2,1,2,1,2,2,2,2,2].
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0 @ State feedback control design technigue—Pinning control !

> The structure matrix of f4 is changed from

My =01, L1 L LT L2

5
2,22, 0,0, 0, 0,2,2, 2,2, 1, L L L L L
D L, 1,222,210, 1,1,1,2,2,2,2
D M=, L L L L L L L LT
2,2, 0,000,222, 2 L L L LT
i L1, 1,222,210, 1,1, 1, 1,2, 2, 2]

> > Step 4: Assume that f] 1s changed to

D Fi =ui(x1,...,x6) &1 f1i(xg, ..., X6)
< = M@lM]([m@M[)(D@l] 16=M’ix], ..... X6
N where Mg, . M are the structure matrices of logical functions @j.

up(xy,...,. Xg). respectively.
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0 G State feedback control design technique—Pinning controll!

5

5

5

Similarly, assume that f4 i1s changed to

Fa = u>r(xyq, ..

where May,. M7 are the structure matrices of logical functions &>,

L, X6) B2 falxy, ..., Xp)

Mg, Ma(Ios ® Mg)®ex| ... x6 = Myxy, ..., X6

Ur (X, ...,. Xg). respectively.

» Step 5: Solving the

equations

Mg M1 (Ies ® M) D¢ = M|
Mg, M (Iga ® Ma)®g = M)

yields Mg, = o1, 2,

Fir(up, xy, ..
Fq(un, xq, ..

2,2], Mg, = or[1,2, 1, 1]. Hence

LX) = U A frlxg, ..., Xe)
LX) = Uug —> falxy, ..., Xe).



200 2222 N L 22 2 A 2 2
A . e A /. S (R TR O " B 11:,1]
. up = xp VI=xp Al A [I3 V [=x3 A —(x4 A x6)]]
V [=xp Alxsz Alxg vV (mxg4 A —xs)]
> V [=x3 A =(xg A x6)]11]]
> ur = [x; Al=x2 Allx3 A —=(xg4 VvV xs5)] Vv (—x3 A —xg)]l]

D [6] J. Zhong, et al, Global robust stabflity a 'd;stabili'zé lon of Boolean network with disturbances, Automatica,
84:142-148,2017. V [—x3 A (—xg A —(x5 V X)) 1]



0 @ State feedback control design technique—Pinning controll®!

Here, we consider the following BN with disturbances:

- (x1(t + 1) = f1(&1(t), ..., &p(t), x1(1), . .., X4(1)),

1o (1) x(t+ 1) = LE(t)x(t),
. [ Xn(t + 1) = fu(§1(L), ..., Ep(t), x4(E), . .., Xp(L)),

'Xi I:}ti(xl, . .,Xn)@,‘fi(rf], ...,sp,?ﬁ, ...,Xn),
D 1 :ff(sla---aspaxla---sxn)ai:15---5k9 (3)

ij:jj-(&,...,ép,xh...,xn),j:k—l—L...,n,
D) n

Mg, Ki(Ion @ Fi)Wip oni(lr @ @) =F,i=1,... Kk, (4)

D Mg, ..., Mg, € 254 are structure matrices of logical functions @1, . . ., @y to be determined
~ and K1, ..., Ky € £on are the gain matrices of uy, . . ., ugalso to be determined.
~

0 [6] J. Zhong, et al, Global robust stability and stabilization of Boolean network with disturbances, Automatica,
84:142-148,2017.
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» Event-triggered control (ETC) consists of two parts: (1) a state
feedback mechanism to determine the control inputs and (2) a
set of states to decide when the control inputs should be
considered.

» Compared with traditional state feedback control, the designed
ETC approach not only shortens the transient period of logical
networks but also decreases the number of controller executions.

» The global stabilization problem of KVLCNSs is introduced in the
sequel via the time-optimal event-triggered controller and
switching-cost-optimal event-triggered controller.

[7] S. Zhu, Y. Liu, Y. Lou and J. Cao, Stabilization of logical control networks: An event-triggered control
approach, Science China. Information Sciences, 2020, 63: 112203.
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» The KVLCN under ETC, presented as follows, consists of an inherent

- 5 nhon-control KVLN (1a), an alternative KVVLCN (1b), and a triggering event

| set A C 2 standing for certain individual states where the control inputs are
triggered:

z1(t+1) = fi(@i(f), ..., zn(t)) r1(t+1) = fl(z1(t), ..., 20 (t), ur(t), ..., um(t))
D : T2(t + 1) = fa(@1(f), ..., zn(?)) < To(t+1) = fo(z1(t), ..., xn(t), ur(t), ..., um(t))
’ o (t+1) = fa(z1(t),. .., za(t)), @t + 1) = il (t), .. (), un(t), ... i (1))
) 1) N\ / (1b)
0 w(t 4+ 1) = La(t) (3a)
> v(t +1) = L'u(t)z(t) (3b)
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» The ETC mechanism is essentially an intermittent control strategy.
:E(HU{LQ;@), 2(t) € AN\T(A),
L'u(t)x(t), z(t) € T'(A).
T'(A):={T,(x) :x e A}, 2(t) =T, (21(t), z2(t), ..., 2, (1))
w(t +1) = [L, L) u(t)x(t) == Lu(t)x(t), u(t) € Ao (5)
(1) If z(t) € An\I'(A), then u(t) := 5%&'—%1'
(2) If z(t) € T'(A), then one obtains that u(t) := [0, u(t)1]?T.

> The stabilization of system (5) is equivalent to the event-triggered
stabilization of system (4).

(4)
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> u(t) = Gx(t) = 0p B, B2, ..., Bn]x(t), (6)
u(t) = Ge(t)=Om+1[v, 72, ] z(t)

> The objective of this paper is to design the possible state feedback
Matrix G € L1y SUCh that KVLCN (5) Is globally stabilizable under the
time-optimal stabilizer and the switching-cost-optimal stabilizer.

» The time-optimal stabilizer aims to minimize the transient period
and the switching-cost-optimal stabilizer aims to minimize the cardinal
number of triggering event set |I'(A)] .
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> @@ State feedback control design technique—Event-triggered controll”]

R ) Design of time-optimal event-triggered stabilizer

> > Define
Y % (r)= {cﬁ\; € Ay : A control sequence u(0),w(1),....u(v —1) € Apro1 (8)

Y exists such that x(v: rfijiw w(0). u(l)...., u(v—1)) = rﬁ}}} .

5 (Theorem 1. For a given state o3, € Ay, system (4) can be globally d} -stabilized by an event—triggered\
controller if and only if both of the following conditions are satisfied:
O (1) 0y € Z(r);

_ (2) An integer [ € [1, N — 1] exists such that Z;(r) = An.

. » Without any confusion, the minimal integer satisfying condition (2)
IS denoted by |*.
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o Design of time-optimal event-triggered stabilizer

> Split
AN = (% (r) \ Zr-—1(r)) U -+ U (Ra(r) \ Z1(r)) U (Z1(r) \ Zo(r)) U ZRo(r). (9)

» Define o = L', for i € [lj MN].

» The ‘state feedback matrix’ G = ON 1| Y1, Y2y - - - s ,YN] can be given

(1) If @ =7, let 4, = 1. Otherwise, namely, a,. # r, let ~, he a solution of a(y, _1)n4r =T
(2) For i € [1, N|\{r}, if 6% € Zi,—1(r), let 73 = 1. Othemme let 4; be a solution of fj&"* S S~

53@31._1(?).
G = 0m|B1, B2, ..,/ On], where B; = v — 1 if 13 # 1

and 3; can be arbitrarily selected in L1. M] for ~; = 1.
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o Design of time-optimal event-triggered stabilizer
Example: Let L = 64]1,1.3,4] and L' = 04[1,3,4,1,1.3,4,1].

> Let r = 1.
%1 (1) = {6;,03,031}
RBa(1) = Ay » system can be globally stabilizable to d; under ETC.

» i=1,v9=1,v3=2,3, and y4 = 2, 3.

m (A = {01,462}

» 51, B2, B3, and 34 can be arbitrarily selected from {1,2}.
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o Design of switching-cost-optimal event-triggered stabilizer

> In the following, based on the knowledge of graph theory, we present
a universal and unified approach to minimize the triggering event set.

» First of all, a labeled digraph ¢ = (V. 4) is derived for equivalent
graphical description of the dynamic of KVVLCN (5).

KVLN (3a) mp ¢, = (V. Ag),4p is a real line arc set4mp [L]; = 1

L’— L3, L I M

KVLCN (3b) &G, = ( U A ) , 18 a dashed line arc set
0 =

Ji'_,.i_.:



D
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o Design of switching-cost-optimal event-triggered stabilizer
» The pretreatment:
(1) Delete all self loops.
- (2) For all ordered pairs (¢,7) € [1, N] x [1, N| and ¢ # 7,
-9 we retain the arc with minimal weight joining i to 7 and delete
) the others. If two such arcs exist, we select the arbitrary one.
(3) Assign each dashed line arc joining 7 to j by acontrol set
.
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& State feedback control design technique—Event-triggered controll’

o Design of switching-cost-optimal event-triggered stabilizer

» As mentioned in [8], the stabilization problem of KVLCN can be
equivalently described by the existence of spanning in-tree with the
designated vertex r, which is called the root of tree.

» An approach to find the switching-cost-optimal event-triggered
stabilizer i1s exactly to find a spanning in-tree at root r with the
minimal number of dashed line arcs in labeled digraph ¢ .

» To this end, weights N and 1 are respectively assigned to each
dashed line arc and real line.

G = (V,A,W). where W is a set of weight w(z, j) for all (7, j) € A.

[8] J. Liang, H. Chen and Y. Liu, On algorithms for state feedback stabilization of Boolean control
networks, Automatica, 2017, 84: 10-16.
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o Design of switching-cost-optimal event-triggered stabilizer
» The spanning in-tree at root r with the minimal sum of weight is
called the minimal spanning in-tree of labeled digraph # .

Algorithm 1 Minimal spanning in-tree algorithm

Step 1: Imitialize i := 0, Vi : =V, Ep := A and Wy := W. Designate vertex r as the root.
Step 2: Calculate Jy = {(v,8(v)) : v € Vp \ {r}}, where an order pair (v, #(v)) is the minimal weight arc among all (v, j) €
Ey.
Step 3: Check whether directed cycles exist in (V;, J;11). If so, then proceed to Step 4. Otherwise, proceed to Step 7.
Step 4: Contract every cycle % into one new vertex to obtain a new diagraph (Vii1, E;11,W;11); the weight set W, is
updated from W; as follows; then i := i+ 1 and go to Step 5.
e If (u,v) 1s an arc joining cycle €, its weight is kept unchanged.
o If (u,v) is an arc away cycle ¢, its weight is reassigned as w(u,v) — w(u, 6(u)).
e The weights of the other arcs are kept unchanged.
Step 5: Perform pretreatment for the novel labeled digraph (V;, E;, W;).
Step 6: Calculate J;11 = {(v,0(v)) :v € V;\ {r}}, where an order pair (v,#(v)) is the minimal weight arc among all
(v, ) € E;. Then, return to Step 3.

Step T: Expand the contracted cycles formed during the preceding phase in reverse order of their contraction and remove
one arc from each cycle to form a spanning in-tree.
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o Design of switching-cost-optimal event-triggered stabilizer
> » The returned minimal spanning in-tree in Algorithm 1 is denoted by
G — (V, A%, WY), where A° C A and Wy C W.

» | D| consists of the starting vertex of each arcin D, D C A
<

Algorithm 2 Corresponding event-triggered controller design from minimal spanning in-tree

Step 1: Construct the triggering event set I'(A). If [L],, = 1, then T'(A) = {&% : i € |[A%\Ag]}. Otherwise, ['(A) = {&% :

i € |ANAp| U {r}}.

Step 2: Determine the state feedback matrix G. Let 3, be randomly selected in Ay if » € ['(A); else, B, = U(p r)-

< For every j € [1,N|\{r}. lfj € I'(A), a unique integer t; € [1, N] satisfies (j,t;) € AD. Let Bj be an arbitrary integer
in ugjt,)- Otherwise, let 3; be an arbitrary integer in [1, M]. The feasible state feedback matrix can be designed as

5 G =4y [;‘91? Ba,..., .B.-""."]-

5
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o Design of switching-cost-optimal event-triggered stabilizer

Example:

\< /
(3D =(55) (%)

Figure 1 State transition graph of KVLN with respect to transition matrix L = dg[4,2,1,3,6.5,8.5].
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o Design of switching-cost-optimal event-triggered stabilizer

» The pretreatment:

DESoEG
11
3 E \»®/

OMOLOLG

Figure 2 Labeled (digraph  after  pretreatment
(Vo. Eo, Wp).
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o Design of switching-cost-optimal event-triggered stabilizer

(9 (4) (1)
N S S

A -
GA—\ /*"‘_\8’ Y

Figure 3 Calculate set Ji={(v,6(v)) | v € [1, 8]} by Step

2 in Algorithm 1. That is, (1) = 4, 6(3) = 1, 6(4) = 3, Iq_;\l(_@\\(_f.{-\,
6(5) = 6, 6(6) = 5, O(7) = 8 and 6(8) = 1IN TN

Figure 4 New constructed weighted directed graph
(Vi, E1,W7). Based on Algorithm 1, w(U,2) = 8 — 1 and
w(V,8) = 8 — 1. The weights of the other arcs remain un-
changed.
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o Design of switching-cost-optimal event-triggered stabilizer

8 — T
,q)\ 1 E

Figure 5 Find the set Jo in Figure 4, where Jo =

{U’r 8): (8? Lr)? (7 8): (U.'- 2)}

Figure 6 The vertices V' and 8 are contracted into a novel
vertex B. Let w(U, B) = 8 — 1 and the weights of the other
arcs be unchanged.
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o Design of switching-cost-optimal event-triggered stabilizer

(2)¢mmmnm (4)e——(1)
N N N

> ~7

. -3
ﬁ;" * - ” b1 -7
FO ) (D)
5 \B /2, (BT

5 Figure 7 The set J3 = {(2,U), (U, B), (B, 7)}- Figure 8 Minimal spanning in-tree g0 of Example 2.

- » The corresponding triggering event set is designed as 1'(A) = {52, 6¢, 65}
and the possible state feedback matrices are G = s[x, x,*,%,%, 1, %], % is 1 or 2.
According to Figure 8, the number of control executions is equal to 3.
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) » A Boolean dynamic system with n nodes,

)

-

_— (xi(t+1) = A(x (). ..., Xp(t), ui(t), ..., un(t)).
L £  ae- (2)
| Xn(t+1) = fa(xa(t). . ... Xp(t), ui(t). ..., um(t)).
> where f;. 1 =1.2..... n are logical functions, and u; are control
5 Inputs.
> The feedback law to be determined for system (2) is in the form of
<
u(t) = Ex(ty), t <t <tp1, (8)
where t; = [Tt >0 for | = 0, 1. ... are sampling instants and

tj.1 — t; = 7 denotes the constant sampling period.

~ O [9] Liu Y, Cao J, Sun L, Lu, J. Sampled-data state feedback stabilization of Boolean control networks.

Neural Computation, 2016, 28(4): 778-799.
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ﬁ' heorem: System (2) is globally stabilized to §,» by a\
sampled-data state feedback control (SDSFC) in the form
of (8), if and only if there exists a k > 0, such that

( 2
((LE‘[[T[QH])T (I);:_)L — r’jgn [? o I]

4 on

K i (L EH"T[Q#](D”).;-.T _ 1 J
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-2 » Main results (Piecewise stabilization of BCNS)

LD From L = [1[_ 2[_ o2 I_] we denote
- A} 2”?
= L'=\/¢, 1>1. (10)
j=1
.

We now consider the Piecewise constant control (PCC) for system
o (2) as follows,

U(t) = U(t,‘) < AQm? ty § t < t,'_|_1, (].].)

where t; = [T > 0 for some 7 > 0 and [ > 0.
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» Main results (Piecewise stabilization of BCNSs)

/Theorem: There exists a sequence of PCCs such that BCN (2))
can be globally stabilized to §,» there exists a minimum 1 <

N < 2" such that

N
Row, (V(iT)J) > 0, and (Ll) = 1.
N y

Theorem: A BCN (2) can be globally stabilized to &,» by al

sequence of PCCs iff it Is stabilizable by means of a SDSFC.
g Y,
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> A BCN under ASDC can be described as follows:

5
X(t+1)=f(X(t),U(t)), (1)
“’ U(t) = e(X(ty)), tr < T < the, 2)
D tp for k =0, 1. ... are sampling instants. Using STP, a BCN under
D The sampling period is defined as follows. iﬁtiDaiv(\:/?tr(]:r?gdclgrll\lv.erted
< Let by =ty — ty, Where by, € Zy, = {iy, -+ i}, 4y < dg < -+- < fjland i;, j = 1,--- [, are
positive integers. Then /. can take one value from these [ values.
D 2(th1) = (LWign gm)) " a(t,)®REu(ty,),
| & LMt @ u(te).
= A1) T (tk) Byt u(ts), (3)
D = o (t) T (th),

where k = 0,1, ..., Fo(t)=As(t,) U2n®B () K) Py and o (&) € Z, = {1,2, ..., [},
JT10] Lu J, Sun L, Liu Y, et al. Stabilization of Boolean control networks under aperiodic sampled-data
control. SIAM Journal on Control and Optimization, 2018, 56(6): 4385-4404.




@ State feedback control —» Sampled-data control[°]

> Main results
It Is worthwhile to note that switches may not occur at every sampling

Instant. The following example iIs given to explain this point.
Example: Assume that the sampling period h;, takes three values i; =
2,i, = 4, i3 = 6; when system (3) has three subsystems and o (¢t;) €
Z; =1{1,2,3}.

I

Lo

In figure 3, t;,k=1,..,8 are the
sampling instants. But the switches only
occuratt,gy,j =1,..,4, where t, 1) =

—

I
———— e = — —

) | . | — 7@ which means that switches may not
it | ; : — occur at every sampling instant.

|
|
|
|
|
|
i == u(t)
|
|
|
|
|
|

ka_:ll Ii‘_i:]l fh_::fj- 1 E‘klﬁ-ll

Figuk?e 3



@ State feedback control —» Sampled-data control[°]
» Main results

For any t; >ty = 0, a switching sequence ty = t () <t < <t o <ty during
interval [y, t;) is assumed. When ¢ € |t, (), t, i+ ),J = 1,2, ..., i, the o(t, () th subsystem
IS activated; that is, switching sequence corresponding to the switching signal o(t;) Is
given as follows:

{(O‘(tk(o)), tk(o)), e ) (O'(tk(i)), tk(i))|0'(tk(j)) €Zs;J]=01,..,i,i =1},
where t, ) € {tq, .., ty—15,J = 1, .0, 1.

For the switched BN, we consider two cases:

(i) switched BN with all stable subsystems;

(if) switched BN containing both stable subsystems and unstable subsystems.

For these two cases, the techniques of switching-based Lyapunov function and the average
dwell time method are used to derive sufficient conditions for global stability of BCNs
under ASDC, respectively.




