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Boolean Networks With Time Delays

Background:

» During the growth of a bacterium, several external environmental
conditions including temperature, growth rate, external interference, or
concentration of nutrition can cause time delays.

» Thus, BNs with time delays are sometimes better to model real biological
systems or gene networks.

» Moreover, in many situations, time delay cannot be ignored in practice,
since it can heavily affect the dynamics of the networks.
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Controllability of BCN with time delays in states

I. Problem Formulation ’

A Boolean network of a set of nodes Ay, A,, ... A, can be described as:

o N
I' Ai(t +1) = fi(A1 (1), Ax(), ..., An(D)), I
Ax(t + 1) = f2(A1 (1), Ax(1), ..., An(D)), 1) i
I . .
: I
An(t + 1) = fa(A1 (1), A2(0), ..., An(D)), ;
Since time delay cannot be avoided in many cases, we assume that the Boolean networks have time-
invariant delays in states as follows: == i e m i m i e e i e == ~

COAE+1) = fi(A(E — 1), Aot —T)s s An(E — 7)), ) — A+ 1) = MALE— DA — ) An(E — ©)
At +1) =LAt —1), Ayt —T),...,Ap(t — 7)), 1 = Mx(t —7), i=1,2,...,n.

e e e e e T Ly e DL -
Ak 1 (2) l
A+ D) =fA(E— 1), At — 1), ... At —T)), 0 T
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I. Problem Formulation

Boolean control networks with time invariant integer delays in states as follows:

[ (At +1) = fi(ui(t), ..., Un(t),Al(t —T), ..., Ap(t — 7)),

AZ(t + 1) =f2(u1(t)1 ey um(t)aAl(t - T)? s vAn(t - T)): I
1 .

DAt + 1) = fu@i(©)s e (O, A — ) A — ),

Two kinds of controls are considered:

(1) The controls are logical variables satisfying certain  (2) The control is a free Boolean sequence. Precisely, set
logical rules, called input networks such as: u(t) = x™, u;(t). Then the control is a designed sequence.

_l' —ul(t + 1) = g1(u1(t), ua(t), ..., um(t)), \‘I At + 1) =Mu(t)x(t —7), i=1,2,...,n. (6)
Pt + 1) = ga(t), ux(t), ..., um(t)), 5) ui(t + 1) = Myu(t), j=1,2,...,m. (7)
! : c T T T \
U lum(E+ 1) = gn(ui (), wa(0), ..., um(0)), Muliply 1 Ju(t + 1) = Gu(t), ;
e et et e e e e . x4+ 1) = Lu(t)x(t — 1), (8) -
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I1. Control via input Boolean networks Case 1: s is fixed and G is fixed

Definition 1 Consider system (4) with control (5). Given initial state sequence x(—1),x(—7t + 1), ... ,x(0) €
4,,, and the destination state x,; , x, is said to be controllable from initial state x(i — ), (i € {0,1,..., }) ats
steps with fixed (designable) input structure G, if we can find u, (and G) such that x(s + i) = x4.

Theorem 1 Consider system (4) with control (5), where G is fixed. x, is s step reachable from
x(i—1), (i€ {0,1,...,t}),ifandonly if
x4€ Col{@C (s + DWiapnomx(b — 1 — 1)}

where and hereafter “Col” is the column set, also there exist unique a € {0,1,2,...}andb €
{1,2,...,t+1}suchthats +isatisfies:s+i=a(r+1)+b

O%(s +1)

— LGa(r+1)+(b—1)(12m R LG(a—l)(r+1)+(b—1))

X (Izm @ LG DDAV (Lam @ LGP™V) X (Ia-1ym @ D) ... (Igm @ Pyy) Py,
where &, is defined as &m = xiZ; Li-1 @ [(l2 @ W, ym—i))Mr | M, =64[1, 4].
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I1. Control via input Boolean networks Case 1: s is fixed and G is fixed

Proof : A straightforward computation shows the following: !

x(1) = Lu(0)x(—1), |
X . Suppose that there existuniquea € {0,1,2,...},b €

;C(r + 1) = Lu(t)x(0) = LG"u(0)x(0) . {L.2...,t+1}suchthats +i=a(r+ 1) +b.

x(t 4+ 2) = LGT u(0)x(1) = LG (Ihm @ L)@ pu(0)x(—1), | From the above analysis, using mathematical induction,
: | We can prove that
x(2(t + 1)) = L™ u(0)x(r + 1) :

— LGZT+1(1'2H'I ® LGT)cDmu(O)X(O), X(s + I) = X(a(f + l) + b)

| — LGﬂ(r+l)+(b—1)(,vzm ® LG(G—l)(r+l)+(b—1))

I x (Lzn ® LGE-DEHD+O-Dy (Lo @ LGOD)

' X (Le-tm @ @)+ -+ (lhm @ Bp)Pru(0)x(b — 1 — 1)
= @%Gs+Du@x(b-1-1)
= O%(s + i) Wjzn omx(b — 1 — 1)u(0).

