
Optimal control problem of Boolean
Networksp

Series Seven

Lecturer: Yuhu Wu

(School of Control Science and Engineering, Dalian University of Technology)

Center of STP Theory and Its Applications
August 15-23, 2020

LiaoCheng University, LiaoCheng, Shandong, P.R. China



Outline

1 Introduction

2 Related works on Optimal Control Problem

3 Average Optimal control problem for BCNs

4 Policy iteration algorithm

5 Some applications
Output tracking problem for BCNs
Optimal intervention problem of Ara operon in E. coil

6 Future work

7 Reference

2 / 52



Optimal control problems for Boolean
Control Networks (BCNs)

A BCN with n state nodes and m input nodes can be described as
x1(t + 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

...
xn(t + 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)),

(1)

state variables xi ∈ D , {0, 1}, i = 1, · · · , n
control inputs uj ∈ D, j = 1, · · · ,m
Boolean update law fi : Dn+m → D
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Optimal Control Problem for BCN (1) or PBCNs
Finite horizon case

JF(x0) = inf
u

E
w

{
N−1∑
k=0

g(xk, uk) +K(xN)

}
, (2)

Infinite horizon case with discounted criteria

Jπ(x0) = lim
N→∞

E
wk

k=0,1,···

N−1∑
k=0

αkg(xk, µk(xk)). (3)

Infinite horizon case with average criteria

Ja(x0) = inf
u

lim
N→∞

1
N

E
w

N−1∑
k=0

g(xk, uk, k) (4)
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Average Optimal control problem for BCNs

Based on STP, the algebraic expression of BCN (1) is as

x(t + 1) = Ln u(t)n x(t) (5)

For BCN (5) with a control sequence u = {u(t) : t ∈ Z≥0}, consider

J(x0,u) = lim
T→∞

1
T

T−1∑
t=0

g(x(t), u(t))), (6)

where g : ∆N ×∆M → R is the per-step cost function.

Then, the optimal cost problem is to find a optimal control sequence
u∗ = {u∗(t) : t ∈ Z≥0} such that

J(x0,u∗) = J∗(x0) = inf
u

lim
N→∞

1
N

N−1∑
k=0

g(xk, uk, k). (7)
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The infinite horizon problem for deterministic BCNs with average cost
first was addressed by [16]. Based on the graph theory and topology
properties of trajectories, they prove that

Theorem
Then there exists a logical matrix K∗ such that the optimal control u∗(t)
of Problem (12) satisfying{

x∗(t + 1) = Ln u∗(t)n x∗(t),
u∗(t + 1) = K∗ n u∗(t)n x∗(t). (8)

This approach was described as ”This method is very elegant and
has an appealing graph theoretic interpretation” in [17].

16Zhao, Y., Cheng, D., (2011). Optimal control of logical control networks, IEEE Trans-
actions on Automatic Control, 55(8), 1766–1776.

17Fornasini, E., Valcher, M. E. (2014). Optimal control of boolean control networks.
IEEE Transactions on Automatic Control, 59(5), 1258õ1270.
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In [17], the average optimal solution J∗ is obtained as the limit of the
solution of the finite horizon problem

J∗ = lim
T→∞

1
T

J̃∗T

with

J̃∗T = inf
u

T−1∑
t=0

g(x(t), u(t)). (9)

For each T ∈ Z>0, the finite optimal cost (9) can be solved by a value
iteration algorithm, provided in [17, page 1261].

But the number of convergence steps has no upper bound, this ap-
proach may converge to the average optimal solution very slowly.

17Fornasini, E., Valcher, M. E. (2014). Optimal control of boolean control networks.
IEEE Transactions on Automatic Control, 59(5), 1258õ1270.
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Average Optimal control problem for BCNs

Set U = {µ | µ : ∆N → ∆M}.
If a admissible policy π = {µ0, µ1, · · · }, with µi ∈ U , is given

xk+1 = Ln µk(xk)n xk, (10)

then

Jπ(x0) = lim
T→∞

1
T

T−1∑
t=0

g(xk, µk(xk)). (11)

The per-step cost function g : ∆N ×∆M → R can be expressed in the
form 1

g(x, u) = x>Gu, ∀x ∈ ∆N , u ∈ ∆M,

with G = (Gi,j)N×M =
(
g(δi

N , δ
j
N)
)

N×M.