@ State feedback control —» Sampled-data control[°]

ﬁefinition 1 {B;lj €{1,2,..,1}} 1s called a set of Lyapurm
coefficients of system (3) if following conditions are satisfied

BT6Z =0, (4)
gres, >0, r=1,2,---,2" -1, (5)
BY(F; — A2 I,)é2 =0, (6)

BY(F; — N7 I;n)op, <0, r=1,2,---,2" =1, (7)

Bi < pB, 1,5 € Zyy p > 1, (8)
Where 0 < 4; < 1, If the j—th subsystem Is stable; 4, = 1, If the
\i\—th subsystem Is unstable, and i; Is the sampling period.
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@ State feedback control - Sampled-data control(*°]

> switched BN with all stable subsystems (i.e., all subsystems is
globally stable at X, = (x7, ..., x52), here, we assume X, = (0, ..., 0))

meorem 1: Given a; = 0, Z§-=1 aj = 1. If there exists a set m
Lyapunov coefficients {f;|j € {1,2, ...,1}} as defined In Definition
In \/u

l -1
Zj=1 0(1 lnljl

1, such that 7, > then system (1) is globally stable

under feedback (2) at X, with a decay rate 6(tq ;) =

1 B
y2ta H§-=1)t](.)", where «; are the activation frequencies of the

sampling periods. /




S
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@ State feedback control - Sampled-data control[*°]

> switched BN containing both stable subsystems and unstable
subsystems(Here, suppose that the index set of stable subsystem is ¢,
and the index set of unstable subsystem is ¢,,, where |p.| = r and

|y | =1 —7r.Denote fy = X, @y and fo, = 2y, @)

ﬁheorem 2. Given a; = O,Z§-=1 aj = 1. If there exists a set oﬂ
Lyapunov coefficients {f;|j € {1,2,...,1}} as defined in Definition 1,

l a; In /1 In A5t
such that 1'[]:1/1]. <l71t, > nA=Tir, 1n(/15/1;1)’f” < mOAT) then

system (1) Is globally stable under feedback (2) at X, with a decay
@te é(Ta;fu) = u2tadg (A, A5 ). /




D

- 5 @@ State feedback control - Sampled-data control(°]

- 5 » Main results
We derive some conditions to guarantee not only the global stability

)

of system (3) but also the performance with an adequate level.
. ﬁ)efinition 2: {Bjlj € {1,2,...,1}} Is called a set of Lyapunoh
coefficients for the cost function J = Y5> o ETu(ty)x(t;,) of
- system (3) If following conditions are satisfied (4), (5), (6), (7)
- and
. (BI(Fj = A2V Ion) + €T K ®,,) 05, < 0. (9)
where 0 < 4; < 1, if the j—th subsystem Is stable; 4; = 1, if

=D @e j—th subsystem is unstable, and i; is the sampling period/
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| A}G State feedback control - Sampled-data control!°
. » Main results

4 )
Theorem 3: If there exists a set of Lyapunov coefficients {£;|j € {1,2, ..., [}} for the cost

function | = Yoo ETu(t,)x(t,) as definition 2, such that 7, > o 12‘/711 - holds, then
]

system (1) is globally stable under feedback (2) with decay rate 6(7,, a;)

-2 | and cost function satisfies ] < 1= Ve (to). (T THEARE)
(1—92(Ta,aj)) 0

N\ J

L ' Theorem 4: : If there exists a set of Lyapunov coefficients {f;|j € {1,2,. l}} for the cost
function J = Yo &Tulty)x(ty) as definition 2, such that H /1 <1l71, >

hold, then system (1) is globally stable under feedback (2) with decay

1_/1(2) kv [ AN =15
(1—62(’551,6(]')) VG(tO) (tO) (I:IBE ¥7|<5FIL‘:\IE)

In /1;1,\+fu In(AsA; D)
rate 6(t,, a;) and cost function satisfies / <




)

()

)

()

)

()

)

@ State feedback control - Sampled-data control[°!
» Main results

ZERARG: x(t,) = L1L)2 - ijx(O)u(O) cu(ty — 1), HAL = LWpnmy,
te — tk—1 = Jj1, -, t1 — to = jro HFLIeKIITN2MEET)

<

4 " N\
AR
R¢, (62n) = {6,n: there exists q; € {(p; — DW + 1|p; = 1,2, ..., ,
such that Colg, (L) = 632 \(6%},
n . _omj
Re, (6% ) = (81n: there exists q; € {(pi - DS e =12, zm},

such that Coly, (Z{k) € Ry, (82)\[Uzcisic Re,(820) U {6201].

- J




> State feedback control - Sampled-data control[*°}
> » Main results

5

5

Algorithm 1

Step 1. Solve 62n = LK &% 6% to get p,n. If there is no solution, then K does
not exist.

Step 2. For any initial state x(0) = 8in,i=12,..,2" =1, if 8. €
R, (622:) ,c €{1,2,...,k} , then there exists q; €

mjk+1—c

1-2

R, .. (5223); get p;. If 8l & Uy<yzx Ry, (820), then K does not exist.
Step 3. The feedback matrix K = §,m[p4, p,, ..., Pon] €an be obtained.

p; = 1,2, .__,Zm} such that COlqi(Z{kﬂ—C) =



@ State feedback control - Sampled-data control[]
> » Main results
N x(t+1)=Lu(t)x(t) (4)

) Definition 1. Input u(r) € A3, 1 € N, is said to be A—nonuniform-sampled, if there is a
sequence of integers f;, which are called sampling points, satistying 7, =0, ;. —f; € A and
Dou(t)y=u(ty), t el t;+1,...,t;x; — 1}, i € N, where A is a subset of positive integers.

Definition 2. Boolean control network (4) is stabilizable to 45, under A —nonuniform-sampled
~ inputs, if for any given initial state xp, there exist a A—nonuniform-sampled input u(7) and

an integer 7, such that 65, = x(xo, u(r)), t=7T, where A = {1,, 7p} and x(xo, u(f)) represents
~ the state that (4) reaches at moment 7 under initial state xy, and input u(r).

-

[11] Yu Y, Feng J, Wang B, et al. Sampled-data controllability and stabilizability of Boolean control
networks Nonuniform sampling. Journal of the Franklin Institute, 2018, 355(12): 5324-5335.
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5

5

5

> Main results

Under A —nonuniform-sampled inputs, to investigate the state transition of Boolean control
network (4), we construct the following network, which can demonstrate states of (4) at
sampling points ;. k € N,

X(tky1) = Lev(ti )u(typ ) x(ty ), (6)

where v(-) € A,, structure matrix Lg = [(Lé‘z',,,)“f, e (Lé‘%ff)rﬂ, (Lé‘:},,,)”?, e (Léi%fff)”’] €
Lonomint1, Ly and 1 satisfy

) Ta, V(ty) = 52]
ey — I = {m V(t) = 82. (7)
x(t+1) = Lgv(t)u(t)x(t), (8)

Proposition 1. If state 65, is a fixed point of Boolean control network Eq. (4), then Eq. (4) is
stabilizable to 65, under A—nonuniform-sampled inputs if and only if Eq. (8) is stabilizable
fo 65,.



G Output feedback control design techniquel]

> The objective of this paper is to design an output feedback
stabilizer in the form of

uq(t) = hi(y1(t), ..., yp(t)).
; (4)
Un(t) = hp(yq(0), ..., yp(l))

such that under the control (4), the BCN s stabilized to a given

state Xe = (x§.X5.....x;),whereh; : D — D,i=1,...,mare
logical functions.
x(t+ 1) = Lu(0)x(t) and u(t) = Ky(t). (6)
N V() = Hx(t). (5) (£) y(

[12] H. Li and Y. Wang, Output feedback stabilization control design for Boolean control networks,
Automatica, 2013, 49(12): 3641-3645.



@ Output feedback control design techniquel]

> x(t) = LKy(t — D)x(t — 1) = LKHx(t — 1)x(t — 1)
— [KH®,x(t — 1) = - - - = (LKH®,)'x(0),

Kl"heorem 1. Consider the BCN (5). The system is globally stabilizable\
to x. = d,n by an output feedback control, if and only if there exist a
logical matrix K € L£om,p and aninteger 1 < t < 2" such that

(LKH®,)" = §pn[a - - - «al. (7)

o - /




@ Output feedback control design techniquel]

» How to design output feedback stabilizers?

(i) Design state feedback stabilizers u(t)=Gx(t). Li et al. (2013)
(11) Find the logical matrix K such that G=KH.

» Define
A={G=6mn[py -+ pn]:pieh,i=1...,2")
= = {I( — 521’3?[1)1 N U2p] KH - A}

O(k) = {8, : Coli(H) = 8%}
ﬂ P,  O(k) # @,
[(k) = 81 €0(k) (8)

{1.,2.,...._.2”1}, O(k):



G Output feedback control design techniquel]

/Theorem 2. System (S) is globally stabilizable to x, = &5, by an\
output feedback control u(t) = Ky(t), K € ®, if and only if

I(ky 0, Vk=1,2,...,2P. (9)
\

J

Theorem 3. Suppose that (9) holds. Then, the output feedback gain\
matrices of system (5) can be designed in the form of

K = 8m[vivy -+ vop], wvp €1(k), (10)

\Where [(k)is givenin( 8). )




G Set stabilization

» In some cases, interest lies in whether a system or a collection of
Interconnected systems converges to or can be stabilized to a subset
of the state space, Instead of to a single point.

> X(t+1)=Lu(t)x(t) (1)

/Definition (Set Stabilizability). Let .M be a subset of A,n. BCN ( 1)\
is said to be M-stabilizable if, for any initial state x, € Ajn, there

1S a control sequence u and a T(xg, u) € Zsg such that

X(t; Xg,u) € M, Vit > T(xg, u).

\_

/




G Set stabilization — Existing methods

State feedback control design technique

» Control invariant subset
» Pinning control

» Event-triggered control
» Sampled-data control

Output feedback control design technique
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G State feedback control— Control invariant subset!13]

(N g sns . . .
Definition 1. A subset @ € A-n is called a control invariant subset

~

\u = {u(t)}tez., such thatx(t: xo, u) € C, Vt € Z>o.

of BCN (1) if, for any xo € G, there exists a control sequence

J

> The union of any two control invariant subsets is still a

control invariant subset. The union of all of the contro
subsets contained in a given subset M is also a contro|

1nvariant
1nvariant

subset. It is the largest control invariant subset containec
is denoted by I (M).

'in M, and

» How to calculate the largest control invariant subset?

[13] Y. Guo, P. Wang, W. Gui and C. Yang, Set stability and set stabilization of Boolean control networks based on

invariant subsets, Automatica, 2015, 61: 106-112.
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- G Set feedback control = Control invariant subset!13]
)

> Define: for any nonzerox € %1, .7 (x)={z € A, |zA\X=1}

k-step controllability matrix C, = (L x g 1om)®
controllability matrix € = () ¥ 2_, C,

@) ={x|yea2V®) 27y = x|y e 2k)

70 (8h) = 7 (Coli(C)). #(8y) = #(Col;(C)),

A7 (8n) =T (Row;i(Cr)), 2~ (85) = 7T (Rowi(C)).

» Assume that q = |-M|. Define My as Col;(My) = {

J
52?’1 ’
0
52[’1 .

S € M
Son & M.



G State feedback control = Control invariant subset!!3]

/Proposition 2. Define a sequence of Boolean matrices cb
Mic == Mj_1,c X C1 x 2 My

— MoxzC)" xeMy, i=1,2,.... q.
where My ¢ := Mp.
\_ Then, it holds that Ic (M) = " [Rowx (Mg ¢)]. Y,

4 )
Lemma 3. Let M < A.n. BCN (1) is M-stabilizable if and only if it
s Ic (M)- -stabilizable. In addition, for any M-stabilizable BCN, there

\hOldS Tac(X0) = Tio(a0 (Xo). Yxo. Tay(xo) = l‘ﬂll‘lueux T (X0, u)




@ State feedback control = Control invariant subset!!3]

/PFOIOOSitiOH 4: Let M C Ayn. Define Ng € PBynyon as x
Nog=In A[M!  x2M
Then, 0 2 [ q.C ™A q.C]
(1) BCN (1) is M-stabilizable if and only if Row; (NoC) = lgn;
(2) If BCN (1) is M-stabilizable, then Ty (8,) = minkes_,
_ {k | Col;(NoCx) # 0} where Co := In. y

» How to design the time-optimal state feedback controller
u(t) = Fx(t)?
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¥ Partition the state space An into Ty + 1subsets ;, 0 < i < Ty
No = Ic(M) (Ic(M) £ 0)
N1 =27V (No) \ No

Ny =R (Mg, )\ (Mg, U+ U N U Np)
> Define: for 0 <i < T, L =LW[2",2™M]

B - T
S Sy €N _Rowg(Nng)], X € No

0 y I et
Oy,  Oon & M. _ROWZ(Nf—lLX)] , X ENM,
and F = [f(81).f(820). ....f(8%)] € Bomyom.

COlj (Nl) — {
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_——

_——

s Proposition 5: The controller is a time-optimal M-stabilizer if
and only if F Is a logical sub-matrix of F,ie,F A F =F.

- 5 » The Boolean matrix F characterizes all of the time-optimal feedback
gains and, by the construction of F, all of the time-optimal control
sequences stated in the following result.

_ Proposition 6: A control sequence {u(t)}icz., IS a time-optimal
) M-stabilizing control sequence if and only if u(t) € .#[Fx(t)].
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G State feedback control — Pinning controll'4l

> X(t 1) :LX(t) LZ*II]:]MI e Lonon (2)

» The index set of pinning controlled nodes is assumed to be ® =
{n1.M2..... v}, and system (2) under pinning control is given as
Xi(t+1) =Fu;(t),x;(t),....xp(t)), JeO, (3)

Xi(t+1) = fi(x1(t),....x,(t)), ie{l,2,...,n}\O,

» let M C A, be an arbitrary given set. Our objective is to
realize set M-stable for system (2) under pinning control strategy.

[14] R. Liu, J. Lu, J. Lou and et al., Set stabilization of Boolean networks under pinning control strategy,
Neurocomputing, 2017, 260: 142-148.
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» Step 1): convert the set M to be an invariant subset
_ 51 52
» Assume that M = {6,,.85,, ..., 654 }:
Q={v|L&j, ¢ M,v=1,2,....m}={vy, vy, ...,

m) [5) =M, j=1.2,...1
# change the vjth column of L into 8gn. qge{l,2,...,m}

unchanged, if col, (M;) = 6,,

55, if col,, (M;) = 87.

¥ principle:
col,, (M;) = {

i=1.2.....NU‘.

J



G State feedback control — Pinning controll'4l
> Step 2):E (M) = {UMLq Eg(85,). 85 € M}, E(M) = {Ui_; Ex(M)).

> Let A ={A:68% € Ap\E(M)}.

Let | 2,,,| be the set consisting of all fixed points and
fundamental circles in the set A,n\E(M). Since the states
x(0) e {55"” : A € A} must reach a stable set Q2 ,, C {5%‘*” A e A},
we can construct the set|Q*|(2* € €2.,5) as follows: * includes
all of the fixed points in €2, and at least one point in every
fundamental circle. Hence, E({85, : u € Q*}) = {55‘*” A e A}

Let Q% = {1, (o, ..., p}.
> principle: {

unchanged, if col,, (M;) = §]

col,, . (M;) = 51, if col,,, (M;) = 53
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- @ State feedback control — Pinning controll4]
-

Proposition 1. After Steps 1) and 2), system (2) with structure ma-
trix L' becomes M-stable.

> Now, we will|give the design procedure of pinning control.
» M; alter to M. je® O={n.n..... i

_ ¥
fj(X]. ooy X ) =— F;;(UJ'.X] ..... Xn) ZUJ,'(X] ..... Xn) Dj fj(X].....Xn)
‘ = MEBijX] . . -XnMjX] -+« Xn

— MEBj (Mj * Mj)Xqy - Xp,
» Solve Mg and Mj from Mg (Mj * Mj) = Mff



G State feedback control — Pinning controll'4l

" Remark 1: [t should be noted that Mg, € Mg is just a sufﬁcient\
condition for the solvability of Mg, (M; + M;) = M.
.

J

Remark 2: Compared with (F. Li 2016), if we just need some of
feasible state feedback controllers, our method would be better, since
we do not need to discuss all the situations of the variables . By using
Mg, we can reduce the computational complexity and obtain some

\of feasible state feedback control matrices at the same time. .
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>{x(t 1) = Lu(t -}x 1) = LEOU(EX(),L = LWy gmeny
y(t) = Hx(t), [ = [L1 Lz qu]ﬁ
u(t) = w(t, x(0))x(t), L=[L L} - L]

> Givenanonempty set A € Apn, fort > 1,t € Z,, Yo (A):=A, define

1:(A) = {an . there exists an integer 1 < jz < k"

l4

such that Z Z )prp =k}, t > 2

‘S,rn ET{ 1(A)

[15] Y. Li, H. Li and W. Sun, Event-triggered control for robust set stabilization of logical control
networks, Automatica, 2018, 95: 556-560.
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‘Theorem 1. Given a nonempty set A € A,n and an initial state)
X(0) = o,n. Assume that A C T4(A). System (1) is robustly stabilizable
to A under the control , if and only if there exists a positive integer
J such that x(0) € Y1(A). y

Remark 1: From example in this study, the time-variant state feedback
control obtained Is in change every moment before some time t, which
needs many computation costs. Motivated by this, we will propose the

\event-triggered control to reduce the costs in the following. y




G State feedback control — Event-triggered controll®]

> Given a nonempty set A € A and an initial state x(0) = 4.
x(t + 1) = Bk, (x?:t(LlP(i, x(0)M; g )) <o E()
» From the arbitrariness of szog(j), x(t+ 1) forms a set, denoted by
Q(t + 1) = Col(Blk, (=%, (LY (i, X(0)M; ) ) ).

> Then, the event-triggered condition is given as

dy($2(t +1),A) > 0, (2)
where dy($2(t + 1), A) denotes the Hausdorff distance !

1 The Hausdorff distance between two nonempty set M and N is dy(M,N) =
maXqey {minpen{d(a, b)}}, where d(a, b) is the Euclidean distance between a and b.
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= @ State feedback control — Event-triggered controll
C D

»  Given ¥(0, x(0)) € Lymyn under which x(0) € 71(A), we keep

w(t,x(0)) = w(0, x(0))

until the event-triggered condition occurs.

» Denote t; = minf{t > 0 : dy($2(t + 1),A) > 0}, that is, t; is the

first triggering time,

>Llet tp = min{t >
triggering time |at which ¥(t,, x(0)) =

updated.

which implies that ¥ (t{, x(0)) = ¥(0, x(0))
should be updated. Then, we keep ¥ (t, x(0)) = ¥(t;,x(0)) until
the event-triggered condition occurs again.

> Keep this procedure going, one can obtain

dy($2(t + 1),A) > 0} be the|second

W(ty, x(0)) should be

the sequence of triggering

times:t; < tp, < ---

<t < -, W

sequence of control updates:¥ (t1, x(0)), ..

nich corresponds to a
LW (L, x(0)), . ..
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LD

LD

- 5 ) the state feedback event-triggered controller|can be designed as
follows: u(t) = ¥(t,, x(0))x(t), t € [ty, t)41) NN,
where p =0, 1,...,s,...,and tp := 0.

- 5 ‘Theorem 2. Given a nonempty set A C Ain and an initial state

X(0) = d;n. System (1) is robustly stabilizable to A under the event-
-7 | triggered condition (2) ,if A C T3(A) and x(0) € Yy(A).