Notice the special form of @ (s + i)Wz omx(b — 1 — 7) and u(0),

where @¢(s + [)Wn mx(b — 1 — 1) is a 2" x 2™ matrix, and its
I columns are elements in A,n, and u(0) € A,m, we can drive the

\I conclusion.
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“3(t 4+ 1)) = LG u(0)x(2t + 2)

LG*" 2 u(0)LG* ! (Ihm ® LGT)®,,u(0)x(0)

= LG (Ihm @ LG ) (Iom ® LGT) :
X (Ibm @ @m)Pmu(0)x(0), |



I1. Control via input Boolean networks | Case 2: s is fixed and G is designable

Notice that there are my = (2™)2™ possible distinct G, we can express each G in the condensed form and
order them in “increasing order”. Let us consider a subset A c {1,2, . . ., my} and allow G be chosen
from the admissible set {G; |1 € A}.

,” Corollary 1 Consider system (4) with control (5), where GE {G,|A € A}. Then x, is s step \
: reachable fromx(i — 7), (i € {0,1, ..., 7}), ifand only if

I xg € Col{@%A(s + DWapomx(b — 1 —1)|1 € 4}

where there existuniquea € {0,1,2,...}andb € {1, 2, ..., ¢+ 1} such that s + i satisfies:
s+i=a(t+1)+b I

L 0% (s +10) !

i — LGa(r+1)+(b—1)(12m R LG(a—1)(r+1)+(b—1))

. >< ( Lom @ LG (a—Z)(T+1)+(b—1)) (1 am @ LG (b—l)) (Iz(a ym & cpm) (om @ qu)
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I11. Controllability via free Boolean sequence

o WEN B EEm B EEm N B N EEm 5 EEm N EEm N SN N EEE N S N BN N BN N MmN R EEN N EEN F EEm N EEN R EEm N EEm N EEm N MmN S N S N EEm N EEm N MM N MM N Em R Em R Em ow

f 1
I Definition 2 Given initial state sequence x(—7),x(—7 + 1), ... ,x(0) € 4,,, and destination state x, . The,
I Boolean control network (4) is said to be controllable from x(i — 7), (i € {0,1, ..., t}) to x4 (by free
; Boolean sequence) at s steps, if we can find control u(t), such that x(s + i) = x4.

Define L = LW,y 2m1, NOtice thatx (t — 7) € R?", u(t) €
R2™pe two columns, then~the second equation in (8) can be
expressed as x(t + 1) = Lx(t — t)u(t). It yields:

X(s+i) = Ix(s+i—1—1Du@s+i—1)
=Ix(s+i—2-20)u(s+i—2—tu(s+i—1)
= DPx(s+i—3—30)u(s+i—3—271)

Xus+i—2—nus+i—1)

-
1

)

1

i @eorem 2 x4 is reachable from x(i — 1), (i € {0,1,...\
i , T}) at s steps by controls of Boolean sequences u(s + i —
HHk—(k-Dous+i—-(k-1D—-(k=2)D)~u(s+i—
Il 1) ifand only if

i x4 € Col{l*x(j — 1)}
I'| where there exists unique jand k such that s +i — k —
ilkt=j—1,j€{0,1,..., 1}

|

1

1

1

1

1

1

1

1

1

J

=G +i—k—knu(s+i—k— (k— 1)7)
xu(s+i—(k—1)—(k—-2)t) --u(s+i—1).

Assumethats +i—k—kt=j—1,wherej € {0,1,..., T}
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V. Example

Consider the following Boolean control networks,
its logical equation is

At +1) = u(t) AA(t — 1),
B(t + 1) = u(t) V B(t — 1),
C(t+1) =u(t) — C(t — 1),
Dit+1)=D(t—r1) < E(t — 1),
E(t+1) =E(t — 1),

VEt+1) =F(t—r1),
Git+1) =G(t — 1),
H(t +1) = H(t — 1),
I(t+1)=I(t — 1),

J(t+ 1) =—J(t — 7).

with controls satisfying
u(t + 1) = —u(t).