1The linear form of the per-step cost function g : ∆N×∆M → R is g(x, u) = c>nunx,
where c = (c1 · · · , cMN)> ∈ RMN with c(j−1)N+i = g(δi

N , δ
j
M), i = 1, · · · ,N, j = 1, · · · ,M.

This equivalent linear form of cost function g was considered in [17].
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Then, the optimal cost problem is to find a optimal control sequence
u∗ = {u∗(t) : t ∈ Z≥0} s.t.

J(x0,u∗) = J∗(x0) = inf
u

lim
T→∞

1
T

T−1∑
t=0

x(t)>Gu(t). (12)

Consider a deterministic policy π = {µ0, µ1, · · · , },

Jπ(x0) = lim
T→∞

1
T

T−1∑
t=0

x(t)>Gµt(x(t)). (13)
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Hence, referring to Theorem 3.1 of [1], the following result is funda-
mental.

Proposition

For any control law µ ∈ U , there exists a unique logical matrix
Kµ ∈ LM×N , called the structure feedback matrix of µ, such that µ
is expressed in the vector form

µ(x) = Kµx, ∀ x ∈ ∆N . (14)

Under the state feedback control u(t) = µ(x(t)) = Kµx(t), the BCN (5)
becomes a closed-loop system as

x(t + 1) = Lµx(t), (15)

where Lµ = LKµΦn.
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Vector Expression of Cost Function
For a feedback control µ ∈ U , since for any x ∈ ∆N , and µ ∈ U ,

g(x, µ(x)) = xGKµx = x>gµ, (16)

with
gµ =

(
g(δ1

s , µ(δ1
s )), · · · , g(δs

s , µ(δs
s))
)>
. (17)

For any given policy π = {µ0, µ1, · · · }, according to matrix expression
(15) of closed-loop BCN, we have

g(x(t), µt(x(t))) = x(t)>gµt = (Lµt−1 · · · Lµ0 x(0))>gµt = x(0)>
t−1∏
k=0

L>µk
gµt .

Hence, if x(0) = δi
N , then

Jπ(δi
N) = lim

T→∞

1
T

T−1∑
t=0

g(x(t), µt(x(t))) = (δi
N)> lim

T→∞

1
T

T−1∑
t=0

t−1∏
k=0

L>µk
gµt .

Accordingly, we obtain the vector expression of Jπ as

Jπ =
(
Jπ(δ1

N), · · · , Jπ(δN
N )
)>

= lim
T→∞

T−1∑
t=0

1
T

t−1∏
k=0

L>µk
gµt ,
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Vector Expression of Cost Function

Especially, for a stationary policy πµ = {µ, µ, · · · , },

Jµ = Jπµ = lim
T→∞

1
T

T−1∑
t=0

(L>µ )tgµ.

Define the Cesaro limiting matrix L]µ with respect to µ by

L]µ = lim
T→∞

1
T

T−1∑
t=0

(L>µ )t. (18)

Lµ = LKµΦn ∈ LN×N .

L]µ = L]µL>µ = L>µ L]µ.

R(I − LT
µ) < N.
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L]µ = L]µL>µ = L>µ L]µ.

R(I − LT
µ) < N.

Proof.

By ‖Lµ‖ = ‖LKµ‖ ≤ 1, we have ‖L>µ ‖ = ‖Lµ‖ ≤ 1. Hence,

lim
T→∞

‖(L>µ )T − IN‖
T

≤ lim
T→∞

‖Lµ‖T + 1
T

= lim
T→∞

2
T

= 0.

Then, according to definition (18) of limiting matrix L]µ,

L]µL>µ = lim
T→∞

1
T

T∑
t=1

(L>µ )t = L]µ + lim
T→∞

(L>µ )T − IN

T
= L]µ.