J
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G State feedback control - Sampled-data controll*®]
» Objective: Design the following sampled-data state feedback

controller =y, (1) = ey (x1(17), ..., Xn(t)))
ur () = ex(x1(t7), ..., xm(f7))

=1 <1+
U (t) = epn(x1(t), ..., Xu(t))

such that BCN (1) can be stabilized to the given set S, where constant SP
T =ty — 1 € Zy, t) = It = 0,1 =0,1,... are sampling instants.
» Algebraic form:
u(t) = Ex(t), 1 <t < tj4q (6)

[16] S. Zhu, Y. Liu, J. Lou, J. Lu and F. E. Alsaadi, Sampled-data state feedback control for the set

-~ ) stabilization of Boolean control networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems,

2020, 50(4): 1580-1589.
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ntroll16]
te feedback control - Sampled-data co
tate ;
G S(t + 1) = Lu(t)x(t) = LEx(1;)x(t) .
> = Lx(t)x(t), t <t < [141 L
here 141 — =71t and L=L X E € Ly
wine I+ |
P 0))'x(t —1).
e s t— 1) = (LEx( -
' tate,
- Lixég)xi(r) acts as another initial s
t . , [—T . |
» when 7 < (t — 1) = (LEx(z)) "x(7) —
(1) = LEx(7)x o e 1o
S 1'? L to 2" matrix as [L; L»
pli
t>— [T, for 1) <1t < 11 §
. x(1) = x(17) = 0

e pon |8E
u(t) = Ex(t;) = 8m|p1 p2 -+ pands
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» Q State feedback control - Sampled-data controll*®]

D

D

D

> | Design SDSFC |4mm| Calculate the SPCIS (¢um

Find the Sampled
Point Set

\such that x(1) € S, x(2) €8, ..., x(r) € §.

4 Definition 1 (Sampled Point Set): Given a set S € Ao, the
set $* C § is called the sampled point set of BCN (1) with
SP ., if for any x(0) € S*, there exists a control sequence u

\

J

(" Definition 2 (SPCIS): The set S C S is said to be an SPCIS )
of § for BCN (1) under SDSFC, if for any x(#;) € S, there
exists a sampled-data state feedback controller (6) such thgt
x(p+1) € S, x(1+2) €S, ..., x(tj+7) = x(113-1) € S. A set S*
is called the largest SPCIS of BCN (1) under SDSFC, if it con-

\lains the largest number of elements among all SPCISs of S. /

P~




Q State feedback control - Sampled-data controll16]

/Theorem 1 The set S has an SPCIS of BCN (7) under
SDSFC (6) if and only if there exists a set § € S§* such
that for any 5;‘;{1 = §, we can find a control input 65, € Apm
guaranteeing that the following formula holds:

Col;,(Ly) € §
L,Col; (Ly) € S

\ (La)f—lc(;lfﬂ (Ly) € S. /
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State feedback control - Sampled-data controll*!
Find the largest SPCIS S* in set S*:

Step 1: Find 5’“ € §*, for any input 85, € Aom, there exists
an integer j € [1 t — 2] such that (EH}fCUI,-H(_LH) ¢ S or
(L&)I_ICDlga(La) ¢ S*. Let S| be the set of all 612%, it §1 =9,
for any initial state x(0) € § and 1 > 0, x(7) € S, so S* = S*:
otherwise go to step 2. |

Step 2: Let ST = §*\S§), find state S‘T € §7. for any input
d5n € Aopm, there exists an mtecrer j € [1,7 — 2] such that
(L&)JCOLE?(L&,) S or (Ly)™ Col;b(L ) & §7. Let S, be the
set of all such 37,'?3, if $» = 0, S* S* otherw1se go to
step 3. )

Step 3: Continue a similar process until we find the set
Sy satisfying for any 52‘; € S, there exists &5, € Apm
such that (LHVCOh (L) € S, = 1,2,...,t — 2, and
(L) 1Col; (Ly) € S;. Then S* — AR E the 1argest SPCIS.
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» Q State feedback control - Sampled-data controll*®]

< _ ~
> Denote by €2;(5*) the set of states that can be steered to $*

D in [T steps under some control sequence, that is,

D {Ql(ﬁl = {x0 € A 1 (LEx)"xo € S*} N

. Qg+1(5*) = {)Co e Ao (LExp) xo € Q[(S*)}.
D

" Theorem 2 System (1) can be globally stabilized to the set)
D S by SDSFC (6), if and only if the following two conditions
are satisfied simultaneously.

1) §* #0. N
> S 2) there exists an integer 7" such that 27(5*) = Aon. Y,




> G State feedback control - Sampled-data controll*®]

7 Mg = (5% U (2 (S)\Q1 (S%)) U+ - U (7 (S)\ Q271 (5%)).
’ » forevery 1 < i < 2" 31 < [; < T such that

- 51” € Q/J(S*)\fo_l(s*) with QO(S*) = .
-5 »Ifl,=1and §., S*_ let pi be the solution such that
- 5 Col;(Ly;) € S
L (Lp;)ColLi(Ly;) € S
: .

‘ (L},F.)T_ZCOL*(LPI.) e S
L (L)™' Coli(Ly,) € §*. Q
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> Q State feedback control - Sampled-data controll16]
’ » If [, =1 and 55;1 & 5:*‘, let p; be the solution such that

> (L,) " 'Coli(L,) e §*. 9)
> » If 2 <[; <T, let p; be the solution such that
5 (Lp)) "~ Coli(Ly,) € 1, (5¥)\ Q-1 (5%).  (20)

5 / Theorem 3 1If there exists SDSFC (6) such that system \
‘can be stabilized to the set S, p; is the solution of (8)-(10).
Then the feedback law (6) with the state feedback matrix E
> 1S given as

< E — 52‘;” [pl p2 i % a pz}-?],
> \_which globally stabilizes BCN (1) to S. -/




0 G State feedback control - Sampled-data controlll’]

0 /Theorem 1. Assume that | M| =qandq < 7, whm\
5 t is sampling period. Define M, as
> 5 8, €M

Col;(My) =14 o
™) ézn ézn € M-.
D and a set of Boolean matrices'M;,1 < 1 < 2M,1 <i <

, as

< q
. 'M; 1= My'L'Mi—y = (Mo'L)' (Mo).

> \Then[ (M) = Ur, ¢T[Rows ("M,)] holds. /

D [17] L. Sun, J. Lu, J. Lou and L. Li, Set stabilization of Boolean networks via sampled-data control, Asian
Journal of Control, 2019, 21(6): 2685-2690.
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» Q State feedback control - Sampled-data controlli7]

D

D

D

ﬁleorem 2. Assume that (M| =qandq > t, W”lh
t is sampling period and kt < q < (k + 1)z, k € Zso.
Define My, as

> j J

{ bz[kﬂm’ 62{k+1m S M}’
~() _}
b 6 E M}J,

2[k+1]n ) 2{k+lm
and a collection of Boolean matrices 'M;,1 < | <
20+bm 1 << 7, as

IME L= },GIEIME_l = (M ,[}If/)fM},g.

)

2(k+1)m

Then, it holds that I.(M) C {x(O)INfzox(ir) € K} where
K=UL,  ¢"[Rowg(M,)] /
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0 G State feedback control - Sampled-data controlll’]

5

5

5

Let I} ;= I.M). Choose any nonempty set
[, <€ E.(I.M)\lo. Then choose any nonempty
set I, C R (I'y) [E2:T(M)\T o JT7)].  For
any | € Zsg, choose any nonempty set [}, C

R (Canye) B LM Tl )

Theorem 3. For any given subset M, system (1) can be
M-stabilizable under SDSFC (6) if and only if

(I). The set I.(M) is nonempty.

_ (1I). There exists an N, such that Ufiﬂ [, = Ao, y




) G State feedback control - Sampled-data controllt’]
D Algorithm 1.

Step 1. Choose one of the complete families of reachable

0 sets. Without loss of generality, let the complete
family of reachable sets be { Iy, Iy, ..., I'n:}. If

0 there is no complete family of reachable sets,
then E does not exist.

> Step 2. For any initial state x, = b‘fn,u = 1,2, ....2",

5 since Uio ['i: = Apmoand I'iy C R.(Ii- 1)),
i =1, ...,N, onecan find a unique integer 0 <

< k, < N such that ), € [y, If 65, € I(M),
finding all possible integers 1 < p, < 2™, such

< that L5465, € T.(M), (L85%)%8h, € I.(M), ...,
(L&) 8k € (M) If 84 & I.(M), finding

5 all possible integers 1 < p, < 2™, such that
(Loyn) ok, € Tk —1ye-

D) Step 3. The feedback matrix E = om|py, ... .pon]can be

obtained.



G Output feedback control design techniquel!®]
> x(t+1) = Fx(t)u(t) (3a)
y(t) = Hx(1) (3b)

/ Definition 1: For a given set M C Ay, system (3) is said to\
be M-stabilizable by means of time-invariant output feedback
if there exists a matrix Ky € L x p such that under the output
feedback control law u(f) = Kyy(¢), r € N, for any initial
state x(0) € Ay, one can find an integer v € N such that

\ x(t; x0),u) e M Vt > r. /

[18] R. Liu, J. Lu, W. Zheng and J. Kurth, Output feedback control for set of Boolean control networks,
IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2019.2928028.



Q Output feedback control design techniquelt®!

4 Definition 2. A set § € Ay 1is called an OFCI subset\
of BCN (3) if, for any state xo € S, there exists a control
sequence u = {u(t)};eny such that x(r; xo,u) € S and u
Qatisﬁes the output feedback law u(r) = Kyy(z), t € N. y

> Design the output Calculate the Calculate the
feedback stabilizers ¢ OFCI subsets \qmm  SFEC] sets
(Spanning In-Tree (Algorithms 2 (Algorithm 1)
Method, Algorithm4) and 3)
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» Q Output feedback control design techniquel!8]
7 ¢ Calculate the SFCI sets
> » F=[F---FyN]

> Algorithm 1 This Algorithm Is Used to Obtain the Largest
SECI Subset of M

D For any c)‘% e M, 5o =M, Q =90, and iterate:

D () = {cﬁj:}h?ol(FA) ﬂ S; =, for every 5;} e S},

< Siv1 = $;\0.

D :
Terminate when S, = §;.

.
| Proposition 1. The set S, obtained in Algorithm 1 is the
largest SFCI subset of M.

|




@ Output feedback control design techniquel!8]

& Calculate the OFCI sets

» Without loss of generality, we assume that S, = {JL,
...,0yn}, Where 7 =[S, [< T. Let
P(l) — {(5}:/[|C01j(FE) € Sw, ] e [1, M]}
> Define:
Y = {K'|K' =[Sy - Oy Omxv—o)] € Buxn, 6y € P@), i € [1,7]}
[ =|Y|=T1_,|P@i)< M. For S,, construct
{X(T + 1) =[F1 - Fr Onxvpr—canlx(@)u(r)

u(t) = K'x(1) 0



)

_—

& Calculate the OFCI sets
> x(1+1) =

where L = [colp, (F71) ---

> Let

Lx(1)

L =

Fy -
Fp -
colp, (F1) ---

> G Output feedback control design techniquel!8]
)

Fr Ons(Nm—zpny1x(8)u(t)
Fr Onsevpr—can 1x (@) K'x (1)

CO‘lAr (Ff) ONx(N—r)]x(r)

cola, (F7) Onx(N—2)] € Bnxn

(8)



-

.

™

M

0

M

0

N

-

0

» Q Output feedback control design techniquel!8]
% Calculate the OFCI sets

D

D

Algorithm 2 This Algorithm Is Used to Calculate All Ele-

mentary Cycles for System (8)

Algorithm 3 Algorithm Is Presented to Calculate the Neces-

Associated K

Input: S,. T
Output: (M', K)
I: for all K" in T do

2:  construct system (8) corresponding to K’
calculate C of system (8) through Algorithm 2
suppose C = {Cy,...,Cy}. where 5 = |C|

3
4
5. for all possible combinations of Cy, ...
6 denote by M’ the set consisting of all the states in

the combination of Cy,...,C,
f o
8: construct matrix K as
col; (K",
col; (K) = [ (K°)
9: output (M’, K)
10: end if
11:  end for

12: end for

,Cy do

Vol e M’

otherwise

Input: L', S,
sary Output Feedback Compatible Subsets of S,, (M) and the Output: C

I: initialize length variable / = 1, matrix L1 = L', set C' = @,

if M’ is output feedback compatible under K’ then .

11:
12:
13:
14:
15:
16:
s

2:
’}.
4
52
6:
7
8
9:

set §'= Sp = (0Fs +s <105}
while L; # 0;, do

C' = {o% € S'|(L)j,j #0,j €[l, 7]}

if C’ £ () then
g — S!\ﬂ:f
for all (}“}L e C' do
set row j(Ly) = 01,
end for
while C" # ¢ do

find a cb“‘r e C'. and let 5"] = ci;.f;,

'mltld]lZE set C = {d‘ }
if [ > 2 then
for k=2:1 do
Stk = Lok
C = CUioy)
end for
end if

18: output C
19: C' =C\C
20: end while

21:  end if

22: Ly =Ll

23: I=1+1

24: end while




@ Output feedback control design techniquel!8]

¢ Design the output feedback stabilizers
> Let W= [V coli(Fy) --- VM, col;(Fy)]| be the adjacency matrix

=1

of G and G Is the associated digraph of system (3).
» LetW =9o(W,S), §=[1, N]\S = M’

Wi, 0 Wy 0, 0
(W, S) = : : : : a digraph G’
Wuf,vl WUT,UT 0 » g p
[Rowg(W)], ... [Rowg(W)] 0

» For a matrix D € Lyxn, an integer i € [1, N], we define

P'(i, D) = {d},|col;(D) = col;(F;), Vjell, M]).
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Q Output feedbac
¢ Design the out

Algorithm 6 This Algorithm Calculates All Output Feedback
Matrices Ky

Input: (M, K)

Output: K, :2“
1: for all (M’, K) do 14
2:  suppose [1, N\M' = {o1,...,0:}, = = |[1, N\M'| 15
3. let W =¢p(W,[l, N\M) 6
4:  associate digraph G" with matrix W’ .
5 setrootr =71 + 1 3.
6:  use Algorithm 5 to obtain all the spanning in-trees 7} (9.
in digraph G’ 20:
7. for each T/ in G’ do ’1:
8: denote the adjacency matrix of T,/ by W, ’.
0: calculate all the matrices Wy < W such that
colj(Wr) = Fj x colj(K), V] € M, Wr € 73,
Lyxn and o (Wr,[1, N]\.Mf") — Wi:" 24:
10: for each Wr do ’5.

11:

K control design techniquelts]

nut feedback stabilizers

for all I/ € [1, N] do

sl __ ol
L)P — HC) 7

if / € M’ then
St = Si (Wcoly(K)}

end if

if ' € [1, N\ M’ then
S=S NP I, Wr)

end if
end for

if S#0V,[=1,...,P then

set Ky =
[ €[l, P]
end if
end for
end for

initialize a series of sets S, = Ay, [=1,..., P 26: end for

[x1, .

... kpl, where &k

€ ‘S} ’
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@ Set Stabilization—> Applications
Output regulation!t®]

Output tracking!?’]

Synchronization!?1-24

[19] H. Li, L. Xie and Y. Wang, Output regulation of Boolean control networks, IEEE Transactions on Automatic
Control, 2017, 62(6): 2993-2998.

[20] H. Li, Y. Wang and L. Xie, Output tracking control of Boolean control networks via state feedback: Constant
reference signal case, Automatica, 2015, 59: 54-59.

[21] Y. Liu, L. Sun, J. Lu and J. Liang, Feedback controller design for the synchronization of Boolean control
networks, IEEE Transactions on Neural Networks & Learning Systems, 2017, 27(9): 1991-1996.

[22] F. Li, Pinning control design for the synchronization of two coupled Boolean networks, IEEE Transactions on
Circuits & Systems 11: Express Briefs, 2016, 63(3): 309-313.

[23] Y. Liu, L. Tong, J. Lou, J. Lu and J. Cao, Sampled-data control for the synchronization of Boolean control
networks, IEEE Transactions on Cybernetics, 2019, 49(2). 726-732.

[24] J. Yang, J. Lu, L. Li, Y. Liu, Z. Wang and F. E. Alsaadi, Event-triggered control for the synchronization of
Boolean control networks, Nonlinear Dynamics, 2019, 96: 1335-1344.



— G Applications — Output regulationl*®]

> (it +1) = (X)), U®®)), » The output regulation problem is to
=D ro(t + 1) = f2( X (1), U(1)), design the following state feedback
L (5)  control:
v (t+1) = (X (1), U(1)): (wi(t) = g1 (X(1), X (1)),
i L Y (t) = h; X)), J=1. D, < : | | | (7)
=D ( @(t +1) = Lﬁ(g(t))? \ u,,,.f’(t) = g, (X (1), )?(t))
5 2 t+1) = fo(X(1)), (6)  under which there exists an integer
= | - 7> 0 such that
Ty (E+1) = fuy (X(1)); Y (t; Xo, U) = ¥ (t; Xo)
-D L Yit) =N (X(#), j=1.---.p.  holdsfor vi>r Vv X, €D andV Xy € D™.

— [19] H. Li, L. Xie and Y. Wang, Output regulation of Boolean control networks, IEEE Transactions on Automatic
Control, 2017, 62(6): 2993-2998.
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v(t)z(t) = R'z(0)z(0)  (11)
R — LGW[Qn52?1.+711]A’{T’2n
(Iynsny @ L)(Ion @ M, on1)

= G Applications — Output regulationl*®]
)

y(t) = y(t) = Qu(t — 1)z(t — 1)
= QR""2(0)Z(0)
Q = HLGW g gusny) M, 20 — HLE]]
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1S solvable, if
. roblem is so
ut regulation p ntn; and
* Theorem 1: The (i);ltti logical matrix G € Lom yon+ni
' Ic CXI!
anqn()tglg)érlfl tieT < 2"7" such that
an i =

QR =0

/
o




G Applications — Output regulationl?®]
& Control design

>{ 2(t+ 1) = Lu(t)2(t), L= L(Iymin @ L)

w(t) = Hz(t), H = H(Iy» @ H)
where z(t) = x(t) x 2(t), w(t) = y(t) x y(t)
> Define "
0, = {"2n+n1 Coly(F) = 6, x 5gp}. o=|]o;
j=1

» The output regulation control design problem becomes how to
stabilize the augmented system to a nonempty set § C (0.
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— G Applications — Output regulationl*®]

=D .
& Control design

e Step 1: Calculate Ry (S) and R7(S),k = 1,--- .7

e Step 2: For each i = 1,2,....2"""1  calculate the

unique integer 1 < k; < 7 such that 65,...., € R, (S).
Find an integer 1 < v; < 2™ such that

L x Ogin X 83iy €8, ki =1;

L X 0yt X 08,00, € Riy—1(S5), 2<k; < 7.

e Step 3: The state feedback gain matrix can be designed

ds
G — 52?71 {Ul UQ R '?,}2?1—}—711}.
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Definition of controllability
Current approaches

& Controllability under different controls
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5 @ Definition

[0 Controllability[Akutsu et al. 2007, Cheng & Qi 2008] Free inputs

) Given xg, X, € D". The Boolean
control network (10) is said to be controllable from xg to x, (by free
Boolean sequence) at the s steps, if we can find control u(t) € D™,

Input networks

Sampled-data inputs

D) t = 0,1,...,s — 1, such that the state x}'  A;(0) = Xxo and

X Ai(S) =Xe,i=1,....n ALt 4+ 1) = fiAr(0), ... Ag(0). ug (0), ..., Uy (D))

: : . : : (10)
5 [  Fixed-time controllability[Laschov&Margaliot 2012] At +1) = Fo(AL(E). - ALE) Uy (), U ().
The BCN is k fixed-time controllable if for

D) any a,b € ({edn, - .., e2,} there exists a control u € U¥ that x(t + 1) = Lu(O)x(t) = L, (Ox(t). x € D"

steers the BCN from x(0) = a to x(k) = b,
‘H,f

Corollary 3. If a BCN is k fixed-time controllable, then it is p fixed-
time controllable for any p > k.

