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Singular Boolean networks

Background:

» It is well known that singular systems, which are also referred to as
differential-algebraic equations, descriptor systems or implicit systems,
are often much more convenient and natural than standard models in
the description of many science and engineering systems.

» Singular Boolean networks (SBNs), are also called dynamic-algebraic
Boolean networks, which are much more effective than standard
Boolean networks for describing many science systems, due to the
existence of algebraic constraints in the relations between states for
practical scene.
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Description of singular Boolean networks

» Dynamic logical equations with static logical equations constraints

Consider the following Boolean network with n nodes [21], which has r dynamic logical equations and

n — r static logical equations:

~

o = mm Em Em = = = e = E—
N

where fj(z1(t), z2(t),...,zn(t)), j = 1,2,...,n are logical functions of z(t), z2(t),. ..

b)

1y =2,7=r+1Lr+2,...,n

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013

(z1(t+1) = fr(z1(t), 22(2), . .
zo(t + 1) = fa(z1(2),

zr(t+1) = fr(z1(t), z2(7), . .
0 = frya(za(t), z2(t), - ..



Description of singular Boolean networks

where x; € Dy are logical variables and f; : Bl — Dy,
¢ = 1,2, . n are k-valued logical functions.

1 \
conventional Boolean networks 0

r(r < n) dynamic logical equations

n — r static logical equations

dynamic-algebraic Boolean networks

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



Description of singular Boolean networks

In the n — r static logical equations of (1), assume that x,41,Z,4+2,...,%, can be represented by
r1,xo,...,x,; that is, there are logical functions fj of logical variables (z1,z2,...,2,) such that z; =
fi(x1,22,...,2),5 =7+ 1,7 +2,...,n. Substituting them into (1), we have the equivalent form of (1):

,/ z1(t + 1) = fu(z1(t), z2(8), . . ., 2 (1)), b
: a:z(t—i-l) =f2(331(t),332(t),---»xr(t))a :
: I

: |
: § xp(t+1) = fr(z1(t), 22(2),. .., z.(2)), 2 :
: 5177'+1(t) = fr+1(:131(t),33'2(t),...,xr(t)), I
: |
: I
N L) = @@, e0), o/

Filmaf)s e x5 ZelE)) = Folma()so2 s 2al0)s Frsa (B0 (Bscc « - BB s . Fosl0 (8505 4 5 B (B))):

Furthermore, given initial value (x,(0), x,(0), ..., x,-(0)) all logical variables (x, (t), x,(t), ..., x,(t) ) of (2) are
determined at any time t.

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



Description of singular Boolean networks

Example 1.

p

At +1) = B(t) AC(1),
< B(t + 1) == _'A(t), Figure 1 The solid line represents dynamic relation-

63 = (A(t) = B(t)) & C(t).

ships; while the dash line represents static ones.

p

A(t+1) = B(t) A(A(t) — B(t)),
¢ B(t+1)=-A(t), Y
C(t) = A(t) — B(t),

\

Figure 2 A — B means that A(t) affects B(t + 1);
A --» C means that A(t) affects C(t) not C(t+ 1).
Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



[ » Two kinds of algebraic form of (1)]

z1(t + 1) = fi(zalt), 22(t), -« = s Tr(E))s
ZEQ(t -+ 1) = f2(l‘1(t),£€2(t), o @ ,wn(t)),
: STP
L et +1) = fr(ea(t).22(0), ... alt),
5;T+1 - f?”-i-l(xl (t)) l‘g(t), i 8 7wn(t))?
\ 5? - fn(xl(t)axQ(t)’ <o ’xn(t))v
STP

~

@other condensed algebraic expression of
(1)
Ex'(t+1)=Mz(t) a2
ol (t+1) = xT_jzi(t+1)
3(t) = X7y @i(t)

E=1I- ®5én—r € Lonxor /

.

1 (t + 1) = Mll'(t),
xz(t + 1) = MQ.’L’(t),

(21(t+1) = Myz(t), '

zr(t+1) -= er(tﬂ

5% = MT+1w(t)a

-t + 1) = M, z(t),
02(1, 1zr41(t + 1) = Mriaz(?),

| 85 = ML), | 02[1, 1]z, (¢ + 1) = M, z(t).

STP

(t+1) = Ma(t)

a(t) = wil zi(t)
M = My * My *---% M,
E = I‘zr & 6211—1'[1, 1,..., ].]

Matrix E is a singular one, the
BN (9) (or its equivalent form
(1)) is a singular BN
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Normalization of singular Boolean networks
> Problem statement [

Normalization problem of singular
Boolean networks

If E is a nonsingular logical matrix,

x(t+1) = Mx(t) == ETMx(t)

Ex(t+1) = Mx(t). (13)
2(t) = X7, z:(t) If E is singular Iogic_al matrix, when or hqw can Ex(t+1) =

= Mx(t)be converted into a normal dynamic Boolean network

E, M € Lonxon with an algebraic constraint?
ﬁc(t +1) = Ma(t) \

rank(F) =2" < 2"

ﬁ)efinition 2: Consider the singular Boolean network (13) Th o — T
normalization problem is solvable, if we can find a coordinate
transformation z = T x such that under z coordinate frame, the ~1 (t+1) = J\_le(t),
singular BN (13) is equivalent to the following BN: (15)

5%”,_7» — Mzz(t),

(14) get 22(t) = M2z'(t) from 8}, = M?z(t)

{zl(t+ 1) = ML21(0),
22(t) = M?21(t),

where z(t) = z1(¢) x 22(t), M! € Larxor and M2 € Lon—ryor. Zl (t SIS 1) = Mlzl (t),
\_ [P0 -r0), Y.

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013




Normalization of singular Boolean networks

» Solvability of the normalization problem et et o eron ]
1 va! (& (& . €9 on
2 (t+1)=M" z(1), B 2,1 2,2 2,2
Ex(t+1) = Ma(?) 1( )-2 O sy E=| 07 |
52“*?" =M Z(t):
| €2n1 €2n2 ... €gnom |

Theorem 1. There exist nonsingular matrices P, Q) all belonging to Lon «on such that PEQ) = I» @ L
: : . i : . gn
with L € Lon-+yon-» being a constant mapping matrix, if and only if, for any row of F, either ijl € =
2“ — n—r
Oor > 5 €,; =2""".

I

Theorem 2. The solvability of converting (13) into (15) is equivalent to, for any row of matrix E, either.
Zizl ei,j =0or Z?Zl ei'j = 27T

Without loss of generality, we assume that L = §,n-r[1,1, ..., 1] .

Ex(t+1) = Mz(t)—>PEz(t + 1) = PM2(t) 2=9_%, PEQ:(t + 1) = PMQ=(t).
PEQ =1 oL Il ‘@F PEQz(t+1) =z (t +1) x Lz*(t + 1)
PHe e PMQz(t) = Myz(t) x Moz (1)

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013

2t +1) X Sgner = My2z(t) x Maz(t)



Normalization of singular Boolean networks

biconditional matrix

{ 2Lt +1) :Ml (t) {zl(t+1) = M2\ (b),

B = M \ 2(t) = M?21(2), ME = Gk koo kLo L he ke ko 1] € Lpge
‘j N —’ N —
k S k
\
\
Theorem 3. 2z*(t) can be solved from &;,_, = M?z(t), if M? =
the biconditional matrix, and M? € Lon—ryor.
Proof.  If M? = M., M?, then we get 83, , = M, M?z'(t)z*(t). Thus we have z2(t) = M?z!(t).
this condition is not necessary
I Corollary 1. Assuming matrix M? = 0gn-r[i1.i0,...,d90] € Lon-ryon, if there exist biconditional |
: matrix Mo, € Lon-ryo20n-r and M? € Lon-ryor such that M? = M., M?, then the numbers of 1 and |
2" in {4142, .. ion f are 2777 and (2" — 2"77), respectively. '

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



Normalization of singular Boolean networks single-conditional logical matrix set
ME = {81 dd,48, ik, 1, 1R R iR ) € Lyge )
N’

with’.id', #1,1=1,2,...,k—1,5=1,2,... k.