We have proved L]µ = L]µL>µ .
It is noticed that

∑N
j=1

[
IN − L>µ

]
ij = 0, for any i = 1, 2, · · · ,N. That

implies 1 = [1, 1, · · · , 1]> ∈ RN is a solution of homogeneous linear
equation(IN − L>µ )x = 0. Hence, Rank(IN − L>µ ) < N.
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Since r = Rank(IN − L>µ ) < N, based on Jordan decomposition, there
is a nonsingular matrix V ∈ RN×N , and a nonsingular upper triangular
matrix S ∈ Rr×r such that

IN − L>µ = V
[

0 0
0 S

]
V−1. (19)

Lemma

For any control law µ ∈ U , matrix IN − L>µ + L]µ is nonsingular. Fur-
thermore, assume that the Jordan decomposition of IN − L>µ is given
by (19), then, Jµ and hµ = H]

µgµ, with

H]
µ := (IN − L>µ + L]µ)−1(I − L]µ), (20)

which can be calculated by
Jµ = V

[
IN−r 0
0 0

]
V−1gµ,

hµ = V
[

0 0
0 S−1

]
V−1gµ,

(21)
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Proof of Lemma: According to Jordan decomposition (19), L>µ = V
[

IN−r 0
0 Ir − S

]
V−1.

Then, by definition (18) of limit matrix L]µ, we have

L]µ = V
[

IN−r 0
0 L]22

]
V−1, (22)

where L]22 = limT→∞
1
T

∑T−1
t=0 (Ir − S)>. Recalling L>µ L]µ = L]µ we get SL]22 =

0. Since S ∈ Rr×r is nonsingular upper triangular matrix, we have L]22 = 0.
Hence, (22) becomes

L]µ = V
[

IN−r 0
0 0

]
V−1. (23)

Then, noticing that Jµ = L]µgµ from (18), we obtain the first equation of (21).
In addition, combining Jordan decomposition (19) and (23), we have

(I − L>µ + L]µ) = V
[

IN−r 0
0 S

]
V−1. (24)

That implies matrix I − L>µ + L]µ is nonsingular, and then

(I − L>µ + L]µ)
−1(I − L]µ) = V

[
0 0
0 S−1

]
V−1. (25)

Hence, by definition of H]
µ, we prove the second equation of (21).
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Remark
From the proof of Lemma 2, we can observe that Jµ satisfies

Jµ = L>µ Jµ,

which is a direct consequence of (21).

The following theorem provides an optimality criterion for the average
optimal control problem of BCNs.

Theorem

Suppose there exist two vectors (J, h) ∈ RN × RN which satisfy the
following nested optimality condition, for each i = 1, · · · ,N,

min
µ∈U

[
(L>µ − IN)J

]
i
= 0, (25-a)

min
µ∈Ui

[
gµ − J + (L>µ − IN)h

]
i
= 0, (25-b)

where Ui =
{
µ ∈ U

∣∣∣[(L>µ − IN)J
]

i
= 0

}
Then, J is the optimal cost of the average optimal problem (12), i.e.,

J = J∗.
18 / 52



Remark
In [12], a policy iteration algorithm for PBCNs was deduced under the
assumption that the PBCN is ergodic, which requires that the tran-
sition matrix of PBCN for every stationary policy consists of a single
recurrent class.
But their approach are no longer applicable for the general PBCN [13].

S4S3

S1 S2

1 1

0.7

0.7

0.3 0.3

(a) When u = δ1
2 .

S4S3

S1 S2

1 1

0.3

0.3

0.7 0.7

(b) When u = δ2
2 .

Figure 1: The transition probability diagram

12Pal, Datta, Dougherty, IEEE TSP, 2006.
13Wu, Toyoda, Guo, IEEE TNNLS, 2020.
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Proof of Theorem: Condition (25-a) and (25-b) imply there exists a
µ′ ∈ U s. t., for each i = 1, · · · ,N,

[
(L>µ′ − IN)J

]
i
= min
µ∈U

[
(L>µ − IN)J

]
i
= 0, (26)[

gµ′ − J + (L>µ′ − IN)h
]

i

= min
µ∈U

[
gµ − J + (L>µ − IN)h

]
i
= 0. (27)

Equation (27) implies

J = gµ′ + (L>µ′ − IN)h.