Cheng D, Qi H. Controllability and observability of Boolean control networks[J]. Automatica, 2009, 45(7): 1659-1667.
Laschov D, Margaliot M. Controllability of Boolean control networks via the Perron—Frobenius theory[J]. Automatica, 2012, 48(6): 1218-1223.
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5

[] input-state transfer matrix[Cheng & Qi 2008]

Definition 8. For a fixed G the input-state transfer matrix ©°

Input networks is defined as follows: for any ug € D™ and any x(0) = xo € D", we

— 6
(1) The controls are logical variables satisfying certain logical rule, Navex(t) = @~ (t, 0)ugxo.t > 0.
called the input network, as

It is obvious that @°(t, 0) depends on G. In the following we will
find the input-state transfer matrix. Since

: (12)
Up(t+ 1) = gn(uqi(t), ..., uy(t)). X| = LuOX?* o
we have ®@“(1, 0) = L. Next, we calculate x, = x(2), which is
X = Luixy = LGuglugxp = LG(Ihm ® L) DpligXy.,
Algebraic form where &, is defined as
u(t +1) = Gu(t), ueD™ (13)

M, = 484[1, 4] is defined in Cheng (2007), and ® is the Kronecker
product. Then we have ®%(2.0) = LG(n ® L)®,. Using
mathematical induction, it is easy to prove that

Theorem 9. Consider system (10) with control (12), equivalently,

G 1 2 -3
(13), where G is fixed. X4 is s Step reachable from Xo, iff O°(t,0) = LG (I;m ® LG'™*)(Iam @ LG'™7) - -

Uztrfl)m &® L) ([z(rfz)m & dﬁ”.r)

(Iztr—B)m & ‘;Dm) Tt (I2m & (pm)@m- (23)
where and hereafter Col is the column set.

- o TTTTTTTTTTTTTTTTTTTTT I I

Cheng D, Qi H. Controllability and observability of Boolean control networks[J]. Automatica, 2009, 45(7): 1659-1667.
Cheng D, Semi-tensor product of matrices and its applications-A survey[J]. In: Proc. ICCM 2007, 3 : 641-668.

I
1
1
I
1
1
1
I
1
1
1
I
1 m
1 =
I
1
1
1
I
1
1
e I
Xg € Col { @ (s, 0)Wpan amiXo | . (24) .
1
I
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5

5

D 1: input-state transfer matrix[Cheng & Qi 2008]

Free sequences

Define L = LW{yn omj, then

x(t + 1) = Ix(H)u(t). (32)
Using it repetitively yields

X(s) =E5x(0)u(0)u(1)---u(s— 1). (33)

Definition 23. System (10) is said to be globally reachable from
Xo (by controls of free length Boolean sequence) if R(xg) = D".
System (10) is called globally controllable (by controls of free
length Boolean sequence) if R(xg) = D", Vxy € D".

Theorem 18. X, is reachable from x,, at the sth time step by controls
of Boolean sequences of length s, iff

X, € Col{xy}. (34)
Corollary 20. x, is reachable from X, iff
Cx} ~
x4 € Col IUL‘XU}. (37)
i=1

Proposition 21. (1) The reachable set, R(Xy), is a subset of Col{L};
(2) Assume that k* is the smallest k > 0, such that
Col{L**'x,} C Col { Esxo‘ s=1,2....,k¢}.

then the reachable set

k*
R(xo) = Col IUE"XO}. (38)
=il

Cheng D, Qi H. Controllability and observability of Boolean control networks[J]. Automatica, 2009, 45(7): 1659-1667.
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5

O 2. input-state incidence matrix [zhao et al., scl, 2011]

X(t+ 1) = Lu(t)x(t)
y(t) = Hx(t),

follows that the input-state incidence matrix of system (4) is

L
L

g = glu) = j
L

—‘ 2" € Bom+ny ymin, (10)

where the first block corresponds to u(t + 1) = 521m. the second
block corresponds tou(t + 1) = ng, and so on.

is
g = 1ym x Jo, where Jo = L.

Moreover, the basic block of §° is

9o =1Lx (Tom x L)*"".

ﬁorem 3.1. Consider system (4). Assume that the (i, j)-th eiem
of the s-th power of its input-state incidence matrix, §;; = c. Then
there are c¢ paths from point P; reach P; at s-th step with proper
controls.

Proof. We prove it by mathematical induction. When s = 1 the
conclusion follows from the definition of input-state incidence
matrix.

Now assume ;. is the number of the paths from P; to P; at the
s-th step. Since a path from P; to P; at the (s + 1)-th step can always
be considered as a path from P; to Py at the s-th step and then from

2m+n

Corollary 2.4. Consider system (4). Its input-state incidence matrix

C= Z %kﬁj,
k=1

Py, to P; at one step. It can be calculated as
wch is exactly 5!, O /

Proposition 2.5.
+1
8 = ML,

11
(1) where

2m
(12) M=) Blk().
i=1

Zhao'Y, et al,, Input-state incidence matrix of Boolean control networks and its applications[J]. Systems & Control Letters, 2010, 59(12): 767-774.
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O 2: input-state incidence matrix [zhao et al., scl, 2011]

Theorem 3.3. Consider system (4) with its input-state incidence
matrix .

1. x(s) = &%, is reachable from x(0) = Sén at s-th step, iff

zm
> (BIki(F5))es = (M°)y; > 0. (15)

i=1

2. x = &3, is reachable from x(0) = Sgn, iff

2m+n 2m 2m+n
Y2 B(F)a = ) (M) > 0. (16)
s=1 i=1 s=1

3. The system is controllable at x(0) = Sén, iff
2m+n 2m 2m+n
> > colBlki(g9)] = Y Coli(M*) > 0. (17)
s=1 i=1 s=1

4. The system is controllable, iff
2m+n oim 2m+n
> ) Blki(g5) = > M’ =>o0. (18)
s=1 i=1 s=1

Note thatletA € M,,«,. The inequality A > 0 means all the entries
of A are positive, i.e, a;; > 0, Vi, J.

Algorithm 4.1. Assume the (i, j)-th element of the controllability

Assume xg = &;n andx; = Sgn.We give the following algm\
matrix, ¢;; > 0.

e Step 1: Find the smallest s, such that in the block decomposed
form

g5 = [Blki(%})

(where BIK;(g3) € Monon ) there exists a block, say, BIK, ( ff'}),
which has its (i, j)-element

[BIK, (9515 > 0. (23)

Setu(0) = 8%n and x(s) = Sgn. If s = 1, stop. Else, go to the next
step.
e Step 2: Find k, B, such that

[Blks(do)i > 0;  [Blky (g5 )i > 0.

Setu(s — 1) = 8%, and x(s — 1) = &%,
e Step 3: If s — 1 = 1, stop. Else, set s = s — 1, and i = k (that is,
replace s by s — 1 and replace i by k), and go back to Step 2.

Blkz () Blkym (5,18)] . (22)

€ R(xqg) the control sequence

Proposition 4.2. As long as Xy

algorithm.

Zhao'Y, et al,, Input-state incidence matrix of Boolean control networks and its applications[J]. Systems & Control Letters, 2010, 59(12): 767-774.
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> @ Current approaches

~ O 3 Perron-Frobenius theory [Laschov and Margaliot, Auto, 2012]

D

-
/ xX(k+ 1) = Lxu(k) xx(k). @) lﬁ

a,b e {e;n. ...,egﬁ} and a set of undesirable states C, let I(k;
a, b, C)denote the number of different control sequences\that steer
the BCN (3) from x(0) = a tox(k) = b, while avoiding C (i.e. x(i) &€
Cfori=0,1,..., k).

Let |C]| denote the cardinality of C. Let 1, denote the column
vector of length r with all entries equal to 1, and let Q = L x 1ym.

Theorem 2. Suppose that the statesin C are e';n, s e;‘fn where z =
|C|. Let Qc be the matrix obtained from Q by substituting zeros in the
rows and columns with indexes iy, ....1,. Then
wa, b,C) = b (Qc)a. (7)
Proof. By induction on k. Consider the case k = 1. Lets =

I(1;a,b,C). Ifa € Corb € C, then clearly s = 0. Since in Q¢
either the row corresponding to b or the column corresponding
to a is zero, b' Qca = 0. So in this case, [(1; a, b, C) = b"Qca. Now
suppose thata ¢ Cand b & C. Let w', ..., w® be the different
control sequences steering (3) from x(0) = atox(1) = b, i.e.

b=Lxw () xa, ie{l,...,s}. (8)

; Since each control value is a column of Im, there existt = 2M —s

different control sequences v/ € U such that

b#£Lwv(0)xa, jef{l,..., t} (9)

Note that the term on the right-hand side of this inequality must
be a column of I3n. Therefore, multiplying (8) and (9) from the left
by b" yields

1=bLxw©xa ie{l,...,s}
0=bLxv(0)xa, je({l,..., t}.

Since each of the control values is a different column of Irm,
summing up this set of s + t = 2™ equations yields

s=b" kL Imxa=h'Qa.

We conclude that whena ¢ Cand b € C,I(1;a,b,C) = b'Qa.
Since in this case b"Qa = b'Qca, I(1;a,b,C) = b'Qca. This
proves (7) for k = 1. For the induction step, consider

b (Qc)**1a = (ehn)(Qc) el
= ((Qo)*Qo)ji

2[?
= > ((Q)")jp(Qo)pi

p=1

2" _
= > (@) ((Q0)") (@) Qc .
p=1

Laschov D, Margaliot M. Controllability of Boolean control networks via the Perron—Frobenius theory[J]. Automatica, 2012, 48(6): 1218-1223.
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> @ Current approaches

) O 3: perron—Frobenius theory [Laschov and Margaliot, Auto, 2012]

5

r . ; Sl
i Definition 3. A matrix M € R™", withn > 2, is said to be re-
ducible if there exists a permutation matrix P € {0, 1}"*" and an
integerr with 1 <r <n — 1 such that

B C
PTMP:|:O D] (11)

|
|
|
|
|
|
|
|
: where B € R™*", D € R0 ¢ ¢ R™*("=" apd 0 € RM*" s
I a zero matrix. A matrix is said to be irreducible if it is not reducible.
|

: Theorem 3 (Berman & Plemmons 1987, Ch. 2). Suppose that A €
I R"™" is nonnegative. Then A is irreducible if and only if forany i, j €
i {1, ..., n} there exists an integer k > 1 such that (A"),-J- > O.\

| Theorem 6 (Horn & Johnson 1985, Ch. 8). A nonnegative matrix
: A € R"™" is called primitive if there exists an integer j > 1
1 such that A’ > 0. In this case, the smallest such j is called the
: index of primitivity of A, denoted y(A).If A is primitive, then
L v(A) <n®—2n+2.

Y

=

controllability

Theorem 4. The BCN (3) is controllable if and only if Qc is
irreducible.

Fixed-time controllability

/Theorem 5. The BCN (3) is k fixed-time controllable if and onb
if (Qc)* > 0.

Corollary 2. If the matrix Qc is primitive, then
y(Qc) < ¢* —2q+2 (12)
and the BCN (3) is y((i() fixed-time controllable. If (i( is not

Qn’mitive, then the BCN is not k fixed-time controllable for any k. /

Laschov D, Margaliot M. Controllability of Boolean control networks via the Perron—Frobenius theory[J]. Automatica, 2012, 48(6): 1218-1223.

Berman A, Plemmons R. J. Nonnegative matrices in the mathematical sciences, SIAM, 1987.
Horn R. A, Johnson C. R. Matrix analysis, Cambridge University Press,1985.
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> @ Current approaches

[ complexity reduction of controllability matrix

the controllability of Boolean control
networks. IEEE TAC, 2018.

-

Liang J, Chen H, et al. An improved criterion
for controllability of Boolean control
networks. IEEE TAC, 2017.

-

Zhao 'Y, et al. Input-state incidence matrix of
0(2* Boolean control networks and its
applications. SCL, 2010.

v U v v U v v U U

Zhu Q Liu'Y, Lu, JQ, et al. Further results on « [ Tarjan Algorithm&

Deep first search

]

« [ Warshall algorithm ]
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@ Controllability under different controls

[[] Mixed control strategy[Cheng et al. IEEE CSL, 2018]

» u(t+ 1) = Gu(r) 21)
xX(t+ 1) = Lv(H)u(r)x(r).

The system considered in this section is

(X1 + 1) = fi (@), O3 (0, up (D),
vi(0), ..., vg(1)),
X+ 1) =fxi(0),..... (1) up (1), ..., ur(1),
4 Vi, ..., vg(1)), (17)
Xp(t+ 1) =fulxi (), ... (D3 ur (1), ..., (),
vi(),..., vg(1)),
where vJ,-(r)._j = 1,...,q, are free inputs and u;(1), i =
I,...,r, are networked inputs, generated by the following
input network
ur(t+ 1) = gi(uy (1), ..., up(1))
wr (t+ 1) = gauy (1), . .., up(1))
: (18)
up(t + 1) = gr(ui (1), ..., ur(t)),
where f; : D"V — D i =1,..., nand g : D" — D,
j=1,...,r are Boolean functions.

Consider w(r) = u(t)x(f) as new state variables, then (21)
becomes

w(r+ 1) = ®v(H)w(r), (22)
where ® = [G(13, ® Irr ® 13,)] * L.

Theorem 6: System (17) with mixed controls is controllable
if and only if the combined system (22) is set controllable with

P =y = 2"}, (23)

) - /

Cheng D, Li C, Zhang X, et al. Controllability of Boolean networks via mixed controls[J]. IEEE Control Systems Letters, 2018, 2(2): 254-259.
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> @ Controllability under different controls

D

Control inputs

[] Pinning control [Lu J.Q et al. [EEE TAC, 2016] are only injected

where Ly = Lo(Ien @11 ) and M = Ly * Lo.

(21(t+1) = fi(za(t), ... 20 (t), us(t)) on a fraction of
Bo(t+1) = fr (@1(8), - 2 (1), (1) @
Trgp1(t+1) = frya (21(F), ..., 20(t))
\ 2n(t+ 1) = fo (21(t),...,2,(1))
E Ly = (@71 F}) x(Z) [(Tan © Wign ) ®,]. w(t+1) lex(t)u(t)L_lﬂ(t) i
: {:1:1(1‘ + 1) = Lia(t) xI_; u;(t) = Lyz(t)u(t) Lox(t)u(t) :
i x®(t +1) = Lox(t) » 2 Maz(t)u(t) |
| |

/ Let A7 — MWiar g annd 7 — NI 1% Theorem 4: _Co'nsider systen} (2). ) B \
| * 2(k) = 63 is reachable from 2(0) = d%, at the k-th step if and
Theorem 2: For system (2), consider two given states a = d4x, only if (1'?\7k)j1 > 0.

b= 6%, and a given time step k. Let N (k;a.b) denote the number
of different control sequences that steer the BCNs (2) from 2(0) = «a
to (k) = b with k steps. Then

* 03n is reachable from x(0) = 4%, if and only if there exists an
integer k such that Zizl(iﬂYs)ji > 0.

N (ke ab) — BT (X7 . Theorem 5: The BCNs with pinning controllers (2) is controllable
K N(k; a,b) = b7 (M)"a. A0 it and only if M is irreducible. /

Lu J, Zhong J, Huang C, et al. On pinning controllability of Boolean control networks. IEEE TAC, 2016, 61(6): 1658-1663.



-

.

™

M

0

M

0

N

-

0

Controllability under different controls
[] Sampled-data control [Zhu QX. et al. [EEE TCNS, 2019
-'Fa:"[f' + l] = fi{ul(t}'- - -y U “:}'. I ﬁ:)t - -3y {f}}

tl = l'l',l € N are
sampling instants, and
t;.1 — t; = T is constant

t=12,...,n (1) sampling period
yi(t) = hj(z(t),...,z.(t),j=1,2,....p
up (t) = up(ty). tr <t < tjp1,k=1.2,....m — x(ty +1) ="Lu(ty)z(ty)

where 'L := [(L1)", (La)", ..., (Ly )']. Let

M

= {u(0),u(1) M= _Z;@(Li)t (6)

In addition, the set of all sampled-data control sequences 7* = —_— - M=PMxg (M)

_uﬁlnwu@ﬂp”,ﬂﬁ—nkt>05

{w(0),w(1),...,u(7),...,u(27),....u(t — 1)} is denoted by 0 acT P | )
Ht~f>0' Pr=1 mod 7, oy = ——.
_____________________________________ 1
g Theorem 1: Consider SDBCN (1), (0) = .
1) x. = &% is reachable from xy = &, at the sth time ste
< 1 N N p
M| = D=8 M. 5>0, if and only if (M);; = 1.
I, s = 2) x. = &% is reachable from x5 = &% if and only if
& M} N y
Nt =1.
s T (k) tJ »
(A = 21T M), s>0, 3y SDBCN (1) is said to be controllable at zo = o, if and
I, s=0. only if Col; (|V7M]) > 0.
4) SDBCN (1) is said to be controllable if and only if

k INT M| > 0.

Zhu Q Liu Y, Lu J, et al. Controllability and observability of Boolean control networks via sampled-data control. [EEE CNS, 2018, 6(4): 1291-1301.
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> @ Several special kinds of BNs

D

D

D

Switched Boolean
network

Boolean networks
with time delays

vy
P ¢

Conjunctive Boolean
Networks

Large-scale Boolean
Networks



S

@ Switched Boolean networks (SBNS)

While typical Boolean networks are described by purely discrete dynamics, the
dynamics of gene regulatory networks in practice are often governed by different
switching models.

« A practical example is the cell’s growth and division in a eukaryotic cell, which are
usually described as a sequence of four processes triggered by a set of conditions or
events. In this case, the cell differentiation can be viewed as a switched system.

* Another typical example is the genetic switch in the bacteriophage A, which contains
two distinct models, that is, lysis and lysogeny.

Thus, It is necessary for us to investigate switched Boolean control networks (BCNSs).
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Switched Boolean network

@ Controllability
@ Stability and stabilization



5 @ On controllability of switched Boolean networks

r

£ D

X Li H and Wang Y [1] first proposed the

5 necessity of studying switched Boolean Li H and Wang Y [3] first studied the
networks and studied the controllability of controllability of switched Boolean
switched Boolean control networks control networks with state and input

l constraints. l

£ O I !
Chen H and Sun J [2] first proposed state-dependent switched Zhang Q , et al, [4] first studied set
_— Boolean control network and studied the output controllability controllability ~ for switched Boolean
of state-dependent switched Boolean control networks. control networks.
LD
[1] Li H and Wang Y. On reachability and controllability of switched Boolean control networks. Automatica, 2012, 48: 2917-2922.
[2] Chen H and Sun J. Output controllability and optimal output control of state-dependent switched Boolean control networks. Automatica, 2014, 50(7): 1929-1934.