(Theorem 4. 22(t) can be uniquely solved from 6%, ., = M?z(t) if and only if M? = M_M?, Where\

21! i
M_ € M2 C Lyn—rp20:—n is a single-conditional matrix, and M? € Lon—r o
Proof.  (Sufficiency) If M? = M_M?. then we get 6}, , = M_M?z'(t)z?(t). Thus we have z°(t) = |
M?z1(t).
(Nocoq%itx) Assume that z2(t) can be uniquely solved from 4%, , = M?z(t). Assume that 22(¢) =
\f’l[z z!(t). Then 8}, , = M_M?z'(t)z*(t). Therefore, M* = M_M? is derived. j
{ T TsEEsEEsEEsE TS EEEEEEEEEEEEEEEEEEEE R N
Corollary 2. Split matrix M2 = 6on-r[i1,i2,...,490] € Lon-ryon into k equal size parts, that is, |
M? = §5n-r [i1,42y . yihy| «voy| d2n—gt1, 427 —kt2, ..., dQ2n], then there exist a single-conditional matrix I
I M= € ﬂ[i" " C £2,L rsg2tmn—r) and M2 € Lon—ryor bU.Ch that M2 = M_M?2, if and only if there is only I
| one 55,1,,‘ in every part. :
N e e e e o e e e b M M oo J
[ =2 = 2 =9 1 - )
11 M7 o M7 an Corollaries 1 and 2
=2 — =2
72 ma 1 ms o my on

. , : z2(t) cannot be solved from
=2 =5 o = 82nr—MZZ(t)lf221rT11]¢2nr

18 27L T 27L
Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013 \ /




Normalization of singular Boolean networks

» The normalization of Ex! (¢t + 1) = Mx(t)
As for the normalization problem for the second form of singular Boolean network, that is,

Ex'(t+1) = Mx(t), (25)

where 21 (t + 1) = x"_,x;(t + 1), 2(t) = x?_,z;(t), E € Lonx2r, we have the following.

[ Theorem 5. Singular Boolean network (25) has equivalent form (15), if and only if E € L,n ., is full of column ]
rank.

Proof.  The necessity is obvious. Here only give the proof of the sufficiency. Assume that E € Lon xor
is full of column ranks. Then via some row permutations, that is, with nonsingular matrix P € Lan xon,

we obtain
PE = 63n [1,2" " +1,2-2"7"4+1,...,(2" =1)- 277" +1].

It is easy to check PE = I»r ® (5%n_r. Then left-multiplying matrix P in both sides of (25), we get
PEz'(t + 1) = PMx(t). For the left side of PEx!(t + 1) = PMx(t), we have PEx!'(t + 1) = z!(t +
1) X 83,.-.. Additionally, for the right side, there exist matrices My € Loryon, My € Lon—ryon such that
PMz(t) = Myz(t) x Maz(t) with PM = M x Ms. Thus we have z'(t + 1) X 85, = Miz(t) x Maz(t),
which is equivalent to
1 — Al
{z (t+1) = Ma(t). (26)
55,14 = M?z(t).

Eq. (26) is just same as (15).
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Solvability of singular Boolean networks

Consider solution problem about the following dynamic Boolean equation:

Gz(t+1) = Ha(t) (27)

.
?

where z(t) = xI'_z;(t), G,H € Lanxon. It is easy to see that, for any initial value 2(0), Eq. (27) has
solution z(t) if and only if rank[G' H| = rank[G]. First we discuss the uniqueness of the solution. See the
simple numerical example below.

Example| Consider: Gz(t + 1) = Hxz(t),

[ & i k| (4 & @ @]

001 0 01 0 0
G—_— H:

00 0 1 00 0 1

0 0 0 0 00 0 0

» rank|[G H] = rank[G]; for any initial value x(0), Gx(t + 1) = Hx(t) has solution x(t).
> When x(0) = [1000]T or x(0) = [00 1 0]7, the solution is not unique.

> When x(0) = [0 0 0 1]T, the solution is unique.

> When x(0) = [0 1 0 0]T, the solution in the first step is unique, while in the second step it is not.

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



Solvability of singular Boolean networks

For the same row of G and H, take i th row.
Gz(t+1) = Hx(t),

If ¥42, gij > 1, X2, hy; # 0, then the solution x(t + 1)

$i  Gia ¢ Gig Bii Taa =i Bigs || is not unique for initial value x(0) satisfying Hx(0) =
921 922 - G22n haa  h2p  --- haon on.

G = ; ; : , H= ; . ;
Gowp Howg =~ Gisan Bony hong +++ honon If ] 2,9i =0, Zzn h;; # 0, then the Eq. does not

have solution for initial value x(0) satisfying Hx(0) =
i

Theorem 6. Singular Boolean equation (27) has a unique solution for any initial value :1:( ) if and only
if rank[G H| = rank[G], and for any row of these two matrices, ijl hi; # 0 implying ijl e — 1L

/r
N e e

Corollary 4. If singular Boolean networks with form (13) satisfies condition in Theorem 1, and n # r, |

Ithen Eq. (13) does not have a unique solution z(1) for any z(0). I

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



Solvability of singular Boolean networks

If singular Boolean network system satisfies the condition in Theorem 1 (or Theorem 5),
and the condition in Theorem 4

Ex(t+1)= Mux(t)
Ex'(t+1) = Max(t)

Admissible initial values
for singular BN

l ' ZHt+1) = Mizi(¢),
2 = M2 (p). Y

z(0) satisfies z%(0) = M?z%(0)

Via coordinate transformation x = Q z
the corresponding solution x(t) of (13) is derived

If the condition of Theorem 4 does not hold, and only condition in Theorem 1 (or
Theorem 5) is satisfied

Ex(t+1)= Mx(t) 2t +1) = Mt2(¢),
Ex'(t+1) = Mz(t) 03n_r = M?2(2).

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



/ Sl = .. .
iIProposition 1. Denote M? = §yn—r[i1,i2,...,i2n]. {2(0): 81._, = M?2(0)} # 0 if and only if there
:exists at least one element in {i1,is,...,%2~} equal to 1.

For any admissible initial value, Eq. (31) has a unique solution, but Eq. (32) has not. Let us see the
following numerical example.

7/

Example 8. Consider singular Boolean network (32) with the following coefficients:

MY =6401,3,3,4,2,2,3,4], M?=05[1,2,2,2,2,2,1,2].
o = M?2(0)
21 (1) = 63 there is no z2(1) satisfying 6}, . = M2z1(1)2%(1)

[
[
I
I
I Taking the admissible initial value z(0) = 6% which satisfies 5.
I
I
I Taking the admissible initial value z(0) = d5, we obtain z(t) = d4 for any time t,
!

-_—een o o o o o =

. which implies that d¢ is the fixed point.

[ Corollary 5. For any admissible initial value, a singular Boolean network (32) has a unique solution, if

: and only if for any z(0 € {2(0) : 83._. = M?z(0)} there exists a unique z* such that M*2(0)z* € {2(0) :

| o;n . = M?2z(0)}. )
There exists a unique z2 such that M1z(0)z% € {2(0) : 5; = M?Z. 2(0)} is equivalent to the fact that

22 can be uniquely solved from 4!, _, = M?z(t). Recalling Theorem 4, we derive the following.