Multiplying the above equation by L>µ′ and applying equality (26) yield

J = L>µ′J = L>µ′gµ′ + L>µ′(L>µ′ − IN)h.

Repeating this process with induction, we get, for any n ∈ Z≥0,

J =
(
L>µ′
)n

gµ′ +
(
L>µ′
)n

(L>µ′ − IN)h. (28)

Summing those expression over n, we have

nJ =

n−1∑
t=0

(L>µ )tgµ +
[(

L>µ′
)n − IN

]
h.
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Continue to Proof of Theorem: Noticing that
∥∥[(L>µ′)n − IN

]
h
∥∥ ≤

2‖h‖, and applying equation (18), we deduce that, for all i = 1, · · · ,N,

[J]i = lim
n→∞

[
1
n

n−1∑
t=0

(L>µ )tgµ

]
i

= [Jπµ′ ]i ≥ inf
π∈Π

[Jπ]i = [J∗]i .

Next, we claim that if (J, h) ∈ RN × RN satisfies the nested optimality
condition (25), then there exists a C ≥ 0 such that J and ~ = h+CJ sat-
isfy the following modified optimality condition, for each i = 1, · · · ,N,

min
µ∈U

[
(L>µ − IN)J

]
i
= 0, (30-a)

min
µ∈U

[
gµ − J + (L>µ − IN)~

]
i
= 0, (30-b)

Notice condition (30-b) is the same as condition (25-a). If (J, h), given
in (25), satisfy (30-b), then we just set ~ = h with C = 0. Suppose J and
h do not satisfy (30-b), then for some i0 ∈ {1, · · · ,N}, and µ0 ∈ U\Ui0 ,
we have

C1 =
[
gµ0 − J + (L>µ0

− IN)h
]

i0
< 0,

Furthermore, µ0 ∈ U\Ui0 implies

C2 =
[
(L>µ0

− IN)J
]

i0
> 0
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Continued to Proof of Theorem: Now, let ~ = h + C3J, where C3 > 0
will be given latter. Then[

gµ0 − J + (L>µ0
− IN)~

]
i0

=
[
gµ0 − J + (L>µ0

− IN)h + C3(L>µ0
− IN)J

]
i0

= C1 + C3C2.

Hence, taking C3 large enough such that C3 >
|C1|
C2

, we have[
gµ0 − J + (L>µ0

− IN)~
]

i0
> 0. (31)

Since there exist only finite states and control inputs, we can choose
large enough C3 for which (30-b) holds for all i = 1, · · · ,N and µ ∈ U .
For any policy π = {µ0, µ1, · · · , } ∈ Π, condition (25-a) implies{

[J]i ≤
[
L>µ0

J
]

i
, (32)

[J]i ≤
[
gµ0 + (L>µ0

− IN)~
]

i
, (33)

for all i = 1, · · · ,N, and applying condition (30-b) to µ1 implies

[J]i ≤
[
gµ1 + (L>µ1

− IN)~
]

i
, ∀i = 1, · · · ,N. (34)

Multiplying above expression by L>µ0
and applying inequality (32) yields,

for any i = 1, · · · ,N,
[J]i ≤

[
L>µ0

J
]

i
≤
[
L>µ0

gµ1 + L>µ0
(L>µ1

− IN)~
]

i
.
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Continued to Proof of Theorem: Repeating this process with induc-
tion, we get, for any n ∈ Z≥0

[J]i ≤
[
L>µ0
· · · L>µn−1

gµn + L>µ0
· · · L>µn−1

(L>µn
− IN)~

]
i
,

where set Lµ−1 = IN , when n = 0. Summing those expression over
n + 1, we have, ∀i = 1, · · · ,N,

[J]i ≤
1

n + 1

[
n∑

t=0

t−1∏
k=−1

L>µk
gµt

]
i

+

[
(L>µ0
· · · L>µn−1

L>µn
− IN)~

]
i

n + 1
.