0

‘J [3] Li H and Wang Y. Controllability analysis and control design for switched Boolean networks with state and input constraints. SIAM Journal on Control and Optimization, 2015, 53(5): 2955-2979.
[4] Zzhang Q, Feng J, Pan J, et al. Set controllability for switched Boolean control networks. Neurocomputing, 2019, 359: 476-482.
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@ Representative results U]
Model (free-form switching signals)

Consider a switched BCN with n nodes, m control inputs and w sub-networks as

o (t)

X0t +1)=f ""(x1(t), ..., x0 (), uqr(t), ....um(t)), (3

kxn(t + 1) :fng(t)(xl(t)a JRIEE Xn(t)w u'l(t)a R Um(t))w

where 0 : N - W ={1,2,...,w} Is the switching signal. Given a finite-time switching signal o :
{0,1,...,1} - W with [ a given positive integer, set o(k) = i,k = 0,1,...,1. Then, we obtain the
following switching sequence:  := {(0, i,), (1,i,),..., (L,i)}.

[1] Li H and Wang Y. On reachability and controllability of switched Boolean control networks. Automatica, 2012, 48: 2917-

) 20922,
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D Main results

(switching-input-state incidence matrix)
<
Using the vector form of logical variables x; and u;, and setting
>, x =i, x;and u =t u,, the SBN can be expressed as

x(t + 1) = Lypu(t)x(t), (6)

D Proposition 1. Consider the switched BCN (3) with its algebraic
form (6). The switching-input-state incidence matrix of the sys-
D tem (3) can be given as
) L
L
4 = ) L 2™ c £w2m+nxwzm+n. (9)
D) .
_L_
~

where L = [Ly...L,] € Lonyyom+n.

D [1] Li H and Wang Y. On reachability and controllability of switched Boolean control networks. Automatica, 2012, 48: 2917-
2922.
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D @ Representative results [

5 Main results

(switching-input-state incidence matrix)
<
<

Proposition 2. 4 givenin(9)is arow-periodic matrix with period 2",

) |and 8 = 1,,mL. In addition, §',1 € Z is also a row-periodic matrix

with period 2", and its basic block is

2m+n

l =17 2" xw
J |8l =ML e R

where M = Z:‘f{n Blk;(L), and L = [L; --- L,].

(11)

5

5

Theorem 2. Consider the switched BCN (3) with its switching-input-
state incidence matrix 4 given in (9). Then,

(1) x(I) = &% is reachable from x(0) = SJ;H at the I-th step, if and
only if

w2™m

Blk:(8)) = (M') = o, (13)
Z( O)aj ( )a'

= j
where 8} = M- M = Zl“flm Blki(L) andL = [Ly - - - Ly]:
(2) x = &%, is reachable from x(0) = 3J2n, if and only if

w2m-n

> (M) >0 (14)

I=1
(3) the system is controllable at x(0) = Sén. if and only if

w2m+n

> Col(M') > 0; (15)

I=1
(4) the system is controllable, if and only if

w2m+n

S Mo (16)
=1

[1] Li H and Wang Y. On reachability and controllability of switched Boolean control networks. Automatica, 2012, 48: 2917-2922.




@ Representative results ]
Model (state-feedback switching signals)

Consider a state-dependent switched Boolean control network

(X1 + D) =@, (. u (), (D), [x@ D) = xue), g
o(t) (t) = Hx(t) (%)
XZ(t—I_]) :fz (X1(t),...,Xn(t),ll'l(t),...,Um(t)), y '

) 2
: (2) (U (t+ 1) = gr(ug(t), ua(t), ..., un(t)),
U (t + 1) = g (uq(t), uz(t), ..., up(t)),

(6)

yi(t) = hj(x1(0), ..., xa(0)). j=T1,2,....p(p <n), Um(t+ 1) = g (11 (6), 42(0), ... U (1)),

where x;(t) € D,i = 1,2,...,n are Boolean variables, u;(t) € D,i = 1,2,...,m, are control inputs. o :
N->W ={1,2,...,w} Is the state-dependent switching signal. Using the properties of the semi-tensor
product, we have

o(t) = Qx(t),

where Q € L, «on.

[2] Chen H and Sun J. Output controllability and optimal output control of state-dependent switched Boolean control
networks. Automatica, 2014, 50(7): 1929-1934.
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Main results

Consider the state-dependent switched Boolean networks with
controls inputs u(t + 1) = Gu(t)

o Theorem 3.1. Considering the state-dependent switched Boolean
Definition _ _ networks (5) with controls (6), we have the following results:
The system is said to be output-controllable
at the initial state x(0), if for any destination

output state y, € A,p, one can always find T
and a control sequence u(0),u(1),...,u(T — ... if and only if Col,(V,) > 0,

1), under which y(T) = Yr The system Is Sa'_d (iii) The system (5) is s-output-controllable, if and only if Vs > 0.
to be output-controllable, if the system s (iv) The system (5) is output-controllable at the initial state x(0) =
output-controllable at any x(0) € Ayn. 8, if and only if there exists an integer N, such that Colj(zg:]
V,) > 0.
(v) The system (5)is output-controllable, if and only if there exists an
integer N, such that (Zg:1 V,) > 0.

(1) y(s) = (Sép is s-output-reachable from the initial state x(0) =
8, if and only if (Vg);; > 0.
(ii) The system (5)is s-output-controllable at the initial state x(0) =

[2] Chen H and Sun J. Output controllability and optimal output control of state-dependent switched Boolean control
networks. Automatica, 2014, 50(7): 1929-1934.
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Main results

Consider the state-dependent switched Boolean networks (5) with a free control sequence
(Setu(t) = u (Huy,(t) --- um(t). Thenu(t) e Dm,t =1,2,...,is a designed control sequence)

Theorem 3.2. Considering the state-dependent switched Boolean
networks (5) with a free control sequence, we have the following re-
sults:

(1) y(s) = 5;}, is s-output-reachable from the initial state x(0) =
5’;,1, if and only if (‘_/s)i,j > 0.
(11) The systemis s-output-controllable at the initial state x(0) = 5’;,1,
if and only if Colj(\_/s) > 0.
(iii) The system is s-output-controllable, if and only if Vs > 0.
(iv) The system is output-controllable at the initial state x(0) = é”;n

if and only if there exists an integer N, such that Col; (Z
> 0.

(v) The system is output-controllable, if and only if there exists an
integer N, such that (Z;Ll V,) > 0.

[2] Chen H and Sun J. Output controllability and optimal output control of state-dependent switched Boolean control
networks. Automatica, 2014, 50(7): 1929-1934.
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@ Representative results B!
Model

An SBN with state and input constraints can be described as

($1(t+1) — f(t)(xl(t);$2(t):"':xn(t):ul(t)a"'aum(i)):
) 2t +1) = 7D (21(t),32(t), ..., 20 (t), us (D), ..., um(t)),
2n(t+1) = S (@1(t),22(t), ..., 2n(t), ur(t), ..., um(?)),

Let |C,| = aand |Cu| = B; then the state’s constraint set and the input’s constraint set can be
expressed as C, ={6%: k=1,...,a;i;<---<i} and C,={8k:k=1..Bj;<---<
J g} respectively.

[3] Li H and Wang Y. Controllability analysis and control design for switched Boolean networks with state and input

) constraints. SIAM Journal on Control and Optimization, 2015, 53(5): 2955-2979.
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@ Representative results B!

Main results (Constrained incidence matrix)

Define the following block selection matrices:

1

i—th

p o
W

P
Using the block selection matrices, we thus obtain a new matrix
for each i as follows:

—~ _— — L v T f -?n-.(l" T
L= [Blkl(L,;) B[;;Qm(]:._i)] [(;}12 )) ({Ef )) ]

,_]_.{I}._q) = [quq Oq><q Iq Oq><q quq c qupq’ g — 1!2"”’})’
-~

The constrained incidence matrix

TN

) B)

1 = ’ H-"_B € B-wa,{‘j Xwaofs

L

EB&X&';‘B? ?: 1121"'3181
where C @) ]
_ T on 1\ T on o\ T
Bl (L;) = ; B[Ar,S(L-..I-_)KJff *”) (J}j -“) ] € Bov.
](2?11)
Yia

[3] Li H and Wang Y. Controllability analysis and control design for switched Boolean networks with state and input

constraints. SIAM Journal on Control and Optimization, 2015, 53(5): 2955-2979.
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@ Representative results 4
Main results (Set controllability )

!x(t+ 1) = Lo (t)u(t)x(t), ©

y(t) = Hx(t).

Definition 3 (Set controllability). SBCN (5) is

(1) set controllable from s? e X0 to s? e X4, if there exist xy €

5? and x; € sf such that system (5) is controllable from xg
to x,;

(2) set controllable at s?. if it is set controllable from s? to any
sd e X4

(3) set controllable, if it is set controllable at any s? e X0

Theorem 1. Consider SBCN (5) with initial sets X0 = {s9. sJ. ....

0 M at d _ fed d d 0 d
sp} and destination sets X° = {s{, s5, ..., sg}, where ;. S €

P(Am)\{4}, i=1...., q. j=1.....p. Then the set controllability
matrix can be expressed as

Cs :Jg XB M[2”] XBJO = BqXp,

where  Jo :=[V(s¥) V(s9) ---
V(sg)].

(9)

Visp)] and  Jg:=[V(s]) V(s9)

[4] Zhang Q, Feng J, Pan J, et al. Set controllability for switched Boolean control networks. Neurocomputing, 2019, 359: 476-

482.




> g Stability and stabilization of switched Boolean networks

D a common strict-
Lyapunov function
D method []
Global stability at a]
5 ~ fixed point 1 \ynder arbitrary —
- switching signal state transition

. stability matrix method [€]

Switched Global stability at a

Boolean < limit cycle [6]
~\___hetwork -

Set stabilization [°]

> { stabilization
o \_ stochastic switched

signals 10
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~
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Model

Consider a switched BCN with n nodes, m control inputs and w sub-networks as

(X1 (t+ 1) =f16(t) (x1(£), x2(F), ..., xp(L)), X(t +1) =Lypnx(t) (3.4
X(t + 1) :fza(r) (x1(t), x2(t), ..., x, (1)), (3.1) - o (t) ti(t) (3.5)
: x(t + 1) = Lo (Hx(t), (36)
Xt + 1) = F7OX1(0), %2(0), . .., xa(D)),

: Do where L = [L; ---L,] € Lo n,
where o: N - W = {1, 2,...,w} is the switching signal. (L4 w] 2 xw2

Definition 3.1. The system (3.1) is said to be consistently stabi-

lizable to X, = (xj,...,x;) € D", if there exists a switching
51gnal o . N —> W such that the trajectory initialized at any
= (x1(0), ..., , X,(0)) € D" converges to X, under o.

Assumption 3.3. X, = (x§, ..., x;)is afixed point of the k-th sub-
network of the system (3.1).

[5] Li H and Wang Y. Consistent stabilizability of switched Boolean networks. Neural Networks, 2013, 46: 183-189.
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D Model

> It is easy to see that, under a free-form switching sequence
{(0,0(0)), (1,0(1)),...,(t —1,0(r — 1))}, along the trajectory
starting from any initial state x(0) € A,n, we have

D) x(t) = Lo(t —1)---Lo(1)Lo (0)x(0)

= LI, ®L)--- (Iyr-1 ® L) x___, o (i)x(0)

D =Lx%__ o()x(0), (3.7)
where D(?zl._l o(i)=0(t—1)xo(t —2)x---x a(0),and

D) ~
L=LI, ®L)---(I,i-1 ®L) € Lonyyron. (3.8)

D) Split L into w? equal blocks as

. L= [Buq @ - Blkyr @} (3.9)

where Blki@ € Lonyon. Then, for [><?:F1 o(i) = 4., one can
D) obtain

x() = Bk, @x(O). (3.10)

[5] Li H and Wang Y. Consistent stabilizability of switched Boolean networks. Neural Networks, 2013, 46: 183-189.
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@ Representative results P!

Main results (Consistent stabilizability of SBNs)

Consider the consistent stabilizability of the system
(3.1) by a free-form switching signal.

Consider the consistent stabilizability of the system
(3.1) by a state-feedback switching signal.

Theorem 3.4. Consider the system (3.1), and assume that Assump-
tion 3.3 holds. Then, the system is consistently stabilizable to x, = 5;,
by a free-form switching signal, if and only if there exist two positive
integers 1 <1 < w22 and 1 < a < w", such that

Bk (L) = S[pe- - ]
2‘”

(3.11)

holds, where Lis given in (3.9). Moreover, if (3.11) holds, then the
free-form consistent stabilizing switching signal is given as

O'*(I—)e OSI—ST_l-
o(t) = !5i t> 1. (3.12)

where o* is determined by x!___, o*(i) = §%..

Theorem 3.5. Consider the system (3.1), and assume that Assump-
tion 3.3 holds. Then, the system is consistently stabilizable to x, = 55‘”
by a state-feedback switching signal o (t) = Gx(t), if and only if there
exists a positive integer 1 < t < 2" such that

(EG@H)T = §n [H T M_]e

2‘”

(3.20)

where L and G are given in (3.6) and (3.5), respectively.

[5] Li H and Wang Y. Consistent stabilizability of switched Boolean networks. Neural Networks, 2013, 46: 183-189.
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@ Representative results [©!

Main results (Global stability at a limit cycle )

Definition 3.1. A switched Boolean network (1) is globally stable
at the cycle C= (5, 0%, ..., 05%), if for arbitrary switching signals,
for every x(0):=xg € A,n, there exists T € Z, such that x(t) = 5;‘}, for
every t > T, where je[l,k] and j=(t—T+1) mod k.

( X1(E+1) =fTOX1(0), ... Xa (D).

__ fo(D)
<>'<2(t+1)—f2 (X1(D), ..., Xn(1)), (1)

Theorem 3.1. Consider the switched Boolean network (1) with its
algebraic form (3). Then the system (1) is globally stable at the cycle
C = (O, O, ..., 0%) under any switching signal, if and only if there
exists a positive integer s < 2" such that

My, r, =My, r, = =My, r,_, =My r =, (4)
Mihrjzo, i=k+1,...2", j=k+1,...,2". (3)

| X+ 1) =f70®1(0), ... xn(0)).

!

X(t+1) = L) X(0), (3)

[6] Li F. Global stability at a limit cycle of switched Boolean networks under arbitrary switching signals. Neurocomputing,
2014, 133: 63-66.
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@ Representative results [7]

Model
Consider the following SBN:

4

21(t+ 1) =Dz (t), ... zn(D),
ot + 1) = f;” (21(8), . - (1)),

(4.1) \ : ) o(t+1)=Lope(t) (4.3)

| ot + 1) =f1(@1(t), ... za(t)),

where 0 : N — W = {1, 2, ..., w} is the switching signal, z; € D, i = 1,2,...,n,
are logical variables, and fj D'w— D, 1=1,2,...,n, 3 = 1,2,...,w, are logical
functions.

Given a switching signal ¢ : N — W, assume that {t, t2, ..., ts, ...} is the
switching time sequence. We refer to the sequence {o(to) =ip, o(ty1) =11, ..., o(ts) =
is, ...} as its switching index sequence, where ty = 0. Let h; = t;y1 —t;, i =
0, 1, ..., s, ...; then we obtain the following switching sequence:

(42) mT = {(?ﬁg,hg), (i11]11)1 Ty (?js,h,_f,.),. }

[7] Li H, Wang Y. Lyapunov-based stability and construction of Lyapunov functions for Boolean networks. SIAM Journal on
Control and Optimization, 2017, 55(6): 3437-3457.



@ Representative results ']
Main results (a common strict-Lyapunov function method)

Theorem 4.2. Consider the SBN (4.1). The system is asymptotically stable at x,
under arbitrary switching signal if and only if all the w subnetworks share a
common strict-Lyapunov function V(x) in the form of (3.3) satisfying V(x,) =
0.

Remark 4.3. The method to find a common strict-Lyapunov function for the SBN
(4.1) contains the following steps: 3.3) V(1,2 ... n) = o + €101 + oty + - F Cpitip
(i) Express the SBN (4.1) as (4.3). T Cntll1d2 T T Con 1Ll s

(ii) Solve the set of inequalities (3.11) [co, 1. - cana]” = Doy, aze oo azn]

Viey, oo, .. xn) =
€11 + €22 + -+ -+ Cpiln (4.8)

+ Cpg1L1Lo T+ Con_L1Lg "+ Ly

(49) [aq? aoy..., axjgn} COZg(L} — Ig'n) < O

asn =0, a; >0, 1< <2" —1,
r=1,2,....2" =1, j=1,2,...,w,

and obtain a solution (a4, a,, ..., axn_4,0).
(i11) With the obtained solution, find out (0,cy,...,con_1) by (3.11). Then, a
common strict-Lyapunov function of the SBN (4.1) is given as (4.8).
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@ Representative results [

Model
Consider the following SBN:
(. - G(f |
w1t +1) = {7 (@i(t), ... 2 (b)),
. (t)
rolt 4 1) = f7O (@1 (1), ... an()).
(3) < : ‘ r(t4+1) = Lg(t);if(f)
t
| oot +1)=faV(@1(t), ., zalt)),
where 0 : N — W = {1, 2, ..., w} is the switching signal, z; € D, i = 1,2,...,n,
are logical variables, and fj D'w— D, 1=1,2,...,n, 3 = 1,2,...,w, are logical
functions.

Given a switching signal ¢ : N — W, assume that {t, t2, ..., ts, ...} is the
switching time sequence. We refer to the sequence {o(to) =ip, o(ty1) =11, ..., o(ts) =
is, ...} as its switching index sequence, where ty = 0. Let h; = t;y1 —t;, i =
0, 1, ..., s, ...; then we obtain the following switching sequence:

= {(?U* hO)? (?J.'! h’l)v R | (?jS:' h’.fi):' .t '}'

[8] Li H, Wang Y, Liu Z. Stability analysis for switched Boolean networks under arbitrary switching signals. IEEE Transactions
on Automatic Control, 2014, 59(7): 1978-1982.
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- Main results (state transition matrix method)
- Proposition 2: Let M = ) " L;. Then

2'?'1.

> S (MF)y=mb Vi=1,2,--2" keZs  (10)
1i—=1

Remark: The necessary and
sufficient condition given in

= where m 1s the number of sub-networks of the system (3).
Theorem 3 only needs to

Theorem 3: The system (3) is globally stable at x. = &5~ under calculate matrix MK | thus
D arbitrary switching signal, if and only 1f there exists a positive integer avoiding the tedious step of
. k™ < 2% such that constructing common  strict
) Lyapunov functions.
~ Row;+ (f\ffk ) = ;?_nk coem” . (12)

27"&

O where M = > " L;, and mn is the number of sub-networks for the
system (3).
~

[8] Li H, Wang Y, Liu Z. Stability analysis for switched Boolean networks under arbitrary switching signals. IEEE Transactions
on Automatic Control, 2014, 59(7): 1978-1982.
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Main results (Set stabilization)

Let 8 = (8!, 52

Sits Oty v v v s (S;Sn} be a subset of Ajn.

Definition 3.1 (Set Stabilization). The SBCN (1) is said to be 4-
stabilizable if, for any switching signal and any initial state x, €
Aon, there exists a control sequence u and an integer T > 0 such
that x(t; xo, u) € 8, Vt > T.