Theorem 7. For any admissible initial value, singular Boolean network (32) has a unique solution, if
and only if singular Boolean network (32) can be equivalently converted into form (31).

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013
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Fixed points and cycles

In this section we discuss fixed points and cycles of singular Boolean networks with form (13), that is,
Ex(t+1) = Mx(t), (33)

where z(t) = X’ zi(t), E,M € Lonxan, and rank(E) = 2" < 2". To this end, we first generalize
definitions of fixed points and cycles [8] to the singular case.

/Definition 5. 1) A state xp € Aon is called a fixed point of singular Boolean network (33) if Exg =)

ﬂ-[.ﬁb‘(] -
2) {zp,x1,..., 2%} is called a cycle of singular Boolean network (33) with length k if 2, = 2o and the
elements in the set {zg,z1,..., 251} are pairwise distinct.
\_ The following theorem shows how many fixed points a Boolean network has. )

[8] Cheng D, et al. Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. 2011
Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



Theorem 8. Consider singular Boolean network (33). &4, is its fixed point, if and only if Col;(E) =
Col;(M). It follows that the number of fixed point of singular Boolean network (33), denoted by N.,
equals the number of ¢ for which Col;(F) = Col;(M).

Proof.  Assume that 45, is the fixed point. Note that Ed5,. = Col;(E) and M4§i,. = Col;(M). It is clear
t\hat 85, is the fixed point if and only if Col;(E) = Col;(M). Y

If singular Boolean network (33) can be normalized, that is, it has equivalent form (14), then from the
heorem above and section 5 of [8], the following result is derived directly.

Corollary 6. Assume singular Boolean network (33) can be normalized into (14). Then the number of
i for which Col;(E) = Col;(M) is equal to tr(M?'), where M! is same in (16). Additionally, if 65, is a
fixed point of (14), then Q183 is the corresponding fixed point of (33).  with normalization

we need to normalize (33) first.

[8] Cheng D, et al. Analysis and Control of Boolean Networks: A Semi-Tensor Product Approach. 2011



Assume that row(M) C row(E) in a singular Boolean network (33). Then there exists a nonsingular
matrix P € Lonyon such that M = PE. Denote Ex(t) = y(t). Then Eq. (33) is equivalent to y(t + 1) =
Py(t). Thus from Section 5 of [8], we get all cycles of y(t + 1) = Py(t). For one cycle {yo,y1,...,yr} of
y(t+1) = Py(t),ify; € Col(E),i = 0,1,..., k, then we can derive the cycle {zg, z1, ..., 2k} corresponding
to {yo,y1,---,yr}. That means if there is some i such that y; does not belong to Col(E), then there is
no cycle {xg, 1, ...,z } corresponding to {yo,y1,---, Yk}

Furthermore, for 2 length cycles of singular Boolean networks we have the following result, which can

be extended to k length cycle cases. without normalization

Gheorem 9. Consider singular Boolean network (33). (d4.,05.) is a cycle, if and only if Col;(F) =\
Col; (M) and Col;(E) = Col;(M). It follows that the number of cycles with length 2 of singular Boolean
network (33), denoted by C5, equals that number of pair (7, j) for which Col;(E) = Col;(M) and
Col;(E) = Col;(M).

Proof.  Assume that (95, 6%,1) is a cycle. Note that ES, = Col;(E) and M4, = Col;(M). It is clear
\that (85, 5j.1) is a cycle if and only if Col;(E) = Col;(M) and Col;(E) = Col;(M). /

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013



Conclusion and discussion

FEx(t+1) = Mu(t)x(t)
Ex'(t+1) = Mu(t)z(t)

e - i O\
, o\ e
i Two Kinds of condensed ! ; The normalization .
; I 1 I ]
: algebraic forms ; : problem ! :
N ’ N e e e e _d \
Solutions and f\ T N

|
1
mm—) ' admissible initial
1
\

L e e ]

Feng J, et al. Singular Boolean networks: Semi-tensor product approach[J], 2013
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Disturbance decoupling of singular Boolean

control networks

L PRELIMINARIESJ

We study and analyze gene regulatory

networks when some external
disturbances exist, for example, in the
healthy  mechanisms of biological

systems, cancer as usual be defined as
failures, how to design a controller such
that these external disturbances have no
influence on the outputs of system is an
important problem in biological systems,
which is called disturbance decoupling
problem (DDP).

Liu Y, et al. Disturbance decoupling of singular Boolean control networks[J], 2015

/Definition 1. (/39]) The STP of two matrices A € R, «,, and\

B € R, is defined as
AD(BI(A@I%)(B@I%). (1)

Where s = lem(n,p) is the least common multiple of n and

\p, and & is the Kronecker product. J

In fact, conventional matrices product is a special situation of
the STP, when n = p. Therefore, we usually call it “product”,
and omit the symbol “ix”.

/Definition 2. ([40]) For A € Myxp, B € My, the Khatri
Rao product of A and B is defined as

Ax B =[Col;(A)® Coly(B),--- ,Col.(A) ® Col,.(B)].

Definition 3. A matrix A € L,,, «,, is called a column-periodic
matrix with period T if T is a proper factor of n such that

{Oliwm) = Col;(A), I<i<n-—T. /




PRELIMINARIES

Lemma 1. ([39]) Logical function f (x4, x5, ..., x,,) With logical variables x4, x5, ..., x, € A, , and there
Is a unique matrix My € L,,n, called the structure matrix of f, such that
f(:Ctha'” ,Iﬁn):ﬂ/ff K?:l Li, (2)

where X' x; = T1 X T -+ X Tp.

A=a|

(

Lemma 2. ([30]) Given an integer r < n, let M;be the structure matrix of the given logical mapping G =)
(g1 Ce1s ooer x0), ooy Gic (g, v, %) ): D™ = DE.Split M into 27 blocks as Mg = [(Mg),, (Mg)s, -.., (Mg) 7]
Xr41, -, Xy are redundant variables if and only if

rank((Mg);) =1, Vi=1, 2,---,2", (3)

h(?l‘e (MG)@ 6 Ezkxgn—r- j

e

Definition 4. ([24]) Given an integer t > 2, a t-type is a set of t logical matrices of dimension t x t. That
IS T ={Ty,Ts,- T, | Ti € Lyx¢,1 <i <t}

F—.(

[39] D. Cheng, et al. Analysis and control of Boolean networks: a semi-tensor product approach. 2010.

[30] M. Yang, et al. Controller design for disturbance decoupling of Boolean control networks, 2013.



Consider the following static equations

l=ki(xy, -+ ,xp), i=r+1--- n, 4)
where k;: D,, — D are logical function, and x; € D,i =1,--- ,n. Let k = (k1,--- , k) and
X' =wi_jx; € A, with p=2", and X* = x!" 2, € Ay with ¢ = 2",

lSTP pmmimem e ms oo
. i ={Ei € Lyxq | Coli(E;) = 0,:Colj(E;) # 0,5 # i} :

5; = M, X' X?, (5) ! where i=1,---q. Then, one can construct a set of g-types

where Vs s th sivctue matex of k.18 &= B B} Begui=lo ) O

4 mmm s Emm s e D B S EES N EEE N EEE N EEE N EEE E EEE F EEE N EEE § M N MmN MmN S N S N EEm N EEm N EES N Emm § Emm F EEE § EEE § M 5 S § Emm 8 mmm 8 mmm 8 s o mm

Lemma 3. ((Implicit Function Theorem)[24]) Suppose the structure matrix of k associated with (4) can
be expressed as My = [My,---,M,]. Then x; (i = r + 1,---,n) can be solved as (7) from (4) if and

only if there exists a q-type T = {E,--- ,E,} € &, such that
M'éeTv Zzl,,q (8)

[24] D. Cheng, et al. Bi-decomposition of multi-valued logical functions and its applications, 2013.