Furthermore, noticing that ‖(L>µ0
· · · L>µn−1

L>µn
− IN)~‖ ≤ 2‖~‖, we get

that, for all i = 1 · · · ,N,

[J]i ≤ lim
n→∞

[
1

n + 1

n∑
t=0

t−1∏
k=0

L>µk
gµt

]
i

= [Jπ(x0)]i ,

In consideration of the arbitrariness of π, we get for all i = 1 · · · ,N,

[J]i ≤ inf
π∈Π

[Jπ]i = [J∗]i. (35)

Finally, combining (29) and (35), we obtain J = J∗, and finish the proof.
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Algorithm (Policy iteration for optimal problem (12))

Step 0. Initialization: Given an initial policy µ0 ∈ U .
Step 1. Policy Evaluation: for policy µn, compute Jµn , hµn

Step 2. Policy Improvement:
2.A Choose policy µn+1 s. t. Kn+1 = LN [qn+1

1 , · · · , qn+1
N ] satisfy,

qn+1
i ∈arg min

j=1,··· ,M

{
(δi

N)> n (δj
M)>L>Jµn

}
, i = 1, · · · ,N,

and set qn+1
i = qn

i , if possible.
2.B If µn+1 = µn, go to (2.C); else return to Step 1.
2.C Choose policy µn+1 s. t.

qn+1
i ∈arg min

j=1,··· ,M

{
Gij + (δi

N)> n (δj
M)>L>hµn

}
, i = 1, · · · ,N,

and set qn+1
i = qn

i , if possible.
2.D If µn+1 = µn, stop and set µ∗ = µn; else return to Step 1.
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Now we provide the Laurent series expansion of (IN − αL>µ )−1, and a
monotonicity criterion.

(1− x)−1 =
1

1− x
=

∞∑
i=0

xi = 1 + x + o(x)

Lemma

For any feedback control law µ ∈ U , we have, 0 < α < 1,

(IN − αL>µ )−1 =
1

1− α
L]µ + H]

µ + F(α, µ), (36)

where F(α, µ) ∈ RN×N denotes a matrix which converges to zero as
α→ 1.
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Proof of Lemma: For 0 < α < 1, we take α = 1
1+β , β > 0, then

IN − αL>µ =
1

1 + β
[βIN + (IN − L>µ )].

By Jordan decomposition (19),

βIN + (IN − L>µ ) = V
[
βIN−r 0
0 βIr + S

]
V−1.

Hence,

(IN − αL>µ )−1 =
β + 1
β

V
[

IN−r 0
0 0

]
V−1 + (β + 1)V

[
0 0
0 (βIr + S)−1

]
V−1. (37)

We now analyze (βIl + S)−1. (βIr + S)−1 = [(Ir + βS−1)S]−1 = S−1(Ir +
βS−1)−1. Notice that, when 0 < β‖S−1‖ < 1, then Ir +βS−1 has inverse,
and its inverse can be expressed as [Ir + βS−1]−1 =

∑∞
i=0(−β)iS−i.

Hence,

(βIr + S)−1 = S−1(Ir + βS−1)−1 = S−1 − β
∞∑

i=0

(−β)iS−i−2 (38)
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Substituting (38) into (37), we get

(IN − αL>µ )−1 =
β + 1
β

V
[

IN−r 0
0 0

]
V−1 (39)

−β(β + 1)V
[

0 0
0
∑∞

i=0(−β)is−i−2

]
V−1

+(1 + β)V
[

0 0
0 S−1

]
V−1 =

β + 1
β

L]µ + Hµ+ F(α, µ),

with

F(α, µ) := βHµ − β(β + 1)V
[

0 0
0
∑∞

i=0(−β)iS−i−2

]
V−1.

where we used (22), and (25) in the last step of (39). Finally, by
noticing β+1

β = 1
1−α , and when α → 1, we have β = 1−α

α → 0, and
β(β + 1) = 1−α

α2 → 0. Accordingly, F(α, µ) → 0, as α → 1. We com-
plete the proof.
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Proposition

For any µ, η ∈ U , define three special subsets of ∆N ,

Se(µ, η) = {δi
N |µ(δi

N) = η(δi
N)}, (40)

S1(µ, η) =
{
δi

N

∣∣∣[L>η Jµ
]

i
<
[
L>µ Jµ

]
i

}
, (41)

S2(µ, η) =

{
δi

N

∣∣∣∣ [L>µ Jµ
]

i
=
[
L>η Jµ

]
i
, and[

gη + L>η hµ
]

i
<
[
gµ + L>µ hµ

]
i

}
(42)

If

∅ 6= (Se(µ, η))
C ⊂ (S1(µ, η) ∪ S2(µ, η)) , (43)

then

lim
α↑1

Jαη � lim
α↑1

Jαµ , (44)

where, for all 0 < α < 1,

Jαη := (IN − αL>η )−1gη.