Definition 3.2. The set § C 4 is the control invariant set of § for
SBCN (1), if for any switching signal, there exists a control sequence
u such that x(t) € & implies x(t + 1) € 4. A set §* is called the
largest control invariant set of 8 for SBCN (1), if it contains the
largest number of elements among all the control invariant sets
of 4.

i+ 1) = 7O wt), (). x0(0), .. xa(D)),
; (1)

%t £ 1) = FTOWLD),s - s (D) X1 (s - 2 %)),
Ui(t) = b1 (0). . .. X)), (4)

xi((t+1) = f]a(t)(ul.o(t)(t) ----- Um,o ) (£), X1 (L), ..., Xn (1)),
; (5)
Xn(t+ 1) = [7O (U o0)(0), ..., Um.o (1) (£), X1 (), - . -, Xn(t)),

uf,cr(f)(t) = hf.a(t)(xl (t) 7777 Xn(t))v = ]7 2, ..., m, (6)

Theorem 3.1. The SBCN (1) is §-stabilizable under arbitrary switch-
ing signal by a state feedback controller (4), if and only if,

(i) 8™ £ V;
(ii) there exists an integer T such that Er(8™) = Ajn.

Theorem 3.3. The SBCN (5) is 8-stabilizable under arbitrary switch-
ing signals by a state feedback controller in the form (6), if and only

if

(i) 8* £ 0;
(i) there exists an integer T such that Er (8*) = Apn.

[9] Li F, Tang Y. Set stabilization for switched Boolean control networks. Automatica, 2017, 78: 223-230.




@ Representative results P!
Main results (Set stabilization)

Set stabilization in the case of the control input
IS independent of the switching signal

Theorem 3.2. Suppose that conditions (i) and (ii) in Theorem 3.1
hold. Every 1 < i < 2" corresponds a unique integer 1 < [; < N such
that 8}, € E;, (8%) \ E,_1(8*) where Eo(8*) = (. Let 1 < h; < 2"
satisfy

Z Col; (Blky, (Lg)) < [8*], forl; = 1,
1F=lg

D> Coli(Blky,(Lp)) < [Ey1(8)], forl;>2.
( B=14

Then the feedback control law (4) with the state feedback matrix H is
given by

H = §;m[hy, hy, ..., hon].

Set stabilization in the case of the control
sequence is dependent on the switching signal

Theorem 3.4. Suppose that conditions (i) and (ii) in Theorem 3.3
hold. Every 1 < i < 2" corresponds a unique integer 1 < I; < N such

that 81, € E(8*) \ Ej_1(8*) where Eo(8*) = @. Let 1 < hl < 2"
satisfy

S ]

> Coli(Blk, 5 (Lp)) < [8*]. for I; = 1.
4 6:13 I

Y ColiBlk,s(Lp) < [E;—1(89)], forli> 2,
[ B=14 ’

where B = 1, 2....w. Then the feedback control law (6) with the
state feedback matrix H is given by

Hg =m0l 15, ... nbal.



> @ Representative results [10]

> Model
Consider a switched Boolean control network with n nodes, || where x;(7r) € D, [?m D" — D, and j}gm D" — D
m controllers, and s switched signals as follows: are logical functions for i =1,2,...,n,j=1,2,...,m. The
D _ 00 _ switched signal 0(r) € {1,2,...,s} and s is a positive inte-
N+l = 16(”(“” (O Xn (D), w1 (@), - oo Um(D)) ger denoting the number of subnetworks. The switched signal
» I +D =L@, x0(0), ur (@), .. up(1)) (1)||€ (1) is assumed to be an independent identically distributed
(1.1.d) process and with probability distribution P(6(0) = i) =
< X (f+ 1) = D1, xa (8, ur (), (D)) plie{l,2,....s}, where 0 < p! < 1 and =}_p! = 1.
with controllers
’ 0
D w (1 + 1) =f19”’(xl (1), X2(0), -, Xu (1))
Jurt+ 1) =5" @@, 00, . x0) ) x(t 4+ 1) = Ly(pu(t)x(t)
D e u(t) = Fpx(n). (3)
| U (T4 1) =fp " (X1(), x2(0), ..., xp(1))
5

[10] Fang M, Wang L, Wu Z G. Asynchronous stabilization of Boolean control networks with stochastic switched signals. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2019.



> @ Representative results [10]

> Main results
Definition 4: Given x; € Asn, the switched Boolean control
D) network (3) with stochastic switched signals {6(r)} is called
Xy stabilization in stochastic sense if for any initial value and
D) any initial distribution of 6(r), there exists control u, such that
5 rlim Ex(t; xo, 0(0), u) = xy4.
— 0

Theorem [I: Assume the initial switched signal of 6(r) fol-

> lows a probability distribution pY, then switched Boolean
control network (3) is 45, stabilized with stochastic switched

> signals if and only if there exist switched state feedback
controllers u, such that:

) a) 8%, is a fixed point, that is [P*],., = I;

< b) for any xp € Ajn, there is an admissible path of length

[ < 2" from xq to 85,. Equivalently, Row,—[(P“‘)zn_l] > ().

[10] Fang M, Wang L, Wu Z G. Asynchronous stabilization of Boolean control networks with stochastic switched signals. IEEE
Transactions on Systems, Man, and Cybernetics: Systems, 2019.
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© Boolean networks with time delays

» Time delay phenomena is very common in real world, for instance,
economic, biological and physiological systems and so on. It is well
known that, in many cases, time delay cannot be avoided in practice
and it often results in some poor performance.

» Thus, It I1s necessary for us to investigate Boolean networks with time
delays.
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> g Boolean networks with time delays
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~

States delays [1]]

time-invariant

delays

State Both states and
controllability inputs delays [2
N Multiple Time
controllability [4]
Stability and | Set stabilization [6] |
stabilization

J

Delayed Feedback Control [7] |

time-variant
delays

Controllability 4>[ unbounded time delays 3! ]
J
)
Stability and : 8] ]
stabilization 4>| stochastic delays




@ Representative results U]
Model

Consider Boolean control networks with time-invariant integer delays in states as follows:

(A1(t+ 1) = fi(uq(0), ..., Un(t),A1(t —1), ..., At — 1)),
> At + 1) =fo(u(t), ..., un(t),Ai(t —1),...,A:,(t — 1)),

]
-

]
-

D k,'qn(t + 1) = fu(ug(t), ..., up(t), A (t — 1), ..., Ayt — 1)),
where t IS a positive integer delay.

(1) The controls are logical variables satisfying certain logical rules, called input networks
such as: {

(Ul (t+ 1) = g (ur(t), uz(t), ..., un(t)),
D) U (t+ 1) = go(uq(t), ux(t), ..., un(t)),
$ (5) /

]
-

|
-

u(t + 1) = Gu(r),

x(t + 1) = Lu(ox(t — ) O

~  (2) The control is a free Boolean sequence.

[1] Li F, Sun J. Controllability of Boolean control networks with time delays in states. Automatica, 2011, 47(3): 603-607.
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D @ Representative results [

5

5

Main results (under control (1))

Theorem 3.2. Consider system (4) with control (5), equivalently (8),
where G is fixed. x4 is s step reachable fromx(i—1t),i € {0, 1, ..., 1},
if and only if

Xg € Col{@ (s + i)Wygn ymx(b — 1 — 1)}

where and hereafter “‘Col” is the column set, also there exist unique
ae{0,1,2,...}andb e{1,2,..., T + 1} such that s + i satisfies:

s+i=a(t+1)+0b
and

(_“)G(S +1i) = LGG(I+'])+(b—1)(12m ®LG(G—1)(I+1)+(b—'l))
X (Ipm @ LG 2THDFTO=Dy . (Lham @ LGPV
X (Izlﬂ—l)m Q@ @) - -+ (Iom @ @) P,

where @y, is defined as @y, = xiL; Li-1 @ [(I, ® Wi, om-i))M; ], M} =
54[1, 4].

X(1) = Lu(0)x(—1),
X(2) = Lu()x(1 — 1) = LGu(0)x(1 — 1),

x(t + 1) = Lu(t)x(0) = LG u(0)x(0),
X(t +2) = L™ u(0)x(1) = LG (Iom @ L)@pu(0)x(—1),
X(T +3) = LGP u(0)x(2)

= LG""%(Ihom ® LG)®Ppu(0)x(1 — 1),

X2(r + 1)) = L™ u0)x(r + 1)
= LG (Ihm @ LGT)@nu(0)x(0),

X217 + 3) = LG P2u(0)x(t + 2)

= LG 2u(0)LGT  (Iom @ L)@nu(0)x(—1)

= LG (Ibm @ LC"T") (Izm ® L)

X (Iam @ @) Ppu(0)X(—1),

X2t + 4) = LT u0)x(r + 3)

= LGT P u(0)LGT 2 (Im @ LG)Prmu(0)x(1 — 1),

= LG* 3 (Ibm ® LG"?) (Izm ® LG)
X (Iom @ @p)Ppu(0)x(1 — 1),

x3(t + 1) = LG Pu(0)x(2t + 2)
= LGP u(0)LGH T (Iom @ LGT)@pmu(0)x(0)
= LG (Im ® LG*" 1) (Ipm @ LGY)
X (Im @ P ) @ u(0)x(0),

[1] Li F, Sun J. Controllability of Boolean control networks with time delays in states. Automatica, 2011, 47(3): 603-607.
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Main results (under control (2))

Theorem 3.5. x, is reachable from x(i — 7),i € {0,1,...,t}ats
steps by controls of Boolean sequences u(s +i—k — (k — 1)t)u(s +
i—(k—1)—(k—2)t)---u(s+i— 1)ifand only if

xq € Col{l*x(j — 7))
where there exists unique j and k such that

s+i—k—kr=j—1t, je{0,1,..., 1}

x(t + 1) = Lx(t — T)u(t).
[t yields:
xXs+i) =Ix(s+i—1—1u(s+i—1)
= [’x(s+i—2—-20)u(s+i—2—1u(s+i—1)
= Px(s+i—3—30)u(s+i—3—27)
Xuis+i—2—7ous+i—1)

= I*x(s+i—k—ku(s+i—k— (k—1)1)
xus+i—((k—1)—((k—2)t) - -u(s+i—1).
Assume that

s+i—k—krt=j—1t, whereje{0,1,..., 1}

[1] Li F, Sun J. Controllability of Boolean control networks with time delays in states. Automatica, 2011, 47(3): 603-607.
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Model

Consider Boolean control network with time-invariant integer delays in both
states and controls as follows:

(Ai(t+1) =f1U(t—7),....Un(t—1),

"

Ap(t+1) :fn(u1(f—’f), L Un(f—1),
\ A1(t_T)a aAﬂ(t_T))a

[2] Han M, Liu Y, Tu Y. Controllability of Boolean control networks with time delays both in states and inputs.
Neurocomputing, 2014, 129: 467-475.
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Model

Consider the following Boolean control networks with n nodes,
m inputs, g outputs, and time delays in states:

[ . 1 — ; m
xi(t+1) = filur(@), ..., un(r) [x(t-|—1)—Lu(l‘)X(t—T(f))

y(t) = Hx(r) ©)

xi(t—1(t)),....x,(t —7(t)), j=1,....n (4)
| Vi(t) =hi( (@), ..., x,(0), i=1,...,q

where xi, ..., Xp, U1, Upm, Vis--on Vg € Dilgp € 251 =
to.to+1,...5 fi,..o, fu: D" > Dihy,...,hg : D" - D
are logical functions; and = : {r € Z : t > 19} — N is
a mapping, called the time delay function. Throughout this
brief, without loss of generality, we assume that r — 7(t) >
to — t(tg) YVt > to to ensure that (4) has a starting point.
Then the trajectory of (4) i1s determined by its initial state
sequence x(fo — 7(to)), x(fo — (o) + 1), ..., x(fp) (and the

control sequence).
[3] Zhang L, Zhang K. Controllability and observability of Boolean control networks with time-variant delays in states. IEEE

transactions on neural networks and learning systems, 2013, 24(9): 1478-1484,

e




D @ Representative results B!
D Main results

Definition 2: A directed graph G(V, E) is said to be the
constructed forest of (5) if the vertex set V. ={r e Z2 :1 >
fo — t(tp)}, i.e., the time sequence of (5), and the edge set

YE={{.,"Y: ' =t"—-1—-7"-1)}CV xV.

7N /N 7N
D) (0 ) (=1) ------ =
N__ 7 \I/ \__I/
D L’C+ h l../ T\‘; -:.'/ 1 \‘.l
N2 4 \___/
] ! 1
N YN TN
27+ 2 27+ 1 T+ 2|
N N \__/
D [
-

Fig. 1. Constructed forest of (5) with 7(r) constant that is studied in [7],
where the number in each circle denotes the time step.

Denote by
{to, f1, ..., In}(or {tp, 11,...}) C 2 (7)

one of the controllability constructed paths of (5), where
fo—t(fg) <tg <fp, tixy = t; foralli = 0.

{x(l‘kﬂ) = Lu(ti+1 — 1)x (%)

y(te) = Hx(t)

Theorem 4: Consider (8). Let L1,m := M. Then:

1) c)én is reachable from ()gn at the sth step if and only if
(M*)ij > 0;

2) (8) is controllable from ci:f,, if and only if all the entries
min{2"+t™Mm 1,

of Col; (> ;_, M %y are positive:
3) (8) 1s controllable if and only if all the entries of

min{2" 1" —
k=1
where N is the length of (7).

(8)

I,N . "
Nk are positive,

D [3] Zhang L, Zhang K. Controllability and observability of Boolean control networks with time-variant delays in states. IEEE
transactions on neural networks and learning systems, 2013, 24(9): 1478-1484,
[7] Li F, Sun J. Controllability of boolean control networks with time delays in states, Automatica, 47(3): 603-607, 2011.
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5 Main results
< Theorem 5: Consider (5). Let L1,» := M, and set
[ min{N,, 2"t}
M*, if Ny > 0
D Mfo—f(i‘o)—l—s = ) é S
5 \ 021y on, it Ny =0
s =0,1,..., 7(fy). Then:
D 1) 55,.3 is reachable from X = ('(559,,(5;.1, e ci;fro'}) if and
Oﬂly if Z}ifg} (-MIO—T{TOJ+J')!‘J‘[ > 0; ‘ »
D) 2) (5) is controllable from Xo = (dy, 0. ...,
o) if and only if 37U (M (10)41)iis > O for all
) [ =1,2,...,2";
3) (5) is controllable if and only if (8) is controllable;
> 4) (5) is controllable if and only if all the entries of
min{ Nz, 2" ™M —1} . ..
M?" are positive.
k=1 p

) [3] Zhang L, Zhang K. Controllability and observability of Boolean control networks with time-variant delays in states. IEEE
transactions on neural networks and learning systems, 2013, 24(9): 1478-1484,
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~
) On controllability of delayed Boolean control networks
This paper is devoted to studying the trajectory and state controllability of
> BCNs with time delay. In contrast to BCNs without time delay, the dynamics
of delayed BCNs are determined by a sequence of initial states, named here
> trajectories. Trajectory controllability means that there exists a control signal
steering a system from an initial trajectory to a desired trajectory, while state
> controllability means that there exists a control signal steering an initial state
to a given state.
~
Here, both trajectory controllability and state controllability are studied. It
- should be noted that in this paper, trajectory controllability does not mean
tracking or following a given trajectory. In fact it means to control BCNs to a
- destination trajectory of length u at the k-th step.

D [4] J.Q. Lu*, J. Zhong, D.W.C. Ho, Y. Tang and J.D. Cao. On controllability of delayed Boolean control networks. SIAM
Journal on Control and Optimization, 54(2): 475-494, 2016.
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D Model
< A BCN with high order time delay:
(zi(t+1) = fiw(®),.oum(®),z1(t —p+1),
> s Tt =+ 1), 1 (E), e, 2 (1))
fl?g(t—l—l) = f2(U1(t>, ..,um(t),:cl(t—,u—l—l),
. ) T (= A1), 21 (t), o, T (1) (1)
. Pt +1) = fu (U)ot (D), 1 (E — i+ 1),
\ s T (b= 4 1), 1 (E), ooy T (1))

where u is a positive integer denoting the length of the initial states sequence.

’ |

D) Let w(t) = x7,u;(t), o(t) = x_qz;(t), y(t) = xi—,_,,2(i), then, we get algebraic form:
z(t+1) = Lou(t)y(t), (2)

D where Col;(Lo) = x;—,Col;(M;), Lo € Lanyaun+m Further, we obtain
y(t+1) = Lu(t)y(t). (3)

D [4] J.Q. Lu*, J. Zhong, D.W.C. Ho, Y. Tang and J.D. Cao. On controllability of delayed Boolean control networks. SIAM
Journal on Control and Optimization, 54(2): 475-494, 2016.
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D Model

<
Remarks:

> (a) Here, we call x(t) the state of the delayed BCN (1) and (x(t — u +
1), ..., x(t)) as the trajectory of length u (abbreviated as trajectory).

> (b) Since the dynamics of the delayed BCN (1) is determined by its
Initial state sequence (x(1 — u), ..., x(0)) (or named as initial trajectory),

~ It 1s meaningful to study the trajectory controllability of the delayed
BCN (1).

- (c) Here, the trajectory means a state sequence of length "u”, and the t-

th trajectory of delayed BCN (1) or (1) is denoted by X(t) = (x(t — u +
~ 1), ..., x(t)).

-

D [4] J.Q. Lu*, J. Zhong, D.W.C. Ho, Y. Tang and J.D. Cao. On controllability of delayed Boolean control networks. SIAM
Journal on Control and Optimization, 54(2): 475-494, 2016.
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D Main results

D Definition Consider the delayed BCN (1). Given initial trajectory X(0) = (x(1 —
1), x(2 — @, ..., x(0)) and destination trajectory X; = (x3, x§, -, X5 ):

1. X4 is said to be trajectory controllable (or trajectory reachable) from X (0) at the

D k-th step, if we can find a sequence of control U(k) = (u(0), ..., u(k — 1)) such that
X(0) can be driven to the destination trajectory X, that is X (k) = X,.

D 2. The set of all trajectories that are trajectory reachable from X (0) at the k-th step is
said to be the k-step trajectory reachable set of X(0), denoted by R (X (0)).

D 3. The set of all trajectories that are trajectory reachable from X (0) is said to be the
trajectory reachable set of X (0), denoted by R*(X(0)).

D 4. System (1) is said to be trajectory controllable from X(0) if Rt(x(0)) = A,un.
And it is said to be trajectory controllable if it is trajectory controllable from any

D initial trajectory X (0).

D [4] J.Q. Lu*, J. Zhong, D.W.C. Ho, Y. Tang and J.D. Cao. On controllability of delayed Boolean control networks. SIAM
Journal on Control and Optimization, 54(2): 475-494, 2016.
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) Main results

Theorem 4

1. The destination trajectory X4 = (xg,x3, ..., X3) With x4 € A,n is reachable from the initial trajectory

~ X (0) at the k-th step byu(0), ..., u(k — 1) if and only if y; =xi_ x5 € Col{(Z)k y(0)}, where L =
LW[zﬂn,zm];

) 2. If we assume that s* is the smallest s > 0 such that Col{Ls*! x!_ x(i)} € Col{L**! x!_ x())|j =
1,2, ..., s}, then the reachable trajectory set of x7_; , x(i) is

> R(x%_;_, x(i)) = U5, Col{L/ w<_, _, x(i)}.

Let Q@ = L x 1,». The number of different control sequences from y(0) = y, to y(k) = y, is given.

D N1(k; Yas vb) = ¥ Q" Y.

D Theorem 5: Consider the BCN (1), it is trajectory controllable if and only if Q is
irreducible.