In general, we consider the following SBCN, which consists of n nodes, m control inputs, ¢’ disturbance inputs

and p’ outputs (e <r)
xi(t"i_l) :fi(ﬁ(t)aX(t):é(t))a 1=1,---,m7,
0 = fi(X(®), k=r+1,--,n, (10)
yJ(t):h’J‘(ml(t)? 73;8(-5))7 J :13' ap!a
STP
XYt +1) = L'U@)X (#)E(R),
(11)

65”*’” - LQX(t)a
Y(t) = HX(t),
If L?satisfies Lemma 3

X' (t+1) = LUG)X(0)E®),
X2(t) = L*X (1),
Y(t) = HX3(t).

(12)

Remark 1. If e > r, the rest of e — r states can be expressed by X1(t) from (4) and Lemma 3, then Y (¢) is a function on X! (t).Hence, we only consider the

[ case e < r without loss of generalization

D. Cheng, at al. Bi-decomposition of multi-valued logical functions and its applications, 2013.
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State feedback control

[ Considering system (12) with e < r, one can rewrite X (¢+
1) by
X3(t+1) = LU )X (H)E(2), (13)

where L4 = F1HS:2[(IQm+n+q/ X Fi)¢m+n—l—q’] =
Loeomintq . We are now ready to design a state feedback
controller in the form of U(¢) = K X(t), such that other state
@riables and the disturbances are independent on X?(t).

State feedback control ]

{ Feedback control ]

N

Output feedback control

Liu Y, et al. Disturbance decoupling of singular Boolean control networks[J], 2015



State feedback control

X3t +1) = LU ) X ()€()

LY =[(L*),
(L*); = [(LY)j1
Ut) = KX (1)

K = (52m [‘Ul Vg -

(LY (L
(LY)j2--

H)am]
(L):f?]

- Van]

X3(t+1) =L*K®, X () X2(t)¢(t)
=L'K®, X" (t)L> X" (t)&(t) !

14
=L*K®, (I, ® L*)®,. X3 (1) X*(t)£() 5 '
=(L*)o (I ® L) 8, X3 (1) X (E(2), :

where (L*), = [(LYw,1 (LY (L*)yyn 2n] and |
X4t) = xi_oxi(t), X1 (t) = X3()X*(t). __o-=T )
Xs(t + 1) :(L4)0¢)n52n [m1 mao - mzr]X3X4f(t)
=LY 0n[my mg---mor| X3XAE(E)  (16)
=(L*),, X3 () X (1)E(),
where (LY)g = [(L*)y, (L%)u, -+ (L%)4,.] and (L), =
[(L4)tm1 ;M (L4)vm2 mz " (L4)v?n2r ,mzr]-

Liu Y, et al. Disturbance decoupling of singular Boolean control networks[J], 2015

/
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“To simplify the expression, let I' = (I~ ® L?)®,. and L3 —\
© Ogn—r[U1 Vg ---vyr], then we have
[ -[/3 02n7r><2r 021171--)(2.,-- T
OQ'R*'PXQr L3 027177" % or
I'= . b,
0 n—r N U n—r ™ L3
. 31 X2 2 X2 | (15)
5271 ™ 021’2 T 0271—?’
02n ™ 6;,21 r 02n—'r‘
L 0211—?‘ Ogn—r 512{,2: r
['=dan[my  ma---mor], where my = vy, ms =
Vo + 2", s imgr = vor + 2777 X (QT — 1)
s defineasetA = mymy, vomer} >

The DDP could be solved by U(t) = KX(t), if and only if X*(¢t),&(t)

are redundant variables in (16).

]




State feedback control
L'=[(L')1 (L)2---(L)2e],

where (L), = [(L4)vma[1] (L4)vma[2] ---(L‘l)vmow_e]] €
The DDP could be solved by U(t) = KX(t),if and only Locyogire, Yo € Qg and o[l] = (6 —1)2"7¢ + [, for all
if X*(t),&(t) are redundant variables in (16). L€ Qe ] )
By Lemma 2, X*(t),£(¢) are redundant variables if and
only if
rank((L'),) =1, forallo € Q.. (17)

Now, for any integer p € (1., we define the following sets: \Ilmp = {]gg € ().: there exists an
integer A € ,,, such that (L*)x ,,,, = d2c[kg - - - kol};

V,fﬁfp ={A e Q, : (L4))\,mp = Ogelkg - - ko], for all kg € T,, ¥.

(I'heorem 1. The DDP of SBN (12) is solved, if and only if \
gr—e
Y= () Um #0, forallo € Q.. (18)
(=

Additionally, if (18) holds, then the state feedback matrix can be designed as K = dom[v1 vy - - van],
koo .
where vy, € By = U V’"f;[w for all o,i € Q., | €Q,_., and the rest of v, are free.

\ kagera j

Liu Y, et al. Disturbance decoupling of singular Boolean control networks[J], 2015




Proof: (Sufficiency) Suppose

K = 52m[?)1 Vg -+ -'T)zn],

then one can get the state feedback control U(t) = KX (t)
that

Xg(t + 1) :(L4)U52n [ml, mo, - - ,mgr]X3X4§(t)
=(L)o,, X2 (1) XH(1)E().
[(L4)vm1 ,m1 (L4)Um2,m2 e (L4)'Um2r vaT]

(19)

We  partition
into 2¢ parts as:

Part 1: [(L4)vm1,m1 e (L4)vm2rfe vm2r—e]’
. 4 4
Part 2' [(L )Umg[l] y 121 T (L )Um2[2rfe] 7m2[27’78]]’
. 4 4
Pal‘t 2T. [(L )Um2€[1] yMae[q) e (L )Um26[2r_e] ,mga[zr—e]]'

Since T, # 0, for all ¢ € €., then there exists at least a
Bi € T,, for any o € (). such that the rank of every part
equals 1. Therefore, the DDP of SBN (12) is solved by Lemma
(2) and (17).

Liu Y, et al. Disturbance decoupling of singular Boolean control networks[J], 2015

(Necessity) If the DDP of SBN (12) is solved, we can
get that the rank of every part equals 1 by Lemma (2)
and (17), rank[(L4)vm,[ i) ---(L4)vm[ ],m_[2r_e]] =i I

i1l i[2r—e 1
¢ = 1,---,2° in other words, T, # 0, for all o € Q..
Assume that there are j; elements in Y, for any i € ()., that is
{keg{,ke;a e ’k(”}l} = T, so does {kgge,kgge,--- akeg;} =
Tse. For any [ € ri_e, we define the following sets:

0l
Bl[l] = U lel[l]’

k91€T1
kg2
BQ[l]: U vmz[z]’
k92€T2
’ k92€
Baey = U Vimgeyy-
kﬁze€T2e

Therefore, we can get U, € By by (16). Actually, from
the above analysis, one can find the rest elements of K have
nothing to do with the DDP due to the existence of I'.
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Output feedback control

Based on the result obtained in Theorem 1, we analyze how to design output feedback controller in the
form of '
uz(t): /Z(yl(t)a 7yp’(t))7 7’217"' , 1, (20)

STP

O(k) = {04 : Col;(K') = 6%, }.