28 / 52



Algorithm (Policy iteration for optimal problem (12))

Step 0. Initialization: Given an initial policy µ0 ∈ U .
Step 1. Policy Evaluation: for policy µn, compute Jµn , hµn

Step 2. Policy Improvement:
2.A Choose policy µn+1 s. t. Kn+1 = LN [qn+1

1 , · · · , qn+1
N ] satisfy,

qn+1
i ∈arg min

j=1,··· ,M

{
(δi

N)> n (δj
M)>L>Jµn

}
, i = 1, · · · ,N,

and set qn+1
i = qn

i , if possible.
2.B If µn+1 = µn, go to (2.C); else return to Step 1.
2.C Choose policy µn+1 s. t.

qn+1
i ∈arg min

j=1,··· ,M

{
Gij + (δi

N)> n (δj
M)>L>hµn

}
, i = 1, · · · ,N,

and set qn+1
i = qn

i , if possible.
2.D If µn+1 = µn, stop and set µ∗ = µn; else return to Step 1.
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Proposition 5.1 guarantees that the policy iteration process terminates
in finite steps.

Remark

In [17], the average optimal solution J∗ is obtained as the limit of the
solution of the finite horizon problem

J∗ = lim
T→∞

1
T

J̃∗T

with

J̃∗T = inf
u

T−1∑
t=0

g(x(t), u(t)). (45)

For each T ∈ Z>0, the finite optimal cost (45) can be solved by a value
iteration algorithm, provided in [17, page 1261].

17Fornasini, E., Valcher, M. E. (2014). Optimal control of boolean control networks.
IEEE Transactions on Automatic Control, 59(5), 1258õ1270.
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Example

Consider the following BNC{
x1(t + 1) = (x2(t) ∨ u1(t)) ∧ ¬u1(t),
x2(t + 1) = (x1(t) ∨ u1(t)) ∧ ¬u1(t) (46)

The corresponding state transition diagram is shown in Fig. 2.

(a) When u = δ1
2 . (b) When u = δ2

2 .

Figure 2: State transition diagram.
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Based on STP techniques, the algebraic form of (46) is

x(t + 1) = Ln u(t)n x(t)

with x(t) = x1(t)n x2(t), and

L = δ4[1 3 2 4 1 1 1 1]

Assume that the cost function g is given by following cost matrix

Gε =

(
0 1 1 1
ε ε ε ε

)T

.

with parameter ε > 0.

32 / 52



Then, applying the value iteration algorithm given in [17, Sec. III] it is
obtained that

1
T

J̃∗T =

{
[0, ε, ε, ε]>, for T ≤

⌊ 1
ε

⌋
,[

0, εT
⌊ 1
ε

⌋
, εT
⌊ 1
ε

⌋
, εT
⌊ 1
ε

⌋]>
, for T >

⌊ 1
ε

⌋
,

the optimal controller has the time-varying state feedback form µ∗t (x) =
K∗µt

x, for all x ∈ ∆N , with structure matrix

K∗µt
=

{
δ4[2, 1, 1, 1], for t ≤

⌊ 1
ε

⌋
,

δ4[2, 2, 2, 2], for t >
⌊ 1
ε

⌋
.
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Accordingly, the convergence depends on the choice of the cost
function Gε.

For every ε ∈ (0, 1), the ε
2 -tolerance approximate optimal cost

require 2
⌊ 1
ε

⌋
+ 1 steps in this value iteration approach.

The number of iteration steps is no upper bound

2 b1/εc+ 1→∞

as ε→ 0,

The convergence of this approach is very slow.
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Initialization: The initial policy µ0 is selected as µ0(x) = L4[1, 1, 1, 1]x,∀x ∈
∆12.