D [4] J.Q. Lu*, J. Zhong, D.W.C. Ho, Y. Tang and J.D. Cao. On controllability of delayed Boolean control networks. SIAM
Journal on Control and Optimization, 54(2): 475-494, 2016.
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@ Representative results 4

Malin results

Ifthestate x(t — k + u) = esg’m, then the trajectory y(t) belongs to the following set:

EZ _ {55221)2(u—k+1)n-|-(p—1)2(u—k)n+j i=1,..., Q(M_k)n,j —1,... Z(M_k)”}.

Theorem 6: The destination state 8229”,1 Is reachable from the initial state sequence a =
< x(i) at the k-th step by a free control sequence u(0),u(1),...,u(k — 1) if and only if

i=1—-u
Col{Zl} N Col{(L)" M o_1_, x(i)} # 0.

I1=1—u

to x(K)=bs is Na(k;a,bs) =Y pezp Ni(k;a,b)
= ZbeEﬁS b'Q%a.

Remarks: Consider the delayed BCN (1) without any forbidden states or trajectories. If it is
trajectory controllable, then it must be state controllable.

J

) [4] J.Q. Lu*, J. Zhong, D.W.C. Ho, Y. Tang and J.D. Cao. On controllability of delayed Boolean control networks. SIAM
Journal on Control and Optimization, 54(2): 475-494, 2016.
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D Model (multiple time delays)
5
A BCN with multiple time-varying delays can be expressed
D as follows:
( Xl(f-—F l) — fl (Xl(f —Tl(f)),...,Xl(f —Tq(f)),...,
D Xo(t—m(t) ..., Xu(t — 7, (), Ur(2),
"".'(Tﬂ?,('))
D) ) ;
X?l(t+ ) fn, (Xl(f _Tl(f))*---le(t _Tq(t))v
D X (t—=71(1))s s X (t — 7, (1)), Up (2)
\ AR (*T-m, (f))
5
-

5 [5] Ding Y, Xie D, Guo Y. Controllability of Boolean control networks with multiple time delays. IEEE Transactions on
Control of Network Systems, 2017, 5(4): 1787-1795.
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D Model (set stabilization )
D The dynamics of delayed Boolean control networks can be described as follows:
5y [nE+ D =AXE—p+ D, X0 U®@)),
NI+ =LXE—pn+1),....X(0),U(t)),
R (3.1)
o D =LK @ =gt DL XOU ),
where p € 7, denotes the time delay, X (i) := (x; (i), x2(0), ..., x,(0)) eD", i=1t—pn+
D 1,....t the state at time i U@) .= (u(t),...,uy()) € D" the control input at time f,
and f; : D" — D, j=1,...,n the Boolean function. Given an initial trajectory Z; :=
D (X(—p+1),...,X(0)) € D“” and a control sequence U : N — D", denote the state of the

. DBCN (3.1) at time r € N by X(; Z,. U).

D [6] Zheng Y, Li H, Ding X, et al. Stabilization and set stabilization of delayed Boolean control networks based on trajectory
stabilization. Journal of the Franklin Institute, 2017, 354(17): 7812-7827.
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D

D

D

D

Main results (set stabilization )

Given the following nonempty set

A= {80,u.;00) (3.23)
with oy < --- < a,,. Construct the following set:
B={8,.=8x ---x8:yefa,...,an},i=1,..., 1)

i= {850y ., B5in ), (3.24)
where y; < --- < y,u. For example, given A = {31, 3_};} and T = 2, one can obtain B = {(Sj1 X

55,81 x 82,82 x 81,82 x 82} = {81, 8%, 87, 85 1.

(

\_

Theorem 3.15. The DBCN (3.1) is stabilizable to the set A (given in Eq. (3.23)) with respect
to state by a state feedback control, if and only if it is stabilizable to the set B (defined in
Eq. (3.24)) with respect to trajectory by a state feedback control.

\

J

 [6] Zheng Y, Li H, Ding X, et al. Stabilization and set stabilization of delayed Boolean control networks based on trajectory

stabilization. Journal of the Franklin Institute, 2017, 354(17): 7812-7827.
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<
< Delayed feedback control for stabilization of Boolean control networks
with state delay
> In this brief, we study the delayed feedback stabilization problem for
Boolean control networks (BCNs) with state delay.
<

Using the semi-tensor product of matrices, some necessary and sufficient
~ conditions are obtained. For the stabilization of BCNs, detailed procedure
to construct the feedback controllers is also presented.

<
We further derive the number of different feedback controllers, which can

~ successfully stabilize the BCN in a finite time.

<

) [7] R. J. Liu, J. Q. Lu*, Y. Liu, J. D. Cao, and Z.G. Wu. Delayed feedback control for stabilization of Boolean control
networks with state delay, IEEE Transactions on Networks and Learning Systems, 29(7):3283-3288, 2018.
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Model
A BCN with state delay and input delay can be described as

’xl(t—|— )= fix;(t —7),..., x5 —7)
ur(t —7), ..., un(t — 7))

. (1)
xp(t+1) = frx ¢t —1),..., x50 — 1)
ur(t—1t),...,un(t — 1))

Definition 1. The BCN (1) is said to be globally stabilized
to a given state X, = (x7, x5, ..., x; ) € D™,if for any initial
state X(— r),X( T+ 1),..,X(0) € D™, there exist a
control sequence U(t),t € N*, and a positive integer N
such that X(t) = X, for vt = N.

(Objective: design state feedbackN
controller in the form
uq (1) = k1 (x1(2), ... 20 (1))
Lum(f) = km(xl (t)a cee xn(t))

[7] R. J. Liu, J. Q. Lu*, Y. Liu, J. D. Cao, and Z.G. Wu. Delayed feedback control for stabilization of Boolean control
networks with state delay, IEEE Transactions on Networks and Learning Systems, 29(7):3283-3288, 2018.
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Main results

With the help of STP:

x(t+1) =Fx(t—1tu(t —1)

u(t) = Kx(t)

-

N\

Key procedure:

1) Sp= {65}
2) 81 = E(Sp)\So

I
3) S2=EGD\ S
i=0

M—1
4) Sy =ESu-D\ | si.
=0

~

(2)
(3)

e )
Theorem 3: The system can be globally stabilized to
state x,; = 52911 by a state feedback controller (3) if and
only if the following conditions are satisfied:

1) &, € E@5,);
2) > 1Sil =2

J

D [7] R. J. Liu, J. Q. Lu*, Y. Liu, J. D. Cao, and Z.G. Wu. Delayed feedback control for stabilization of Boolean control
networks with state delay, IEEE Transactions on Networks and Learning Systems, 29(7):3283-3288, 2018.
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D

D

D

D

Model (Stochastic Delays)

Consider a Boolean network with n modes and stochastic delays as
follows:

(21 (k+1) = fi(X(k—7(k)))

) z2(k+1) : f2(X(k —7(k))) (2)

o (1) = fu(X (k= 7(k)))

this paper, 7(k) is viewed as a time-homogeneous Markov chain
that attains values in a finite set 2 = {0, 1,....7} with 7 a positive

integer. The (i 4+ 1, 7 + 1)-element of the transition probability matrix
II € RUTDX(T+1) of Markov chain {7(k)|k > 0} is given as

mi; = Pr{r(k+1) = jlr(k) =i} (3)
where m;; > Ofori,j € 2 and Z;ZO m;; = 1 forany ¢ € (). Itcan be

observed that the trajectory of Boolean network (2) can be uniquely
determined by the initial state sequence x(—7), x(—7 + 1), ..., 2(0).

x(k+1)=Fz(k —71(k))

(4)

D [8] Meng M, Lam J, Feng J E, et al. Stability and stabilization of Boolean networks with stochastic delays. IEEE Transactions

on Automatic Control, 2018, 64(2): 790-796.
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@ Representative results [
Main results

Definition 2: Boolean network (2) with random delays is said to be
globally stochastically stable at X, € D" if for any initial condition
and any initial distribution of 7 (k)

lim E{X (k)| X (0), X (=1),..., X(=7), 7(0)} = X,

where X (k) = (z1(k), z2(k), ..., x,(k)).

To proceed, split the state 2:(k) € Agn as 2(k) = (w! (k),v(k))T
with w(k) € R?" ! and v(k) € D, then one can easily obtain that

u-’(k + l) = Fll'li-'(/li — T(A)) - Flg'l.’(}f — T(]l)} (5)
vk +1)=Fhw(k —71(k))+ Fev(k —71(k)) (6)
where
Fiq F12]
= F. Fi1 € Man _ w(2m 1) - 7
{le Fyy y 111 (2m —1)x(2™ —1) (/)

Let W(k) = (w? (k),wT(k—1),...,wT(k—7))T, and V (k) =
(v(k),v(k—=1),..., v(k —7))T. Now, Boolean network (4) with
stochastic delay can be converted equivalently into two coupled

stochastic switched systems as follows:
Wk+1) = (M +G"NWE) + LMV E)  (8)

V(k+1) = (M, + G5L5MV (k) + G55 W (k) (9)

Theorem 1: Boolean network (2) is globally stochastically stable at
X, if and only if F»» = 1 and there exist vectors A; € R(T+D (2" ~1)
i € €1, satisfying the following LP problem:

> i (My+ G A — 4 < 0 (14)
1=0
A >0, jeq. (15)

D [8] Meng M, Lam J, Feng J E, et al. Stability and stabilization of Boolean networks with stochastic delays. IEEE Transactions

on Automatic Control, 2018, 64(2): 790-796.
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Y G Conjunctive Boolean Networks (CBNSs)

> » A BN is conjunctive if the associated /. P .4 }-Hml VI Y

5 value update rule is comprised of only eemes mmmmmmmt =, T
AND operations. l

’ > A canalyzing function is such that if S LU TTTTTTTTTTTITIT

> an input of the function holds a certain l

X value, called the “canalyzing value™, . mmmmm ;j’_ulﬁ.; —_

| then the output value of the function is - Lm O—

D uniquely determined regardless of the
other values of the inputs.

> The conjunctive Boolean network is

monotonic.
D Figure 1.




> G Conjunctive Boolean Networks (CBNs)

~

.
@ Stability!!!
.
@ Controllabilityl?]
.

~

5 [1] Z. Gao, X. Chen and T. Basar, Stability structures of conjunctive Boolean networks, Automatica,
2018, 89: 8-20.

D [2] Z. Gao, X. Chen and T. Basar, Controllability of conjunctive Boolean networks with application to
gene regulation, IEEE Transactions on Control of Network Systems, 2017, 5(2): 770-781.



> G Conjunctive Boolean Networks (CBNs)
> » LetD=(V, E) be adirected graph.

5

5

We denote by vjv; an edge from v; to vj in D. We say that
v; is an in-neighbor of v; and v; is an out-neighbor of v;. The sets of

in-neighbors and out-neighbors of vertex v; are denoted by|Nin(v;)

and|{Nyue(vi) respectively. The in-degree and out-degree of vertex v;
are defined as [Njn(v;i)| and | Noue(vi)|, respectively.

Let v; and v; be two vertices of D. A'walk from v; to vj, denoted
by wj;, 1s a sequence v;, v;, - - - v, (With v;, = v; and v;,, = vj) In
which Vi Vi, ; 1S an edgeof Dforallk € {0, 1,...,m—1}. Awalkis
said to be a path if all the vertices in the walk are pairwise distinct.
A closed walk is a walk w;; such that the starting vertex and ending
vertex are the same, i.e., v; = v;. A walk is said to be a cycle if there
is no repetition of vertices in the walk other than the repetition of
the starting- and ending-vertex. The length of a path/cycle/walk is
defined to be the number of edges in that path/cycle/walk.

A strongly connected graph is a directed graph such that for any
two distinct vertices v; and v; in the graph, there is a path from v; to
vj. A cycle digraph is a directed graph that consists of a single cycle.




@ Conjunctive Boolean Networks (CBNs)

» A binary necklace of length p is an equivalence class of p-
character strings over the binary set F, = {0, 1}, taking all rota-
tions (circular shifts) as equivalent. For example, in the case of p =
4, there are six different binary necklaces, as illustrated in Fig. 1.
A necklace with fixed density is a necklace in which the number
of zeros (and hence, ones) is fixed. The order of a necklace is the
cardinality of the corresponding equivalence class, and it is always
a divisor of p. An aperiodic necklace (see, for example, Varadarajan
& Wehrhahn, 1990) is a necklace of order p, 1.e., no two distinct
rotations of a necklace from such a class are equal. Thus, an aperi-
odic necklace cannot be partitioned into more than one sub-strings
which have the same alphabet pattern. For example, a necklace

K. Varadarajan and K. Wehrhahn, Aperiodic rings, necklace rings, and Witt vectors, Advances in
Mathematics, 81(1): 1-29, 1990.



> G Conjunctive Boolean Networks (CBNs)

<
> O O @ O @ O

<

) O O O O @ O

p O O @ O @ O

<

D O @ O @ O O

> Fig. 1. All binary necklaces of length 4. If the bead is plotted in dark blue (resp. light

yellow), then it holds value “1” (resp, “0”). (For interpretation of the references to
D color in this figure legend, the reader is referred to the web version of this article.)
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> G Conjunctive Boolean Networks (CBNs)

D

D

D

@ Stability!



G Conjunctive Boolean Networks (CBNs) — Stability

Definition 1 (Conjunctive Boolean Network [arrah et al., 2010). A

function f;, foralli = 1, ..., n, can be expressed as follows:

n
i oxn) =[x
=1

withej; € {0, 1} forallj=1,...,n.

AND operator on the variables x;, forj € I;.

Boolean network f = (fi,...,fs) 1s conjunctive if each Boolean

(1)

Note that if we let I; := {j | ¢; = 1}, then f; is nothing but an/

Jarrah, A.S., Laubenbacher, R. and Veliz-Cuba, A. The Dynamics of Conjunctive and Disjunctive

Boolean Network Models, Bull. Math. Biol., 72: 1425-1447, 2010.



G Conjunctive Boolean Networks (CBNs)

/Definition 2 (Dependency Graph Jarrah et al, 2010). Let f )
(f1, ..., fn) be the value update rule associated with a conjunctive
Boolean network. The associated dependency graph is a directed
graph D = (V, E) of n vertices. An edge from v; to v;, denoted by
\ ViV existsin E if and only if i € I. Yy

» We assume that the dependency graph D is strongly connected.

W) It can be written as the union of its cycles, i.e. D = (UYL, V;, UL E;)
D, = (V,E;),...,Dy = (Vy, Ey), are the cycles of D.

> Let n. be the length of D.. p* := gcd{ny, ny, ..., ny}.

Jarrah, A.S., Laubenbacher, R. and Veliz-Cuba, A. The Dynamics of Conjunctive and Disjunctive
Boolean Network Models, Bull. Math. Biol., 72: 1425-1447, 2010.



w—

_——

> Framework:

The stability of
periodic orbits
(Stability
Structure)

-

A bijection between
the set of periodic
orbits and the set of
binary necklaces

- D G Conjunctive Boolean Networks (CBNs) — Stability
_——

P

Induced
dynamics
(irreducible
components)




G Conjunctive Boolean Networks (CBNs) — Stability

/Definition 3. Let p divide the lengths of cycles of the dependency\
graph D. We say that a vertex v; is related to another vertex v; (or
simply write v; ~, v;) if there exists a walk w;; from v; to v; such

\thatp divides I('wij). We denote by I(w;j) the length of wj;. y
/ Proposition 1. The following two properties hold: \
(1) If vi ~p vj, then [vi], = [vi]p. If vi »p v, then [vi],N[v;], = @.
(2) Let vo € 'V, and choose vertices vy, ..., vp—1 such that
v1 € Nowl(vo), ..., vp—1 € Noulvp—2). Then, the subsets
[volp, ..., [vp—1]p, form a partition of V:

K _uzﬂ[v] /




)

)

=D G Conjunctive Boolean Networks (CBNs) — Stability

Definition 4 ([rreducible Components). Let D = (V,E) be N
< strongly connected digraph, and p* be its loop number. Choose a
| vertex vo of D, and let vi € ANou(vo), ..., vpr—1 € Nout(Vpr—2).
~ The subsets [vg], ..., [vpx—1] then form a partition of V. The irre-
ducible components of D are digraphs Gop = (Up, Fo), .... Gpr—1 =
=D (Upx—1, Fpx—1), with their vertex sets Uy’s given by
=D U,"; — [Uk], szO,...,p*—1.
< The edge set F, of Gy, is determined as follows: Let u; and u; be two
vertices of Gy. Then, u;u; is an edge of Gy if there is a walk w;; from
5 \u,- to u; in D with l(w;;) = p*. /

-2 | Proposition 2. Each G, for k =0, ..., p* — 1, is strongly connected
and irreducible.




)

w_——

- D G Conjunctive Boolean Networks (CBNs) — Stability
B

/Definition 5. Adigraph D is arose if all the cycles of D satisfy the\

following two conditions:

(1) They have the same length.
\_ (2) They share at least one common vertex of D. )

Definition 6 (Induced Dynamics). An induced dynamics on G is a
conjunctive Boolean network whose dependency graph is G.

» Let Uy = {uq,....uy,},and (yq, ..., yny) be the state of the network.
g1 ym)= | ] v/
UjEUk

where €j; = 1 if uy; is an in-neighbor of u; and €;; = 0 otherwise.
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> G Conjunctive Boolean Networks (CBNs) — Stability

D

D

D

ﬁheorem 1. Let G, = (U, Fy) be an irreducible component of D. \

Then, the following hold:

(1) Let gy be the induced dynamics on G. Then,

gk(XUk) — f[}}]k (X)& Vx € Fg

(2) Suppose that x(ty) is in a periodic orbit; then,

\_ Xgesrmoaps(fo + 1) = xu,(to).




Y
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G Conjunctive Boolean Networks (CBNs) — Stability

/Theorem 1. Let G, = (U, F,) be an irreducible component of D\

Then, the following hold:

(1) Let g be the induced dynamics on Gy. Then,

gk(Xu, ) ngk (x), Vxel.

(2) Suppose that x(ty) is in a periodic orbit; then,

k XU{I<+1 mod p*}(to T 1) — XUk(tU)' /

and the set of binary necklaces of length p*. Moreover, such a bijection

_maps a periodic orbit of period p to a necklace of order p.

(Proposition 5. There is a bijection between the set of periodic orbits

J




G Conjunctive Boolean Networks (CBNs) — Stability

» Let o(s) be the number of “1”s in the Str_ing S = Yo...-Ypr_i.

(Definition 7 (Successor). Let s and s’ be two periodic orbits. Let
x € F) be astateins,andx’ € Z(x). If the trajectory of the dynamics,
with x” the initial condition, enters into s’ (in finite time steps), then

\\we say that s’ is a successor of s, )

4 Definition 8 (Stability Structure). The stability structure of a\
conjunctive Boolean network is a digraph H = (§, A), with the
vertex set being the set of periodic orbits. The edge set of H is
defined as follows: Let s; and s; be in S. Then, s;s; is an edge of H if s;
Is a successor of s;. Furthermore, an edge s;s; of H 1s a down-edge

K(resp. an up-edge) if o(s;) > o(s;) (resp, o(s;) < o (s;)). /




)

w_——

- D G Conjunctive Boolean Networks (CBNs) — Stability
_——

% Our goal here is to determine the edge set A of H. To proceed,
we first introduce a partial order on the set of binary necklaces of
length p*: Lets = yo...yp+—1 and s’ = yg ...y «_; be two binary
necklaces. We say that s is greater than s’, or simply write s > ¢/,
if we can obtain s by replacing at least one “0” in s’ with “1".

ﬁheorem 2. Let D be the dependency graph associated with a CO%
junctive Boolean network, and H = (S, A) be the stability structure.