() Bi if O(k)NA#0,
R(k) =1 6i,€0(k)NA

(1,2,--,2"}, if O()NA =0 or Ok) =0
(23)

Liu Y, et al. Disturbance decoupling of singular Boolean control networks[J], 2015



Theorem 2. Assume that (18) holds. The DDP of SBCN (12) is solved by the output feedback control if
and only if

R(k) #0, forallk € Q. (24)
Moreover, if (24) holds, then we can obtain all the output feedback gain matrices
\ R = 527n [O{la (05T ,a2;,1’}, Qf € R(k) (25) j

Proof: (Sufficiency) Suppose that (24) holds, and the output feedback gain matrices are in the form of (25).
Assumlng K, = 621}’ [kl kZ e k‘Zﬂ] € LQP’ xan , We have
RK' = [akl s Oy 00 Qk‘zﬂ-]' (26)

Since ay, € R(k;) < B;,Vi € Qy,from Theorem 1 it is learnt that the DDP is solvable by the state
feedback control U(t) = (RK")X(t). Therefore, the DDP is solved by the output feedback control
U(t) = RY(0).

(Necessity) If (24) does not hold, there exists an integer k' € Q,» such that R(k") = 9, i.e.O(k’) * @
andﬂSinEO(k,)nAB = @, then we suppose that O(k") = {52n,. . 2n} Hence, k;, = =k; = k'and
we have g, = Qg = Q.

Since the DDP is solvable by U(t) = RY (t), one can obtaln that U(t) = (RK')X(t).is a state feedback

controller. Therefore,a,r € ﬂgl Ok B;, which is a contradiction to N B; = Q.
zn

Consequently,R(k) # @ forall k € Q.

Séneo(k’)n/\
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The transition matrix under function
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Local uniqueness of solutions to SBNS
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The expression of SBNS

An SBN is a set of nodes, X1, X2, . .
following dynamic logical equations:

X1(t + 1) = fi(x1(t), x2(t), . .., Xq(t)),
Xo(t + 1) = fo(xq(t), X2(8), . . ., Xn(t)),

: (1a)
Xt + 1) = f(a(t), xalt), . x(1))

for t > 0 and the states of remainder n — r nodes satisfy the
following algebraic logical equations at t > 0,

1 = frpa(xa(t), x2(), . . . Xn(t)),
1= frpa(x1(6), Xa(1), - . ., X)),
. (1b)
1= Fu(x2(6). Xa(E), - ., %al2)
I
81 = fia(a(t), xa(t), oo Xn(E)) A -+ A folxa(£), Xa(0), - ., Xn(E))
83 = g(xa(t), ..., Xa(t))

Liu Y, et al. Function perturbations on singular Boolean networks[J], 2017

-» Xn, in which r (r < n) nodes satisfy the

[

Xi(t + 1) =ﬁ(x1(t) 1111 Xﬂ(t))5 l S [11 r]’ (a}

8 = gx(t), ..., xn(1)), (b)

gxi(t+1), ..., Xn(t + 1)) = 65, (c)
STP

83 = M,x(t), (b)

Xi(t+1) = Mpx(t),i € [1,1], (a)
Mgx(t + 1) = 65, (c)

ewrite system (1) in a simple way:

(3)




The expression of SBNS
» Multiplying the equations in (3)(a) together yields

(Ir @ 1yn—r )X(t + 1) = Lex(t), (4a)
where Ly = My []_,[(lor ® M;)®,], and &, = Diag{sl,, 82,,.... 82} is the power reducing matrix,

> Multiplying (4a) from the left by((lor ® 10— )x(t + 1)) yields

1 =x"(t 4+ 1)Iyr @ 1on—r) Lex(t) = X" (t 4+ 1)Lox(t),
LO = Uzr ® ‘lznfr )TLf

_ [8;}_”2““ n 8(21'!}—1)2”44-2 4. _I_(S;]nz"*f, o ,8;?”_1)2 T 3;??1—1)2 St 3;2n”2 B ] .
: Lo (ij—1)2""T+1 ij2nrs j :
X(t + 1) still takes value arbitrarily from the set {6, y e 6on  FWith x(¢) = 6,n ,Which

implies that Lycan be regarded as the transition matrix of (4a).

> Multiplying (3)(b), (3)(c) from the left and right by (5,)", respectively, one obtains

!1 = Row; (Mg )x(t), (a)

Row;(Mg)x(t + 1) = 1. (b) (4b)

» multiplying (4a), (4b)(a) and (4b)(b) together, system (3) can be rewritten by
Ex(t + 1) = Lx(t), (5)



The expression of SBNS
> Multiplying (5) from the left by (Ex(t + 1))" yields
1 =x"(t + 1Lx(t), (6)

where L. = ETL, which is the transition matrix of system (5).

/From the above equation, the relation between L. and Ly can also be obtained as follows: \
Le = ((In ® Row (Mg))@p) (Ir @ 1yn—r)" (7)
Ly(In ® Row (Mg ))®, = ' Lo T,
where I = (I;n @ Row(M;))®P,,.

the solution set of static equation (3)(b). Let A" be the solution set of (3)(b), called admissible state set We
assumeN = {858, 802, ... 8} (1 < @3 < -+ < @) LetS=Anm\N, S= {82n, 2n,-- 605}

bs). Clearly, h +s = 2", Coly,(Mg) = §,, a; € {ai, ..., ap} and Coly(Mg) = 83, b; € {by, ..., bs}. Then, we have
Rowl(Mg): [14‘412 Lo 101--1],

I' = (I;n ® Row; (M, ))d’n

\ = [52111 S‘Z’Zn coc abl Ogn ab}l't'l coa 63#1_10;11 5§L+1 . 532]. /
by by

[ Matrix L. can be obtained from L, by substituting the elements in the rows and columns with indexes by, b,, ... bl]
by zeros.




The transition matrix under function perturbations

Definition 2. A one-function perturbation of SBN (3) is obtained if structure matrix Mg of a function f; (i €
[1, n])alters by changing the value on some Col; Mg for j € [1,n]) ,that is, changing 51to 67 or changing 62to 53

function perturbations /

L =8yl ... Tl

Coli(Ly) = _Col (pr)j e,

Coli(My,) (p € [1 r]) changes from 8,0 to &1, i e [1,2]
Col: (Lf)changes from 8y’ to 8or' i

o= i( —12"P + 1, and:—:j—l—(J )2""<

Lemma 3. Consider system (3) with its algebraic form (4). If the j-th (j € $2,) column of M; (k € [1,r]) alters,
then i, =i, v € [1, 2”] \ {j}, and Ly = &or[iy, ..., Iy ..o, Ion | becomes L} = Syrlin, oy By ooy dan),

Li, H., et al. Function perturbation impact on the topological structure of Boolean networks. 2012



Suppose that there are m (m € [1, 2"]) columns of Lr changing under function perturbati9ns, which are depoted
ki-th,- - -, km- th. For simplicity, let m :‘2, and assume that Coly, (Ly) = 82k,‘ and Col, (L) = 8;,2 change to 8;,‘ , 62’?,

respectively. Then, |_L} = Wi, ky + LW, kop

where W, i, = (8} 82, -+ 657" 08, 85T 52710082752 € Byyon, and Wy, = [0) .- OF, 5 0], .00, 8200 .. 0]
Denote matrix L. by the new L. under perturbations, then it derives from (7) tha ka ka

(L = (I ® Rows (Mg))®n)! (Ir @ 1n—r)" I

I Li(In ® Row,(Mg))®, (8)!

= D @A) Wi o T+ T oW T _ _ !

Theorem4. L, = L., if kg € {b1, ..., by}, forany g € [1, 2].
Proof. If kg € {by,..., Db} forany B € [1, 2], and the existence of I" is to make Lo substituted zeros in the rows

and columns with in- dexes by, ..., b;. It is easy to obtain that I'" (Iyr ® 1on—r )" Wy, k, I’ = 0ynn and
ILoWy, 1, T = I'"Lol. Then L. = Ognyon + I'"LyI" = L. from (8), which completes the proof.