Policy Evaluation:
Applying Lemma 2, obtain Jµ0 = [1, 1, 1, 1]

T , hµ0 = [0, 0, 0, 0]
T
.

lPolicy Improvement:
Substep (2.A), obtain µ1 with K1 = L4[1, 1, 1, 1];
Substep (2.B), since µ1 = µ0, go to (2.C);
Substep (2.C), renew policy µ1 with K1 = L4[2, 1, 1, 1];
Substep (2.D), since µ1 6= µ0, return to the Step 1.

...

Substep (2.D) of the third iteration µ3 = µ2.

Hence, µ2 is optimal with K2 = L4[2, 2, 2, 2] and the corresponding
optimal performance is

J∗ = Jµ2 = [0, 0, 0, 0]>.
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Complexity analysis.
In Step 1 of Algorithm 5.2, since for each µ ∈ U , IN − L>µ is a
special sparse matrix with τ(IN − L>µ ) ≤ 2N. Hence, according
to [11], the complexity of Jordan decomposition (19) in Step 1 is
O(N2).

Furthermore, in the computation of Jµn , and hµn , the matrix-vector
multiplication performs 3N2 scalar multiplication and 3N(N − 1)
additions.

Thus, in each loop, the complexity of Step 1 (Policy evolution) is
O(N2).
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Since Substep 2.B and 2.D in Algorithm 1 are decision making
statements, Policy improvement has two main part as: Substep
2.A and Substep 2.C.

The argmin process in Substep 2.A is accomplished with M − 1
comparisons. Furthermore, recalling each column of Lµ has a
unique nonzero entry, Substep 2.A need N(2M − 1) operations.
Similarly, Substep 2.C of Policy improvement need N(3M− 1) op-
erations.
Thus, in each loop, the complexity of Step 2 (Policy improvement)
is O(NM).
As a result, the complexity of each iteration loop of Algorithm 5.2
is

O(N2 + NM).
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The worst case possibility of iteration number is MN − 1.
Hence, the total computational complexity of Algorithm 5.2 is

O(MN · (N2 + NM)).

The value iteration approach [17] is a ε-suboptimal approximation
process, given error tolerance ε.

Notice that the complexity of each value iteration loop is O(NM).

Hence, the total complexity of the VI algorithm [17] is

O(Ñ(ε) · NM),

with iteration number Ñ(ε), which depends on error tolerance ε.
The iteration numbers is not upper bounded, i.e.,

lim
ε→0

Ñ(ε) = +∞.

17Fornasini, E., Valcher, M. E. (2014). Optimal control of boolean control networks.
IEEE Transactions on Automatic Control, 59(5), 1258õ1270.
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Output tracking problem for BCNs

Consider the following BCN with output{
x(t + 1) = Ln u(t)n x(t),
y(t) = Cx(t), (47)

The output tracking problem for network (47) with x(0) = x0 is to design
a control input u = {u(t) : t ∈ Z≥0}, s.t. the output y(t; x0,u) tracks a
given reference yr ∈ ∆P, that is, there exists an integer τ > 0 such that
y(t; x0,u) = yr, for all t ≥ τ.

A constructive procedure was designed in [13] to obtain output tracking
state feedback controllers for BCNs.

13Li, H., Wang, Y., Xie, L. Output tracking control of boolean control networks via state
feedback: constant reference signal case. Automatica, 2015.
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For the reference signal yr = δαP , define a set, denoted by S(α) ⊂ ∆N ,
as S(α) = {δr

N : Colr(C) = δαP , 1 ≤ r ≤ N}.

Now define a special per-step cost function g associate with δαP as

g(δi
N , δ

j
M) =

{
0, if δi

N ∈ S(α),
1, if δi

N 6∈ S(α).
(48)

Theorem

The output of network (47) tracks the reference signal yr = δαP by a
control sequence u if and only if u can solve the optimal control prob-
lem (12) with per-step cost g given by (48), and J∗ = 0.
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Optimal intervention of Ara operon in E. coil

We consider an optimal intervention problem of Ara operon in E. coil .
[12], shown in Fig. 3, and the update logics is

fA = Ae ∧ T,

fAm = (Aem ∧ T) ∨ Ae,

fAra+
= (Am ∨ A) ∧ Ara− ,

fC = ¬Ge

fE = MS

fD = ¬Ara+ ∧ Ara− ,

fMS = Ara+ ∧ C ∧ ¬D,

fMT = Ara+ ∧ C,

fT = MT .