\

Denote x(t) = A(t)B(t)C(t)D(t)E(t)F(t)G(t)H()I(t)](t), then we
can express system (10)—(11) as

u(t + 1) = Gu(t)
x(t+ 1) = Lu(t)x(t — 1)

where G = (2, 1], L = Mc(I4 @ My)(I,4 @ M;)(I; @ Wi2))D1(I, @
Wi2.4) @1 (e ® ®M,)(Is ® @1) (10 ® My). Lis a2’ x 2! matrix,
even using condensed form, it is still too long to show here, hence
we do not write it specifically.

Assume thats = 5,i = 2,7 = 10, x4 = 8%,,, X(—4) = 8],
Through calculation, it leads to
O%(s + ) Wpgn omx(b — 1 — 1)

= LG°*Wiy10 ,1X(—4) = §1024[2, 514]

then, x4 € Col{®C(s + )Wipn ;mx(b — 1 — 1)}, using Theorem 1,

we can see that x; can be reached from x(i - 7) in five steps.

6
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Observability of BCN with State Time Delays

Problem Formulation |

A Boolean network of a set of nodes A4, 4,, ... A,, can be described as:

,’ (ALt + 1) = fiui(0), ..., um(), A1(t — 7). ..., An(t — 1) M
- | A D=Hwi), . (@), ALt =), ..., Ayt — 7)) !
Lo (1
| : .
A D= A0 O, A=) A=)
. |
Ly =hi(A10), A1), Ax0), j=1,2,...,p (@) s

N s o s s s s B s S B EES § EEE F EEE O EEE  EEE N EEE § EEm § EEm § Emm 5 s 5

Two kinds of controls are considered:
(1) The controls are logical variables satisfying certain  (2) The control is a free Boolean sequence. Precisely, set

logical rules, called input networks such as: u(t) = =i, u;(t).Then the control is a designed sequence.
ur(t + 1) = g1 (u(t), uz(t), ..., um(t)), O (_r+_1) - 'G-('t)- T
u2(t + ]) = gz(ul(t)a u2(t)a ey ui’?‘I(t))a . u = .
: 3) e A Ix(t+ 1) = Lu()x(t — 1) |
Un(t + 1) = ga(u1 (), Uz (t), ..., un(t)), YO =Hx _
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Observability of the Boolean Control Networks Case 1: the controls are logical variables

ﬁ)efinition 1 The Boolean control netwo%
(1), (2) 1s observable if for the initial state
sequence x(—1),x(—7+ 1),... ,x(0) € 4,, ,
there exists ﬁnite. time s, such .that the initial Define a sequence of matrices T'j € Lopanim, j = alz -+
state can be uniquely determined from the 1)+ b, where a €{0,1,2--- ). be {1.2,....1 + 1}, as

knowledge of the controls {u(0),u(1),

I, = HLGeG@+D+(b-1)
..., u(s)} and the outputs {y(0), y(1), ...,)’(5)}/- (1‘;}” & LG@-DEHD+O-Dy ([, @ [GEa-DE+D+b-Dy .

(Izam ® LG(b_l))(Iz(a—l)m ® (Dm) e (Izm ® (Dm)cpm
( ’ where H, L, G are the transition matrices of (2), (1), and (3)

respectively. H, L, G, and ®,, are as previously defined.
Split I'j into 2" equal blocks as

r} = []-_j.,l-) rj-,zﬁ cee s rjizur]_

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011



Observability of the Boolean Control Networks \

Case 1: the controls are logical variables

heorem 1: Consider (1) and (2) witl_l control (3), or equiv®
alently (6), (7). Assume that u(0) = 65, i € {1,2,...,2"}.
Equations (6), (7) are observable if and only if there exists

finite time s, s = c¢(7 + 1), where ¢ is a positive integer, such
that

rank(Qp) = 2", rank(O;) = 2", ..., rank(O;) = 2"
where

Iy [y
| Irq2.i
Oy = ) O = )
Ce—1)(e+1)+1+1,i Ce—1)(e+1)+1,i
rr,i
2741,

and FO—H,ie{l,Z,...,Zy

= aéma

O, = .
k Ce—1)(c+1)+1,i

Proof: Notice from the definition of T j» and u(0)
a straightforward computation shows the following:

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011

y(0) = Hx(0)=T0x(0)
¥(z+1) = HLG u(0)x(0) = T4 1u(0)x(0) = Tey1,x(0)

y:(21 +2)= HLG*'u(0)LG u(0)x(0) = I'y;42.ix(0)
¥ = 1) = ¥ =D+ D+ D= Teonesnnin(-1)

y(s) = yle(r + 1)) = Fe=nyz+1)+7+1,ix (0).