Now, we consider function perturbations occur in static equa-tion (2)(b), which makes A change,
a, .
assume that N = (5, 8} (dy < --- < a)It is learned from (4a) that Lf = Ly.

PLUE R
ay

a - = A
Assume that N/ NN ={8, ..., 8}, and N\ NV = {8&%, ..., &0 Hw + h = h).
Denote I" under static equation perturbations by I'’. I'" = Ag, . a, + I'Aa, ... a: »

T T o1 T T 02 oT T on
Where Aﬁl ..... &ﬁ = [02n e 02n 3211 02n e 02n Szn 02n et 02n CSzn]
i iy a
— a7 T <01 T T <02 T T od
and Aﬁ1 ..... aw — [02n T 02n 8211 02n T 02n 8271 02n T 02n SZ#J]-

ay

Therefore, L, = F’TLfF’. a az



Local uniqueness of solutions to SBNS I

N

Definition 5. The solution to SBN (3) is locally unique in terms " ACtU&lLYv when ¥§21=8212\f . the(SSZOl}U(tiOH to SBN (3) is Ur;iqllf;-
C : : ssume that W = {850, d5n, ..., 00} (21 < 22 < -+ < Z),an
S S I e sy ) & DR 2 L) @ I e e g ey I denote 7" by the set of {z1, ..., z;}. From Definition 5, it is easy to

determined by (6). obtainthat 7 C {ay,...,ay} ands < h.

Proof. Sufficiency is trivial. As for the necessity, since the solution
to SBN (3) is locally unique in terms of W, then x(t + 1) € W can
I be uniquely determined by 1 = x(t + 1)L.x(t). Therefore, for all
A € [1, s], one can obtain that Col,, (L) € W.

Col,, (L;) e w, for A € [1,s]. . Now, we define a matrix Ijs, hy:0,,0,), Where Coly, (In) and
I' Coly, (In) are substituted by Colp, (In) and Colg, (I>n), respectively.

Lemma 6. The solution to SBN (3) is locally unique in terms of W i
and only if

! Proof. There exist q1,q2 € T \ {ki, k2} such that i;ﬁ = iqﬁ,
I B e€[1, 2], then one can get

Proposition 1. Assume that the kq-th and k,-th columns of Ly
(ki,ka € 7T) change under function perturbations, and L} =
Sorliq, ..., i;q, e 1';{2, ..., Ion] from Lemma 3. If there exist q1, q3 €
T \ {k1, ky} such that i;ﬁ = ig,, B € [1, 2], then L. = Lelig, .qy:ky.ky)-

Ly = Liligy gy:ky ko) (10)
As a result, it follows from (8), (10) that

/ ) g
L. = FTLOI{ql-fhlkl-kz}r
=r LOFI{m-ﬂz:kl-kz} = LCI[Q1‘Q2:k1vk2}’

(11)

which completes the proof.

Liu Y, et al. Function perturbations on singular Boolean networks[J], 2017



Local uniqueness of solutions to SBNS

Theorem 7. Assume that the solution to SBN (3) is locally unique in
terms of W.If L. = Lclg, q,:k,.k,) Gfter function perturbations, where
d1, g2, k1, ko are given by Proposition 1, then the solution to system
(9) is also locally unique under perturbations.

Proof. The solution to SBN (3) is locally unique in terms of W,
which implies that Col, (L) € W, for A e [1,s]. It follows
from L, = Lclig,.qp:k,.ky) that Col, (L)) € W, for A € [1,s] as
well. Therefore, the solution to system (9) is locally unique under
perturbations.

Remark 2. L. = Lclig, g,:,.k,) 1S @ sufficient but not necessar
condition for the invariance of local uniqueness, which can b
shown by the following example.

Liu Y, et al. Function perturbations on singular Boolean networks[J], 2017

Example 3. Consider the following SBN with its algebraic form as
follows,

(La ® 1o)x(t + 1) = Lex(t),
5, = Mgx(t), (15)
Mgx(t + 1) = 6,,

where [y = 6,2[24341333]and M, = 6,(12112112],
which means ' = {8);, 6., 85;, 62, 67}, Therefore, the solution
to SBN (15) is not unique by Meng and Feng (2014b). But if W =
(875, 855,82, 67,}, it is learned from Lemma 6 that the solution to
SBN (15) is locally unique in terms of W.

If Coly(Ly) changes from &7, to 87, and Cols(L;) changes from &,

to 83, then Ly = 8,2[24 3 314 3 3]. The solution to system (15)
with function perturbation is locally unique as well by Lemma 6,
but there does not exist q, € {3,4,6,7} \ {4, 6} such that i =
ig, = 4. Therefore, L. = Lcl(g, 4,:k1.k,} 1S DOt @ necessary condition
for the invariance of local uniqueness.



The topological structure under static equation perturbations

4 In this subsection, suppose that function perturbations only )
occur in static equation, which makes » change possibly, then as-
sume that Coly, (Mg ), Coly,(Mg), . .., Coly ,(Mg) change with m" <
2" ki € [1,2"],i € [1, m']. Then the new admissible state set A/’ is
created. We define the new admissible state subset W' = N"N'W
\and assume that W' = {8;,‘1, e 8;5,,'} (2] <2 <o 22}

J

/Definition 8. Assume that the solution to SBN (3) is locally unique
in terms of W. (i) A state 8%, in W is called a fixed point of SBN (3),
if 1 = (85,)Lc8b,. (i) {850, ..., 850} € W is called a cycle of SBN
(3) with length [, if 85, = 850, 1 = (85 ") L85, i € [0,1— 1], and
\elements in the set {522, .

.., 8511 are pairwise distinct.

J

efinition 9. The fixed point (or cycle) in W is stable if it is still a\
fixed point (or cycle) in W'’ after function perturbations, otherwise

it is called an unstable fixed point (or cycle). )

Theorem 10. Assume that 82’,1 is a fixed point of system (3), then
it is stable under static equation perturbations, if and only if for any
jell,s], Colzjg(L;) € W, and Coly(L.) = 85,.

Proof (Sufficiency). For any j € [1,s'], Col,(L.) € W', then the
local uniqueness of solution is invariant under perturbations from
Lemma 6. Moreover, Coly(L.) = 83,1 implies that 85,, e Wisalsoa
fixed point of system (3). Therefore, fixed point 52"” is stable.
(Necessity): Since 6’2’,, is a stable fixed point, then the local
uniqueness of solutions to system (3) with function perturbations
still holds, and 85, € W' is also a fixed point. Therefore, it follows
from Lemma 6 that for any j € [1, 5], Colzjr(L’C) € W'. Moreover,

one can get Col,(L.) = 85, by Definition 8.

(Sufficiency): For any j € [1, 5], since Colzjg(L’c) € W, then
the local uniqueness of solution is invariant under perturbations.
Moreover, if Colg, (L. ) is invariant, fori € [0, [ — 1], then Colg,(L;) =

5§§,+ ' and as a result, the cycle is stable.

(Theorem 11. Assume that {85, ...,
When function perturbations happen in the static equation, then the
cycle is stable if and only if for any j € [1,5], ColZ]g(L’C) e W, and
Colg, (L. ) is invariant under perturbations for alli € [0, [ — 1].

5.} is a cycle of system (3

N
The necessity is similar
with that in Theorem 10




The topological structure under dynamic equations perturbations

7

\Szr , B € [1,m'], and Lf changes to L}.

In this subsection, we consider the topological structure of SBN ™\
(3) as function perturbations only occur in dynamic equations,
which implies that the admissible state set N’

W’ W in the following. Suppose that Colkﬁ (L )= 8;?