Let s; and s; be two vertices of H. Then, there is an edge from s; to s; if
and only if one of the following three conditions is satisfied:

(1) Down-edges:s; > sjand o(s;) —o(s;) = 1.
(2) Up-edges:s; < sj, o(sj) —o(si) =1, and D has to be a rose.
K(B) Self-loops: s;i = sj, s # 1...1,and D is not a cycle digraph. /
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@ Controllabilityld _

— Orbit-controllability

— State-controllability



G Conjunctive Boolean Networks (CBNs) — Controllability

» Two questions:

(1) How can one steer the system from any initial state to any desired
periodic orbit?

¢ If this is possible, we say that the system is orbit-controllable and
the subset of variables whose values are determined by external
Inputs (the controls) is termed the orbit-controlling set.
(2) How can one steer the system from any initial state to any desired
final state?

¢ If this is possible, we say that the system is state-controllable and
the subset of variables whose values are determined by external
Inputs (the controls) Is termed the state-controlling set.



G Conjunctive Boolean Networks (CBNs) — Controllability

> Let D = (V, E) be the dependency graph of a CBN. A
node v; of D is said to be alcontrol node)if its value at any
time step is determined completely by an external control input.

> We denote by V' * the subset of V/,

u; (1) ifv, e V",
ri(t) = (3)

fi(x(t —1)) otherwise

4 Definition (Derived Graph [42]): Let D = (V, E) be the\
dependency graph associated with a CBN. Let V* C V be the
set of control nodes associated with system (3). The derived
graph D" = (V, E") is a digraph, with V' the node set and £' =
\E \ Uuev-&En (u) the edge set. )

[42] Z. Gao, X. Chen, and T. Basar, State-controlling sets for conjunctive Boolean networks, in Proc. 20th IFAC
World Congr., Toulouse, France, 14855-14860, 2017.
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Y G Conjunctive Boolean Networks (CBNs) — Controllability

D

D

D

4 Definition 3 (Orbit-Controlling Set): A subset V" C V is an )
orbit-controlling set for (1) if for any initial condition x € FJ
and any periodic orbit O of system (1), there exists a time 7" and
a set of control laws u; (t), forv; € V*and 0 < ¢ < T, such that
the trajectory generated by system (3) with £(0) = x, reaches a

Qtatein@att:T. /

4 Definition 4 (State-Controlling Set): A subset V* C V' 1s a)
state-controlling set for (1) if for any initial condition 2 and any
final state 2™, there exists a time /" and a set of control laws u; (1)
for v; € V¥ and 0 < ¢ < T, such that the trajectory generated

by system (3) with (0) = x, reaches 2™ att = 1'.
Dy 8y (0) y
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Y G Conjunctive Boolean Networks (CBNs) — Controllability
J ¢ Orbit-controllability

D
X g Theorem 1: Letthe dependency graph D = (V, E') of a CBN\
| be strongly connected. Then, a subset V' * 1s an orbit-controlling
D \set it and only if the associated derived graph D’ is acyclic.
S

Recall that Vi, ..., V) are the vertex sets of the cycles of D.
D Then, the statement of Theorem 1 1s equivalent to the following
5 statement: V'* C V' is an orbit-controlling set'if and only if
D ViV, #o, Vi=1,...,N. S)



> G Conjunctive Boolean Networks (CBNs) — Controllability
> ¢ Orbit-controllability

) > The desired periodic orbitis s = Yo - - Ypr—1.
D Algorithm 1: Control Law for Orbit-Controlling.
[: procedure CONTROL(V ", s)
D 2: t<—0
3:  whilex(t) #(1,..., 1) e F3 do
D 4. ry«(t) — (1,..., 1)
S: t—1t+1
D 6:  end while
1. Tt
D) 8: pickanyv; € V¥
9: fort' :=0top*— 1do
D) 10: zi(T4+t) — ypeq_:

[I:  end for
D 12: end procedure
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Y G Conjunctive Boolean Networks (CBNs) — Controllability
J ¢ State-controllability

D / Theorem 2: Let D = (V, F) be the dependency graph as- \
sociated with a CBN. A subset V* C V is a state-controlling

set if and only if the associated derived graph D’ satisfies the

D following conditions.

1) The derived subgraph D' is acyclic.

D

D
2) Forany v € V, there exists a control node v € V™ and an
> \_ integer k > 0, such that N*  (u; D") = {v}. Y,
D
» We do not require that the dependency graph D be strongly connected.
D



> G Conjunctive Boolean Networks (CBNs) — Controllability
> ¢ State-controllability

5 Algorithm 2: Control Law for State-Controlling.
|: procedure CONTROL(V ™, &™)

> I2: 1" — length of the longest path in D’
3: fort:=0to7 do
> 4. for v; € V' do
5: if VL (v;; D')| == 1 then
> 6: if iriﬁ;, (0:D") == 0 then
7: ui(t) «— 0
D 8: continue
9: end if
D) 10: end if
I11: U (it) — 1
D) 12: end for
13: end for
5

[4: end procedure
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> G arge-scale Boolean Networks

Pinning Stabilization
Model Reduction

N
n

D

) A novel
- pinning framework

N

Controllability and Observability
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@ A Novel Pinning Framework

~ Information of network structure is missing

Disadvantages of <

using x(t + 1) = Lx(t) (2) M grows exponentially with network size

~ Difficult for large dimension BNs

Why do we need a
novel framework for
pinning control?

The existing largest BN
model (90 nodes) [27]:

[27] J. Saez-Rodriguez, et a/. A logical model provides insights into T-cell receptor signaling, PLoS Computational Biology 3(8): €163, 2007.
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> g A Novel Pinning Framework

D

D

Definition 2 [28]: (Interaction digraph) The interaction digraph of a BN (2) is a
digraph denoted by G = (V,E), V = {x3,..,x,}. An edge x; — x; exists in G =
(V,E) if and only if logical function f; is dependent on x;.

) (@

VS

C

Interaction digraph (10 nodes)

State transition digraph (21° = 1024 nodes)
J

) C

[28] Faure A, et al. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics, 2006.
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> @ A Novel Pinning Framework

5

5

Lemma 1 [28]: BNs are globally stable if the
corresponding interaction digraph is acyclic.

Steady state
Is unknown!

[Step One: Delete the minimum number of edges

in G=(V,E) , such that 6=(V,E) becomes acyclic.
[29]Global
Stabilization w.r.t. -<
Steady state 6., _ :
Step Two: Transform structure matrices of

controlled nodes, such that (ay, ..., a,) ~ 84 Will
be the unique steady state.

[28] Faure A, et al. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle, Bioinformatics, 2006.

J{
R

Problem 1:

X How to find control nodes? )

N\

Problem 2:

kHow to control these nodes?)

Problem 3:

| How to control Steady State? |

N\

[29] J. Zhong, DW.C. Ho and J. Lu. A New Framework for Pinning Control of Boolean Networks, https://arxiv.org/abs/1912.01411.
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> g A Novel Pinning Framework

5

5

@

Problem 1: Y(F;), minimize the cost function
How to Find :
C, = —
Control Nodes 1= mingle U

subject to constraint

or given set of cycles € = {Cy, ..., C,} and fixed points F = {F;, ..., Fy},
for every i € [1,p] and j € [1, q], we try to find edges e; € Y(C;), E; €

i€[1,p],j€[1,q]
Co=min{lp= ] eUE]}.
k / i€[1,p],5€[1,q] /

Control nodes

el UO_|_ ‘},oO

depth-first search algorithm
+

linear programming method

find the minimum number of edges

that should be deleted

find the minimum number of ending
points for those selected edges

[29] J. Zhong, DW.C. Ho and J. Lu. A New Framework for Pinning Control of Boolean Networks, https.//arxiv.org/abs/1912.01411.
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g A Novel Pinning Framework

[

Step 2.1: Solve Feasible
Structure Matrices

J

[

Step 2.2: Update
Structure Matrices

J

In-neighbors of
ir~neighbors of controlled nodgs controlled node
hat are deleted in G = (¥

\

Consider nodes x;, i € {wy, ..., w|c,|} , that are selected to be controlled,
find matrices A,,, € Ly, 1 A, €L ¥ |- SUCh that
2x 217 @i t 2x 21N o)
. R i _
) Awi = Awi(_[2|_/\_/'wi| X 12|Ngi|),’l, - [1, |Clu
where _ - . €icy
No, =No,\{vi, vy, o Nw|cl| :N“’Icll\{yllclgl""’Vlél|l},
\_ NG =) e NG = oy otialt )

where W; = [x2, W

/I_emma 1: For x,; (t+1) = Ay; %jen,, Xi(t), j € [1,C1], sw the positions of neighbors in the following form:
J

Lo, (t‘l’ 1) — ijwj D<je/\_fwj xli t.) _KJEN% _5’73'(75)7

2,

RGN

I
A

= ij D(jGJ\_/wj mj(t)'lxje_/\/’cj .CUj(t),i
W2|N,§j| oI Nw; | ] ® I2|ij|—|N,§j\> and ij = ijwj'

]I ]

~
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> g A Novel Pinning Framework

N
[ Step 2.3: Solve Matrix Equations J
N
D Solve matrices Mgy, € Lox 4 and K; € L. _ivj1,j € {@y, ..., @)cy )}, from: Must be solvable by
T Pl 130]
D) [ 1AL = Mg, Ko, (Iivey) @ Ay ) @gin, 1
< [Ep— |
D k L A [ M@W|CI|KW|C1|(I2|NMIC1|I ® w|01|)®2|Nw|C1I|'
o)

The updated structure matrix in
Step 2.2

Feasible structure matrix in

[30] F. Li, Pinning control design for the stabilization of Boolean networks, “ [EEE Trans. Neural Netw. Learn. Syst, vol. 27, pp. 1585-1590, 2015.
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5

5

Problem 3:
How to control

Steady State

L/m 5;’,1 =X, 6;“ . Find matrices 4, € L, Wl e
variables 63, ..., 6,, € D, minimize the cost function

C; £ 2”: 0,
i—1

An €L, vy and binary

subject to the following conditions:

/

K 537 = (1= 0:)A; + 6 4] w e, 0570 € [1,m].
Yj

> If 6, =1, 65 =[(1—61) Ay + 61 A1 Xep, 6;/" reduces to 82 =4, Xen, 0,
This implies that node x; should be controlled and its structure matrix A; should be

changed to A4;.
> XiL,06;: the number of further controlled nodes in Problem 3.
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g A Novel Pinning Framework

Example 2: T-Cell receptor signaling BNs (90 nodes) [27]

\',l_" _TFCellrECeproT slgnaling netiork: =) %) ."

File Est View Insert Tools Window Help Cellbetanalyzer |

S| [l

The largest
modeled

Fig. The interaction digraph.

[27] J. Saez-Rodriguez, et al. A logical model provides insights into T-cell receptor signaling, PLoS
Computational Biology 3(8): 163, 2007.
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> @ A Novel Pinning Framework

D

D

The designed pinning control for this network

x1(%) =up Vay, (%) =uzVry, x3(x)=usV s,

xg(%) = ug Ny, To(*) =1wugV [x2 A zy A6 A 7],

T12(x) = w12 V &17, T21(%) = u21 ATar, Toa(*) = ue V To2, x38(%)
Ta7(*) = Uar V Tz, Ts2(%) = Us V Tag, Tes(*) = Ues V Tes, Teo(*)
() = urg Vw78, Tro(*) = urg V Trg;

Uy = 7x1, U2 = T2, U3 = T3, u4(*) = T4,

Ug = T2 N Ty N\ 7Zg, U2 = 7T17, U21 = TT21,

U292 = TT22, U338 = TI38, Uqa7 = T T47, U52 = TT49,
Ugg — 'Teg, U9 — 'Le9, Urgs — T T78, Ur9 — T T79.

Fig. The state transition graph after control.

[29] J. Zhong, DW.C. Ho and J. Lu. A New Framework for Pinning Control of Boolean Networks, https://arxiv.org/abs/1912.01411.
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g Model Reduction

Model Reduction Algorithm

Lemma 8 [41]: Consider the original BN (1) and reduced'
BN (5). Define a projection 11 : {1,0}" — {1, 0} as:

|
model reduction algorithm [41], shown in Algorithm 1. !
: IT(xy,...,x,) = (x1,...,Xr). Thus, the projection II is a,
:
I

1) Delete variables that are nonfunctional, i.e., find vari-
ables x;, such that f;(...,x;,...) = fi(....,—x;,...)
for any (Xy,...,X;_1, Xig1, ..., X,) € D'

2) Delete nodes without self-loop. Let x; be a functional

|

1

1

I

|

: bijection between the set of steady states of reduced BN (5):
I

|

: variable in function f;, which has no selt-loop in WD
:

1

1

I

|

1

1

I

and the set of steady states of original BN (1). I

= (V, E) of BNs. Find all logical functions f; depen-

o

dent on variable x;, then replace function f;(..., x;,...) We can design controller based on the
by fi(..., fi,...).
3) Use jBoolean algebra to simp\lify function f; (..., reduced Boolean networks
Jfivoo). !
ij(r+l)=f1([xj(f)]jem) xi(t+1)= fl([ (f)]j-eg-])
+0=h(50e)  [wern=A(lo0]w)

[41] A. Veliz-Cuba, Reduction of Boolean network models, J. Theor. Biol., 289: 167172, 2011.



> g Pinning Controllability and Observability

5

5

Controllability Criterion

Theorem 1. The BCN is controllable if the following condi-
tions are both satisfied: 1) its NS diagram is acyclic; and 2)
the in-neighbor set of every state vertex is nonempty and only
contains single-source generators and channels.

Lemma 3.1 (See [45], [53]): The BN is observable if its
NS diagram G is of both Properties P; and Ps:

Py: for each non-directly observable vertex X;, there exists a
distinct vertex X; satisfying that A%, = {i}.

P>: for each cycle C composed entirely of non-directly ob-
servable vertices, there exists a vertex X; in C such that
X; is the unique in-neighbor of some other vertex X; not
the part of C, that is, A7, = {i}.

To this end, the NS diagram (also called wiring digraph) of
BN (3) is constructed as an ordered pair G := (V. E). Vertex
set V of NS diagram G consists of two parts: state vertex set
2" and output vertex set ¢, i.e., V= 2 U¥, where 2" :=
{X1. X, . X,} and @ :={Y1.Y>,--- Y, }. Arc set ECV xV
is defined as the set of ordered pairs (X;.X;) satisfying that
J € A}, and ordered pairs (X.Y;) with k € [1, p].

» Zhu S, Lu J, Zhong J, et al. A novel pinning observability strategy for
Boolean networks[J]. arXiv preprint arXiv:1912.02394, 2019.

» Zhu S, Lu J, Azuma S. Pinning Controllability of Boolean Networks:
Application to Large-Scale Genetic Networks[J]. arXiv preprint
arXiv:2007.00171, 2020.

[45] E. Weiss and M. Margaliot, A polynomial-time algorithm for solving the minimal observability problem in conjunctive Boolean networks,

|IEEE Transactions on Automatic Control, 64(7): 2727-2736, 2019.

[53] E. Weiss and M. Margaliot, Output selection and observer design for Boolean control networks: A sub-optimal polynomial-complexity

algorithm, IEEE Control Systems Letters, 3(1): 210-215, 2019.



Some of our recent work!

1.

2.

3.

10.

J. Zhong, DW.C. Ho and J. Lu. A New Framework for Pinning Control of Boolean Networks,
https://arxiv.org/abs/1912.01411.

Zhu S, Lu J, Zhong J, et al. A novel pinning observability strategy for Boolean networks[J]. arXiv preprint
arXiv:1912.02394, 2019

J.Q. Lu*, RJ. Liu, J.G. Lou, and Y. Liu, Pinning Stabilization of Boolean Control Networks via Minimum
Number of Controllers, IEEE Transactions on Cybernetics, doi:10.1109/TCYB.2019.2944659, in press.

B.W. Li, and J.Q. Lu*, Boolean-Network-Based Approach for the Construction of Filter Generators, Science
China: Information Sciences, doi:10.1007/s11432-019-2813-7, in press.

S.Y. Zhu, J.Q. Lu*, T.W. Huang, and Y. Liu, The output robustness of probabilistic Boolean control networks
with  respect to one-bit perturbation, IEEE Transactions on Control of Network Systems,
doi:10.1109/TCNS.2020.2999456, in press, 2020.

S.Y. Zhu, J.Q. Lu*, and Y. Liu. Asymptotical Stability of Probabilistic Boolean Networks with State Delays.
IEEE Transactions on Automatic Control, 65(4): 1779-1784, April 2020.

B.W. Li, J.Q. Lu*, Y. Liu, and Z.G. Wu. The outputs robustness of Boolean control networks via pinning control.
IEEE Transactions on Control of Network Systems, 7(1):201-209, March 2020.

S.Y. Zhu, J.Q. Lu*, and D.W.C. Ho. Finite-Time Stability of Probabilistic Logical Networks: A Topological
Sorting Approach. IEEE Transactions on Circuits and Systems Il: Express Briefs, 67(4):695-699, 2020.

R.J. Liu, J.Q. Lu*, W.X. Zheng, and J. Kurths. Output feedback control for set stabilization of Boolean control
networks. IEEE Transactions on Neural Networks & Learning Systems, 31(6): 2129-2139, 2020.

B.W. Li, J.Q. Lu*, J. Zhong, Y. Liu. Fast-time stability of temporal Boolean networks. IEEE Transactions on
Neural Networks and Learning Systems, 30(8): 2285-2294, August 2019.




Some of our recent work!

118 Zhu, J.Q. Lu*, Y. Liu, T.W. Huang, and J. Kurths. Output Tracking of Probabilistic Boolean Networks by Output

Feedback Control. Information Sciences, 483:96-105, 2019.

12. J.Q. Lu*, L.J. Sun, Y. Liu, D.W.C. Ho, J.D. Cao. Stabilization of Boolean control networks under aperiodic sampled-

data control. SIAM Journal on Control and Optimization, 56(6):4385-4404, 2018.

13, J.Q. Lu*, M.L. Li, TW. Huang, Y. Liu, J.D. Cao. The transformation between the Galois NLFSRs and the Fibonacci

NLFSRs via semi-tensor product of matrices. Automatica, 96:393-397, 2018.

14, J.Q. Lu*, M.L. Li, Y. Liu, D.W.C. Ho, J. Kurths. Nonsingularity of Grain-like cascade FSRs via semi-tensor product.

Science China: Information Sciences, 61(1):010204, 2018.
.R.J. Liu, J.Q. Lu*, Y. Liu, J.D. Cao, and Z.G. Wu. Delayed Feedback Control for Stabilization of Boolean Control
Networks with State Delay. IEEE Transactions on Neural Networks and Learning Systems, 29(7):3283-3288, 2018.

J 16. J.Q. Lu*, H.T. Li, Y. Liu and F.F. Li. Survey on semi-tensor product method with its applications in logical networks

and other finite-valued systems. IET Control Theory & Applications, 11(13): 2040-2047, 2017.
.J. Zhong, J.Q. Lu*, T.W. Huang, D.W.C. Ho. Controllability and Synchronization Analysis of Identical-Hierarchy
Mixed-valued Logical Control Networks. IEEE Trans. Cybernetics, 47(11): 3482-3493, 2017.

~ 18. J.Q. Lu*, J. Zhong, D.W.C. Ho, Y. Tang and J.D. Cao. On controllability of delayed Boolean control networks. SIAM

Journal on Control and Optimization, 54(2): 475-494, 2016.
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