(49)

Here, four Boolean control parameters are Ae, Am, Ara−, and Ge, re-
spectively.
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Optimal intervention of Ara operon in E. coil

AeA

Ge C

Ara+

MSE

T

MT

DAra-

Am Aem

Figure 3: A Boolean model of Ara operon in E. coil. MS denotes the mRNA of
the structural genes (araBAD), MT is the mRNA of the transport genes (araE-
FGH), E is the enzymes AraA,AraB, and AraD, coded for by the structural
genes, T is the transport protein, coded for by the transport genes, A is the
intracellular arabinose (high levels), Am is the intracellular arabinose (at least
medium levels), C is the cAMP−CAP protein complex, D is the DNA loop, and
Ara+ is the arabinose-bound AraC protein.
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Optimal intervention of Ara operon in E. coil
According to Th. 5. 2 of [1], Monostability and Bistability of this net-
work was considered in [7].

Figure 4: The state transition graph of Ara operonp.

1D. Cheng, H. Qi, and Z. Li, Analysis and Control of Boolean Networks: A Semi-
Tensor Product Approach, Springer, 2011.

7S. Chen, Y. Wu, M. Macauley, X. Sun, Monostability and Bistability of Boolean Net-
works Using Semitensor Products, IEEE TCNS, 2019
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Optimal intervention of Ara operon in E. coil

Set
(A,Am,Ara+ , C,E,D,MS,MT ,T)= (x1, x2, x3, x4, x5, x6, x7, x8, x9)

(Ae,Aem,Ara− ,Ge) = (u1, u2, u3, u4)

Then, based on STP, the vector expression of Boolean network (49) is
obtained as

x(t + 1) = Lu(t)x(t),

with a structure matrix
L ∈ L29×213 .

Consider the average cost problem, with the cost function g : ∆29 ×
∆24 → R as

g(x, u) = g(n9
i=1xi,n4

j=1uj) = AX + BU. (50)
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Optimal intervention of Ara operon in E. coil

According to discussion for the lac operon in [18], weight vectors are

A = [−28,−12, 12, 16, 0, 0, 0, 20, 16], B = [−8, 40, 20, 40].

Then, applying Algorithm 5.2
the optimal performance J∗(x) ≡ −4, for all x ∈ ∆512,

optimal feedback control law µ∗(x) = δ9
16, for all x ∈ ∆512,

optimal stationery control parameters are (Ae,Am,Ara−,Ge) = (1, 0, 0, 0).
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Optimal intervention of Ara operon in E. coil

Figure 5: The state transition graph of the lac operon with control parameters
(Ae,Am,Ara−,Ge) = (1, 0, 0, 0). The unique steady state (0, 1, 0, 1, 0, 0, 0, 0, 0),
correspond to δ161

512 , is represented by a blue dot, and all transient states are
denoted by red dots.
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Optimal intervention of Ara operon in E. coil

The optimal approximation cost 1
T Ĵ∗T (x0) of the value iteration approach

[17] with six different initial states are shown in Fig 6.
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Figure 6: Value iteration approximation result for the Ara operon Network with
different initial states.
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Optimal intervention of Ara operon in E. coil

As both algorithms ran on the same computer, iteration numbers are
collected in Table 1.

A computer with Quad-Core 3.2 GHz processor and 8 GB RAM mem-
ory.

Table 1: Comparison of iteration numbers and running times

Policy Value Iteration
Iteration ε = 0.5 ε = 0.1 ε = 0.005

Iteration
Numbers

3 113 561 11187

Running
Time
(Sec)

8.53771 1.97353 9.17410 556.41600
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Future work or challenge

Data Driven Identification and Control

Reinforcement Learning, such as Q-Learning

Computational Complexity
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