= N and subset
changes to

J

ﬁemma 12. Assume that 87 on 1S a fixed point of system (3), then 82n isZ\
stable fixed point under functlon perturbations of dynamic equations,
if and only if one of the following two cases hold:

e Casel Forany g € [1,m'], kg & T.
e Case Il. For any B € [1,m'], kg # p. Moreover, if there exists

\ B € [1,m'], such that kg € 7, then Coly,(L.) € W. )

eorem 13. Assume that 8§n is the only fixed point of system (3), and
the function perturbations occur in dynamic equations, then the new

hold:

e Condition I. If there exists € [1, m'], such that kg € 7T, then
Col, (L) € W.
e Condition II. There exist B € [1,m'], and « € [1,2" "] such

fixed point will be generated if and only if the following two conditionr -

that (L/C)((l;(ﬂ 120-T4q) = = 1 with (lkﬂ — 1)2” 4+
o #p.

12T +a, (lk

Proof (Sufficiency). If for any B € [1,m'], kg & 7, then
Coli(L),i € 7 is invariant under perturbations. If case II holds,
the local uniqueness of solution to system (3) with function per-
turbations is guaranteed, and the invariance of Coly(L.) under
perturbations. Thus (85,)L.85, = (85,)"L.85, = 1, which implies
that fixed point 8 is stable

(Necessity): Smce8 is a stable fixed point, then one can obtain
that the local umqueness of system (3) is invariant when the
function perturbations occur in dynamic equations. Therefore, we
can easily get Case I or Case II.

Proof. The proof of necessity is similar with that in Theorem 10,
so we omit it here.

(Sufficiency): If there exists B € [1, m'], such that ks € T,
then Coly, (L¢) € W, which shows the local uniqueness of solutions
is invariant under perturbations. It is learned from Definition 8 that
if Condition II holds, then a new fixed point is generated.



The topological structure under dynamic equations perturbations

- e Proof. The proof of necessity is similar with that in Lemma 12, so
(femma 14. Suppose that {5z, . .., 8251} is a cycle of system (3), and\ e it it heia.

the fun'ction pertqrbations occur in ldynamic equc.ttions. The cycle is (Sufficiency): Assume that for any 8 € [1,m'], ks ¢ 7, then
stable if and only if one of the following cases hold: Colg, (L) is invariant under perturbations. If Case II holds, the local
e Casel. Forany B e [1,m] ks & 7. uniqueness of solutions to system (3) with function perturbations
e Casell. Forany B € [1,m'], ks &€ &.Moreover, if there exists | 1S invariant, then one can get that Colg,(L.) is also invariant under
p T8 ) N : Git1\Ty & __ (REi+1\T/ <8 .
\_ B € [1,m'], such that kg € 7, then Coly,(L,) € W. ) perturbations. Thus (85, )'Lcdon = (85, ) L.65m, i € [0,1 — 1],
which implies that the cycle is stable.

Now, we consider one kind of unstable situations called shrink. In the following, we discuss two special cases.

Suppose that{83%, 831, ..., & ', 851} is a cycle of SBN (3) (see Fig. 1), and the local uniqueness of solution is
invariant under perturbations. If there exists 8 € [1.m'] such that ks = &., and 1 = (85)T(L.)8%4. &i, & € 5. Then
there exist two cases: i < vandi > v.Wheni < v, assume {&5,85",..., 8. ", &) C o, andforany » e

{8i. Gi+1. -+, 8u—1. 8} \ {8}, Coli(Lt) = Coli(Le), then a shrunken cycle of SBN (3) is obtained under function
perturbations, which is of length v + 1 — ias shown in Fig. 2.

On the other hand, when i > v, assume {859, 851, ..., 8571, 65, 855, 850 ..., &5 '} C Q, and for any

A € {80,815, 8u—1s v &ix &it1, - - - 8-} \ {8}, Coli(Lt) = Col; (L),

then a shrunken cycle of SBN (3) is obtained under function perturbations with lengthv + [ + 1 — i as shown
in Fig. 3. In general, we have the following result.



The topological structure under dynamic equations perturbations |- ---,
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Fig. 1. A cycle of SBN (3). Fig. 2. A shrunken cycle of SBN (3) under function perturbations withi < v.
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Fig. 3. A shrunken cycle of SBN (3) under function perturbations with i > v.
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The topological structure under static equation perturbations

ﬁheorem 15. Suppose that {85, . .., 85h} is a cycle of SBN (3). %
cycle shrinks if and only if the following two conditions hold:
e Condition I. If there exists B € [1, m'], such that kg € 7, then
Colkﬂ(L’C) € W.

8. &
e Condition II. There exists Q' C O, assumed by {8259,8253,
g g
o S Y with 85 = Colg (L) = 8,0, lg < I < -++ <
g &
l,_1,1 <z < I, such that {82510 , 6253 e Siff } is a new cycle of
\system (3) with function perturbations. /

Proof. Necessity is trivial. As for the sufficiency, if Condition I
holds, then the local uniqueness of solution is invariant under
perturbations. By Definition 8, if Condition II holds, a new cycle is
generated, which implies that the cycle shrinks.

Liu Y, et al. Function perturbations on singular Boolean networks[J], 2017



Ization and Solvability of Dynamic-

Algebraic Boolean Networks

An DABN is a set of nodeX1, X2, ..., Xn, inwhich r (r <n) nodes satisfy the following dynamic logical
equations: x4 1) = fi(xa(6) Xa(0), .. (D)),
. | x(t+ 1) fa(x1(t), x2(t), . .., Xa(t)),
Dynamic-Algebraic { (1a)
BNs )
L X (84 1) = fr(xa(8), Xa(8), - .., Xn()),

for t > 0 and the states of remainder n — r nodes satisfy the following algebraic logical equations at t > 0,

(1] :fr+1(X1(t), xz(t)a o & 2ly Xn(t)),
1 = frya(x1(t), X2(t), . . ., Xn(t)),

1 - (1b)
1= £, (xa(6). Xa(0), ... XalE)),
| STP
N+ 1) = Ll ()x?(0) (2a)
0nr = Gx (X% (1) (2b)

Liu Y, et al. Normalization and Solvability of Dynamic-Algebraic Boolean Networks[J], 2018



Definition 2 [22]: If {xy+1,.-.,xn} can be expressed as functions of {x1....,xr} by (2b), then DABNs
can be transformed into standard BNs by substituting the variables {x;+1,...,xn} into (2a). This
process is called the normalization of DABNS.

=[G1 G2 -+ Gyr]

where G; € Lon—ryon—r, i € Qr. Denote by Z! the set of indices i such that d3,_, € Col(G;). Letx'! be
the set of all canonical vectors 52r with [ € 7'. Based on X1 wedefineC! = A\ X! asthe set of all
canonlcal vector 55, , and then no vector 5*’,,, ~ can be found in Cl such that by assuming xl = o,

and x% = 51,1 _, ,» condition (2b) holds Moreover denote by IO the set of indices i such that only one of
the columns ofG commdes with d5,, and let X be the set of canonical vectors &5 with i € 7. It
is obvious theXy C X'

Proposition 1: Given xl(t) = Jér, a solution xz(t) to (2b) corre-
sponding to x1 (t) exists if and only if i € 7 I and is unique if and
only if i € 7).

[22] D. Cheng et al. Bi-decomposition of multi-valued logical functions and its applications, 2013.



Define a new matrix M ¢ of dimension 2=« 2T with its entries

being

[ (Mg)ji =1, if Colj(G;) = Sy

(Mg)ji =0, if Col;(G;) # Oy

if x(r) e X!,

(3a)

3b
(56) it x!(t) e ¢!, then

and x2 (1) satisfies (xz(r))Tngl(t) =1
then condition (2b) is satisfied.