From the above analysis, we can see that
O{le(—r) = OIT '7 . —‘

|_ yice—=DE+DH+1)

y(D)
y(r +2)

It implies that x(—7) can be determined uniquely by the
outputs if and only if rank(O;) = 2", i.e., 0{01 is nonsingu-
lar. In the same way, we can see that x(1—7), ..., x(—1),x(0)
can be determined uniquely by the outputs if and only if
rank(() = 2", ..., rank(QO;) = 2", rank(Op) = 2".



Example |

Example 1: Consider the following Boolean control
networks:
A+ 1D =ui(t) NA(t—1) (8)
B(t+1)=u(t) v B(t—1).
The outputs are
yi(1) = =A() o)
y2(t) = —B(1)
with controls satisfying
ur(t +1) = —us(t)
10
i wat + 1) = 1 0. 1o

Assume that u(0) = cﬁ.

Denote x(t) = A@)B(), u(t) = ui(Ouz(t), yt) =
v1(t)y2(t), then we can convert the Boolean control networks
(8)—(10) into

x(t+1)=Lu(®)x(t—1)
u(t+ 1) = Gu(r)
y(t) = Hx(1)
where
L =04[1,1,3,3,1,2,3,4,3,3,3,3,3,4,3,4],
G =04[3,1,4,2], H=04(4,3,2,1].

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011

Case 1: the controls are logical variables

By calculation, we have
y(0) = d4[4,3,2,1]x(0)
y(2) = 4[4, 4,2,2]x(0).
In the same way, we have
y(3) = I3px(=1) = 42, 2,2, 2]x(-1)
y(4) = T4 2x(0) = d4]2, 2,2, 2]x(0)
and then we have _

(11)
(12)

00 0 1
00 1 0
01 0 0
1 0 0 0
9=100 0 0
1 1 1 1
000 O
000 O

rank(Qp) = 2" = 4. Also, rank (Op) = 4. Then, the system
is observable.

End



Observability of the Boolean Control Networks Case 2: the controls are free Boolean sequence.

Define a sequence of matrices

G=HL(I;m @ L)(I,zm @ L) -+ (I -1ym Q@ L)
wherej € {1,2, ...}
Split I3 into 2™ equal blocks as

L= [li1, g, [om].
Split I, into 22™ equal blocks as
I; = [Tr11,, Doagm, oo, Iygmy, oo, I3pmom].

Doing it repeatedly, split [ into 2/™ equal blocks as

I—]" = [1}'1...1, tty []"1...27”, Yy I—]"Zm---Zmli tty I}zm...zmzm].

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011



’ Observability of the Boolean Control Networks ‘ Case 2: the controls are free Boolean sequence.

Theorem 2: Consider (1) and (2). Assume that there is a
free Boolean sequence of control as u(0) = &, u(l) = A straightforward computation shows the following:

55‘,,1, ..., where ig,i1,... € {1,2,...,2"}. Then the systems y(0) = Hx(0) = Tox(0)
(1), (2) are observable if and only if there exists finite time s, :
s =d(z + 1), and d is a positive integer such that y(r +1) = HLu(t)x(0) = T u(z)x(0) = I x(0)
rank(Qg) = 2", rank(0;) = 2", ..., rank(O,) = 2" :
h X
where - _ V(@ =D+ 1)+ 1) =Taig_iyeqry-io* (=)
I :
I, Iy; o Y8) = Tdig_yyesiyseicX(0).
_ 1"2il i _ Lr4110 .
Op = e+t 0, = : From the above analysis, we can see that
: y(0)
U dica—iyoaty-i
| rdi(d—1)(r+1)+r~fr . W= y(@+1)
Cii, Or Opx(0) = OF | Y2z +1))
[ipeieoy :
O, = _ and Ty = H. ‘
: | yd(z+1))
Cdicy_tyeirypemt e It implies that x(0) can be determined uniquely by the out-
Proof: In an algebraic form, a Boolean control networks puts if and only if rank(QOy) = 2", i.e., Og Oy is nonsingular.
(1), (2) can be expressed as In the same way, we can see that x(—7),x(1 —17),...,x(—1)
x(t +1) = Lu(t)x(t — 1) can be determined uniquely by the outputs if and only if
y(t) = Hx(1). rank(O1) = 2", ..., rank(O;) = 2".

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011



Exmnpm‘

Example 2: Consider the following Boolean control
system:

Bt+1)=A(t — 1) (13)

and the outputs are

[ A+ 1) =u1(t) AB(t —1)

y(t) = A(t) — B(1). (14)
Assume that u(0) = 5%, u(l)y =0, u@2) = (521 u3) = 6%,
u(d) =63, u(5) =6 u(6) =i, u(7) = 4.
Denote x(t) = A(t)B(t), u(t) = u(t), then we can convert
the Boolean networks (11), (12) into
x(t+1)= Lu(t)x(t —1)
y(t) = Hx(t)

L =04[1,3,2,4,3,3,4,4], H =0[1,2,1,1].

(15)

where

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011

Case 2: the controls are free Boolean sequence.

By calculation, it leads to

1 0 1 1
01 0 0 1 1 0 17
1 1 0 1 00 1 0
001 0 1 01 1
111 1 01 0 0
D=lo000]| =111 1
01 0 1 0 0 0 0
1 01 0 00 1 1
111 1 1 10 0
| 00 0 0 | ) )

and
rank(Op) = 2" =4, rank(O;) =2" =4.
Then, systems (11), (12) are observable. And, we notice that
the observability of the Boolean control network is related to

the selection of the controls. For example, by letting u = 5%,
the Boolean control networks (11), (12) are not observable.

End



Some Necessary and Sufficient Conditions For The Output

Controllability of Temporal Boolean Control Networks
‘ I. Problem Formulation |

i,ai(t—kl):fi(al(t),ag(t),...,an(t)), i=1,2,...,n, (3 1):
b e e e e e e - BN
A R R G S ‘;
: ceya1(t—=T7)y . an(t—7)), i=1,2,...,n, )Algebraic F(S?rTQ]) |
L ai(tH 1) = My )y aj(t) Xy ag(t—1)... kT a(t— 1) :
KT = Map@Qet = 1) 2 mm) iz by L S (3:3)/
D Multiply TBN
II‘_:E.(; +_1)_:_I><Z”L:1_az_(t —_|—1_) ....................... AR \i
; = Xy [Miz(t)x(t —1)...z(t —1)]. (3.4) ;
i )Lo = Mi[X_ gLy g1) ® Mi®p(r11)] ;
VTt +1)=Lox(t)x(t —1)...2(t —7) (3.5),

Y mmm s s EEm s EEm R S O EEE 5 B F EEE B EEE 5 EES § EEE  EEm R MM § EEm F EEm § MM § EEE E B § EEm N EEm 5 M § Emm N EEm 5 Emm R Emm  Emm 8 o 8 8 o
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Common methods of dimension extension

Recall a uth order Boolean network, its dynamics can be expressed as [25]:

_l' At +1) =filAr(E =+ 1), A= i+ 1), AL, AD), Y
| At +1) = flAa(t — 1), At — 4 1), A, A(D)), |

l | (1)
Alt+ 1) =fA(t—pu+1),...  Ap(t—u+1),...,A:(t) ,An(t)),
| |
t=>pu-1, ,'
where A; ¢ Dand f; : D" — D,i=1,2,...,narelogical functions; t = 0,1,2,... From (1), we can see that a uth order Boolean

network is a very general Boolean networks with time delays.

In the following, we consider uth order Boolean control network as follows:

A+ 1) = fi(un (6= o+ 1), (t— @+ 1), A (E— 0+ 1), At — L+ 1), A(D), -, An(D),
At +1) = (t— e+ 1), o Um(E— @+ 1), A (E =+ 1), o An(E— w4+ 1), .. AL, ..., An(D),

~—

An(t+ 1) =ty (¢ = 0+ 1), (= b 1) AN (E = 4 1), An(t = 1), A, A(D), £ =1,

where A;,u; € D, u; are controls (inputs) and f;, i =1,2,...,n are logical functions.
In order to convert (2) into algebraic form, we define x(t) = x';A;i(t) € Ayr, u(t) = x™,u;(t) € Ayn and z(t) = xfj{"l
X(i) € Aym. Assume that the structure matrix of f; is M; € £, ,mm. We can express (2) into

Ait+ 1) =Mu(t—pu+Dz(t—pu+1), i=1,2,....n, t=pu—-1,u... (3)

[25] Cheng D, et al. Analysis and Control of Boolean Networks: A Semi-tensor Product Approach[M], 2011.



Common methods of dimension extension

Multiplying the equation in (3) together yields:

4
FX(E+1)=Ai1(t+ DAt + 1) Ap(E+ 1) :
! = M] (12m+un & Mz)(I)er'un(Izmﬂm & Mg)(Der'un s (12m+un & Mn)(l)m+unu(t — U+ 1)Z(t — U+ 1) |

where LO = M] (Izm+,un (024 M2)®m+yn (Izmﬂm & M3)q)m+'un S (Izmﬂm X Mn)q)m+un.
Using some properties of the semi-tensor product of matrices, we have

Z(t+1) = xH* x(1) = x(t+ D)x(t +2) - X(t + 1 — 1)Lou(t)z(t)

i=t+1

= X(E+DR(E+2) - -x(t+ = D)Lou(0)x(t) - - x(t + U — 1) = (Lgm @ Lo)W gmen yuvm (Tymen @ D1 u(6)2(8).