Qondition (2b) can never be satisﬁedj

™\

(4)

@ given i E I I denote the set of all j such that (Mg);; = 1 Then (2b) can be equivalently rewritten as
by s(i). If Z —1 (Mg) ji > 1, then there are more than one element

x'() e X and x2(r) € S(Mg)x' (v).

(6)
in 5(i). In fact, for any j e s@i), x2(r) = 2n . 1s the solution _ _
to (2b) corresponding to x (t) = 62r Therefore, (2b) has multiple Thus, DABN (2) is rewritten as
solutions x2 when 22 I(Mg)jl > 1. Assuming S(i) = {51,1 = X+ 1) = Lal(n)x2() o
s(i)}, then we define “the set of matrices x2(t) € S(MHx (1), x'(r) e X!
on—r that is
S(Mg) = [M: Col; (M) € S(i) if Z(Mg)j,- > 1 @ +1) e Lkl () S(M)x! () =LS(Mp)x (1), x'(1) € X!
=1 where S(Tg) = (1 ® S(My)) @, ®
‘when 7! = 7t !
\ otherwise Col; (M) = COIE(Mg)ai c Qr] . (5) Seeererancnnnnas . X (t +1) = Lng (1), x (t) eX

where Mg = (Irr @ Mg)Dy.

p




Solvability of DABNs

Preliminaries

Let X be the solution set of (2b), i.e., the admissible state set of
system (2). Since (6) is equivalent to (2b), we have

X={xn x = xlx? ¢ S(Mg)xl, x! EXI}.

(In particular, if 7! = Ié, then X = {x : x = legxl, # e
X)) Let ¢ = A\X and define Ay = {x : x = x1x? € @inition 3: 1) Given an initial state x(0) = x9p € X and

xlS(Mg)xl, xl e XOI}. If the admissible state set X' = (), then x(t) € X,t > 0. If both x(0) and x(r) satisfy system (2),
DABN (2) is obviously unsolvable. Hence, we assume that X # (J then x(r) is called a_solution to system (2) with initial
for a given DABN. state x(0).

2) Given an initial state x(0) = xg € X, DABN (2) is called
solvable [the solution to DABN (2) is called unique] for the
initial state x(0), if there exists a solution (unique solution)
x(t),t > 0, to system (2) with initial state x(0).

3) DABN (2) is called solvable [the solution to DABN (2) is called

\unique], if it is solvable [the solution to DABN (2) is uni@

for any initial state x(0) € X.

Liu Y, et al. Normalization and Solvability of Dynamic-Algebraic Boolean Networks[J], 2018



Solvability of DABNs

Theorem 1: DABN  (2) is solvable if and only
if

Proof: (Necessity) If DABN (2) is solvable, then for any initial
state x(0), we have x(t) € X', t > 0, which further means x1@) e A1
from the definition of X and X!. Therefore, it follows from (8) that
for any x! e /1’1, LS(}\;Ig))c1 c xl.

(Sufficiency) If for any xl@ - 1) € X1, one has LS(Mg)xl(t —
1) ¢ X! holds, which means x!(r) € X1, 7 > 0 by (8), then x(¢) €
X using the definition of X. Therefore, for any initial state x(0) €
X,xl(O) e X!, As a result, x(t) € X,t > 0. Hence, DABN (2) is
solvable. [ |

LS(Mo)x' c X1, wal e X1,

Theorem 2: The solution to DABN (2) is unique if and only if
LS(Mg)x' c x) vx! e &1

e+ 1) e Lk () S(Mo)x' (1) =LS(Mg)x' (1), x'(r) e X' plays an important role in the way to
find lower dimensional conditions for the solvability of DABNs

Liu Y, et al. Normalization and Solvability of Dynamic-Algebraic Boolean Networks[J], 2018



Solvability of DABNSs

Remark 4: Since XOI 1S not necessarily equivalent to & L
Theorem 2 shows that the uniqueness of solution to the system can
be guaranteed even if the solution xz(t) to (2b) 1s not unique. The
following example also shows the point.

x1(t+ 1) =x2(t) A x3(1)
xo(t+1)=—-x1(¢)
1= (x1() A—x3(1)) V (mx1 (1) A —(x2(2) < x3(2))).

Then L = 04[2,4,4,4,1,3,3,3], and G = 0»[2,2,1,1,2,1, 1, 2].
It is easy to see that xl = {52,52,52'}, and X(} = {53,52} +
X!, Then we can obtain S(Mg) = {02(0,1,2,1],05,[0,2,2, 1]}
and S(Mg) = {0g[0, 3,6, 7], 03[0, 4, 6,7]}. It is clear that for any
xp € X1, Lg0,3,6,71x) € Xy, and LJg[0, 4,6, 7]x; € Aj. Then
the solution of the example 1s unique by Theorem 2.



Extension to DABCNSs

In this section, we study the solution to DABCNSs. Consider the dynamic system as

(x1(t+ 1) = fiu(@), ..., um @), x1(0), ..., xn(1))

0+ 1) = @), ... oun@),x10), ..., (1))
1 - (15)

_xr(t + 1) — f;’(ul(r)s tee ,Mm(f),XI(I), s ,xn(t))

where ﬁ : DM D, i e[1,r] are logical functions and u (¢) €
D, k € [1, m], are inputs. Besides, we assume the states of the other
n — r nodes are determined by the algebraic logical equations.

x4+ 1) = Lu@)x' ()x* @)
x2(t) e S(M)x' (1), x'(r) e X!

STP

(16)

x4+ 1) € Lu@®)x' (1) S(Mg)x' (1) = Lu)S(M)x' (1), x'@)yex' a7

where L = M FEe x M Iz and M 7 is the structure matrix of logical
r ]

function fl i ell,r].



Definition 5: 1) Given a control sequence U =
{u(0), u(1),...,u(t—1)} withu(s) € Aym,s € [0,1—1],1 > 0,
and an initial state x(0) = xg € A, as well as x(t) € X, > 0.
If both x(0) and x(z) satisfy system (16), then x(z) is called
a solution to system (16) with respect to x(0) and control
sequence U.

2) DABCN (16) is called solvable [the solution to DABCN (16)
is called unique] for the control sequence U if for any initial
state x(0) € A, there exists a solution (unique solution) x(¢) €
X,t > 0, to system (16) with respect to x(0) and control
sequence U.

3) DABCN (16) is called solvable [the solution to DABCN (16)
is called unique] if for any initial state x(0) € X, there exists
a solution (unique solution) x(z) € A',t > 0, to system (16)
with respect to x(0) and arbitrary control sequence U.

Since L € Myr y om+n, we split L into 2™ blocks as
L = [Blkj(L) Blka(L) --- Blkom(L)] (18)

where Blkp(L) € Loy, p € Qm. u(t) can be regarded
as a switching signal between Blk,(L). From Definition 5 and
Theorems 1 and 2, it is easy to derive the following result.

I

(" Theorem 4: DABCN (16) is solvable if and only if for anyN
p € O, one has

[ Theorem 1: DABN (2) is solvable if and onlyj
if

- 7 1 1 1 1
L LS(M,)x' c X!, vx! e &1, ) Blk,(L)S(Mg)x' C X' Vx' e &', (19) )

.

(" Theorem 5: The solution to DABCN (16) is unique if and only i

( )
Theorem 2: The solution to DABN (2) is unique if and only if | for any p € Q). one has

LS(Mg)x' c Xy vx! e X1,

L IS BIk, (L)S(My)x' c X1 wxl e X!, (20)

Liu Y, et al. Normalization and Solvability of Dynamic-Algebraic Boolean Networks[J], 2018