This implies that
z(t+ 1) = Lu(t)z(t), (5)
where L = (12(,471)11 & LO)W[Zern’Z(u—l)n] (12m+n ® (D(,ufl)n)-



TBCN

Next, we consider TBCN with outputs as follows:
ai(t + 1) = fi(ul(t)? s -um(t)7a1(t)7 Tt an(t)7a1(t - 1)7 R a'n(t o 1)7

coya1(t—71), . an(t—71)), i=1,...,n, (3.7)
yj(t) = hj(al(t), .. .,an(t)), j = 1,. -5 D,
where u;,4 = 1,2,...,m are inputs (or controls); y;(t), j =1,...,pareoutputs; f;, i =1,...,n, hj, j=1,...,p

are logical functions. In this paper, two kinds of inputs (or controls) are considered:

(A) The controls satisfy certain logical rules, called input networks such as:
w;(t+1) = gi(ur(t),uz(t), ..., um(t)), i=1,2,...,m, (3.8)

where g;,7 = 1,2, ..., m are logical functions, and the initial states ©;(0),j = 1,2, ...,m, can be arbitrarily
given.

(B) The controls are free Boolean sequences (or designable).

x(t+1) = Lu(t)x(t)x(t —1)...x(t — 1),
{30 = 120 (512
and u(t + 1) = Gul(t), (3.13)

where L, H are respectively the network transition matrices of two equations in (3.7), and G is the network
transition matrix of (3.8).

Liu Y, et al. Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks [J], 2014



I1. Output controllability of input Boolean networks

Definition 4.1. Consider the TBCN (3.12) with control (3.13). Given the finite time s € N¥, initial state
Isequence z(—i), i € {0,1,...,7} and the destination output y; € Ao, ys is said to be s — output —:
controllable (or reachable) from initial state sequence with fixed (designable) input structure G, if we can,

ifind control input «(0) (and G), such that y(s) = yy. I

{Deﬁnition 4.2. The TBCN (3.12) with control (3.13) is said to be s — output — controllable (or reachable) if|
Ifor any a; € Agn, i € {0,1,. T} and b € Ay, there exist the finite time s € N and the control input u(0)j

Isuch that z(—i) = a;, i € {O 1 ., T} to y(s) = 0. I
/I‘heorem 4.6. Consider the TBCN (3.12) with control (3.13), where G is fixed. yy is s-output-reachable fmm\
x(—1), i € {0.1,....7}, if and only if yJTHLfI-"L”[Q,.(.-Jr1}_2-,“]}{(T) £ (0,...,0)" or equivalently, there exists at
: L
?rri

least one entry of yf HLSWiyur+1) 0 X (7) equaling 1, where

an t=1,
LG[(Izn @ LT)Pm|[L2m @ Wanr guirtty @)l i— %,

LY = ¢ LG [(Iom ® LS )@ ][ sm g (gitntotn) @ LT Bt nri1))] (4.4)
X [Iom @ Wign(z=st2) gn(z+0)Prr—t42)], s=3,...,7+1,
LG M (2 ® LS ) Bl [} 2153 (Tpmtniott) © LEBr gy ). s> 7L

w it is the ith entry, then w(0) = §5... j
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I’Corol]ary 4.8. Consider the TBCN (3.12) with control (3.13), where G € {Gx|A € A}. Then ys

| iS5 s-output- reachable from z(—i), i € {0,1,...,7}, if and only if there erists at least one entry of
1 {2 ;HLCTAI"’rlzn{f+1),2n1]X(T)‘A € A} equaling 1, where LS is given by (4.4).

| Pr0p081t10n 4.9. The number of different controls u(0) that steer TBCNs (3.12) with control (3.13) f'rom\
I z(—i), i €{0,1,...,7} to y(s) = yy in s time steps is
|

l (s; X(7),yf) =yf Qs X (1), s € NT,
1
| where Qs = HLG 19m, 1om = [1,...,1]T and LS is given by (4.4).
\ 2?71.
<

[ Theorem 4.10. The TBCN (8.12) with control (3.13) is s-output-controllable if and only if all the entries of )
Qs are different from zero.

. 7

ﬂ&lgorithm 4.11. Assume the TBCN is given with its logical expression as (3. 7) and input networks as (38)\

(A) Convert (3.7) and (3.8) into a linear discrete time delay system as (3.12) and (3.13) such that G, L, H
can be expressed by matrices.

(B) Compute LS by (4.4).

(C) Getl(s; X(7),y(s)) = y(s)T Qs X (7) to see the number of different controls u(0) that steers the TBCN from
X(7) toy(s). If I(s; X(7),y(s)) = 0, it means there is no existence of such w(0), then stop.

(D) Find which entry of vector y(s)THLg;W[Qn(TH)’Qm]X(T) equals 1. If it is the 1st one, then u(0) = Oam.
Similarly, if the ith one, then u(0) = 6%m .

Liu Y, et al. Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks [J], 2014



I11. Control via free Boolean sequence

¢ Definition 4.13. Given initial state z(—i), i € {0,1,...,7}, the destination output ys € Aop and the finite
I time s € Nt the TBCN (3.12) is said to be s — output — controllable (or reachable) from initial state z(—i), (i € |
1 0,1,...,7) to ys (by free Boolean sequence), if we can find the control inputs {u(0),u(1),...,u(s — 1)} such |
I that y(s) = ys. :
|
N e e e e e e e e e e e e e e e e e e e e e m e e mm m e e e e e - v
II Definition 4.14. The TBCN (3.12) is said to be s—output—controllable (or reachable) if for any a; € Agn, i € \
j {0,1,...,7} and b € Ag», there exist the finite time s € N* and the control input u(t) steers the TBCN from :
j z(—i) =a;, 1€ {0,1,...,7} to y(s) = b. I
N o o o e o e e e e e e e e e e e e mmm mme e mmm e Gmm M R S Gmm e S mmm M S mmm e S mmm e S S e e e -
ﬁleorem 4.15. Consider TBCN (3.12). ys is s-output-reachable from x(—i), i € {0,1,...,7} by controls ON
Boolean sequences U(s — 1) of length s if and only if there exists at least one entry of Yy HL s X (1) equaling 1,
where
( l}, s=1
_Z-Jf/]_W[ZnT 2m+n(‘r—|—1)]@n7—, S = 2,
LS = < LLS 1[I><'L S— 2(W[Qn72(8—1)m+"(7'+1)]-Z_/’l@im—l—n('r—i—l))] (4]‘6)
X W[Q(T+2—S)n72(5_1)m+”(7+1)]¢(T—|—2—S)TL7 s=3,..., 7+ 1L
\ Efjs_]_[D(fz_;—__21(W[2n72(5—1)m+n(r+1)]fji¢im+n(7-+1))], S>T + 1.

Q@t is the ith one, then U(s — 1) = 0%.m. /

Liu Y, et al. Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks [J], 2014




{Proposﬂzlon 4.17. The number of different controls u(t) that steer TBCN (3.12) from x(—i), i € {0,1,...,7} \I
jto y(s) = yy in s time steps is I
| U(s; X(7),yf) =y; PsX(7), s € NT, |
1 |
|\whe7’e P, = HZNLSW[2sm72n(T+1)]1gsm and I~Ls is given by (4.16). /l

[Theorem 4.18. The TBCN (3.12) is s — output — controllable (or reachable) if and only if all the entries of ]

Ps are different from zero.

@gorithm 4.20. If the TBCN is given with its logical expression as (3.7). \

(A) Convert (3.7) into a linear discrete time delay system as (3.12) such that L, H can be expressed by matrices.
(B) Compute Ly by (4.16).
(C) Getl'(s; X(7),y(s)) = y}—PsX(T) to see the number of different controls {u(0),u(1),
,u(s — 1)} that steer the TBCN from X (1) to y(s). If I(s; X(7),y(s)) = 0, it means there is no such
control, then stop.
(D) Find which entry of vector y(s) T HL X (7) equals 1. If it is the ith one, then U(s — 1) = 0bem.

o )

Liu Y, et al. Some necessary and sufficient conditions for the output controllability of temporal Boolean control networks [J], 2014




Controllability and Observability of BCN
With Time-Variant Delays In States

The constructed forest

Matrix testing criteria

Control design algorithms
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I. The definition of controllability

(" Definition 1: Consider (5). For any given initial time)
fo, any given time delay function, any given initial state
sequence Xo = (x(to — 7 (1)), x(to — t(t0) + 1), ..., x(t)) €
(Azn)(f(fﬂ)“), any given destination state x; € Ao», and any

Q;iven s € N\ {0}. )

@ x4 is said to be reachable from X at the sth step if a @ The set of all states that are reachable from X is said to
control sequence {u(to), u(to + 1), ..., u(to+s—1)} C be the reachable set of X¢, denoted by R(Xp). Clearly

Aom can be found such that the trajectory of (5) satisfies R(X0) = Uienjo} Ri (Xo0).
x(to + 5) = x4. System (5) is said to be controllable from Xg if

@ The set of all states that are reachable from X at the sth R(Xo) = Aon.

step is said to be the s-step reachable set of X, denoted @ System (5) 1s said to be (globally) controllable if it is
by R;(Xo). controllable from any X € (Agn)T0)+1),

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013



I1. Controllability

Definition 2: A directed graph G(V, E) is said to be the
constructed forest of (5) if the vertex set V ={t € Z :t >
to — t(tp)}, i.e., the time sequence of (5), and the edge set
E={{,i")y:/=¢"-1—-1t""-1}CV xV.

We identify each vertex ¢ with the state x(¢) of (5) here-
inafter. The following lemma holds.

Lemma I: The constructed forest G consists of 7(fp) + 1 @ @

directed trees whose root set is {fo — 7(f0),f0 — 7(fp) +
I,..., 0}

The constructed forest can be obtained easily according to
the following procedure: 1) draw the roots o — 7 (), 70 —

T(fo)—l—l, oo 103 2) draw the vertex I0+1 and the edge pointing Fig. 1. Constructed forest of (5) with 7(¢) constant that is studied in [7],
to it; 3) draw the vertex 7y + 2 and the edge pointing to 1it; where the number in each circle denotes the time step.
4) see Fig. 1.

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013



1. Controllablllty 4 Remark 1: A controllability constructed path has eithe)

finite vertices or countably infinite vertices. In particular, if

(1) is bounded, any controllability constructed path generated

by 7 (¢) has countably infinite vertices. In fact, if it is not true,

there must exist one vertex that has countably infinite sons,

\which infers that 7 (¢) is unbounded. The converse is not true,/
A counterexample is the following time delay function:

For the sake of discussion, some notations are presented.

1) Let {Tyy—z@to)> Tty—r(tg)+15 - - -» Iy} be the constructed
forest G(V, E).

2) Let Py_;(1)+i- and N; be any one given longest path of
the tree Tj,—z(s9)+i and the length of Py, (1)+i, respec-
tively, i = 0,1,...,7(to) (If Py—r(4)+; has an infinite
number of vertices, set N; = +00, j =0, 1,..., 7(fp).).

3) Let P. and N, be any one given longest path in
{Pro—t(t0)> Pro—z(to)+1>---» Py} and the length of P,
respectively.

(6)

. 1, ift > 1 =0 1s even
(1) = ) )
t, ift =1 =0 1s odd

where 7*(¢) is obviously unbounded, but the unique controlla-
bility constructed path {—1, 1, 3,5, ...} has countably infinite

vertices (Fig. 2). @ Q
3

We call P, alcontrollability constructed path|since it can be
used to characterize the global controllability of the system, as
will be shown later. For example, in Fig. 1, the time sequence
{0,z + 1,27 + 2, ...} is a controllability constructed path.

Fig. 2. Constructed forest generated by the time delay function (6), where
the number in each circle denotes the time step.

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013



I1. Controllability

Denote by

{to,fl,...,fN}(Or {to,1,...})h) C Z (7)
one of the controllability constructed paths of (5), where
to—t(tp) <ty < tg, tix+1 > t; for all i > 0. Then, we identify
the controllability constructed path (7) with the following
subsystem (8) of (5). In (8), we still use 7y to denote ty when
confusion does not occur

X (1) = Lu(tprr — Dx (i) ®)
y(tx) = Hx(t)
where k € {0, 1,..., N — 1} if (7) has a finite length N, and
k € N if (7) has length +00, x € Ao, u € Aym, L, H are the
same as those in (5). In fact, it is easy to see that any path of

(5) with its root in the set {tyg — 7(fy), 79 — 7(tg) + 1, ..., 19}
has the same form as (8). \]

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013

Note that (8) i1s a system with no time delays if the
subscript of ¢ 1s regarded as its time sequence. Then,
similar to Fig. 1 of [8], an input-state dynamic graph
of (8) can be illustrated intuitively, which implies that

the re&gl]able set of the state x(fp) satisfies R(x(tp)) =
U;n:ll{z LV R (x(19)). Similarly, based on the concept
of the input-state incidence matrix introduced in [8] and
[8, Th. 3.3], the controllability criteria for (8) are easy to
obtain as follows: In addition, Theorem 4 is a corollary
of Theorem 1 of [12]. Following the idea of the proof of
Theorem 1 of [12] ([12, Eq. (9)]), we have R;(x(tp)) =
{Lu(ty, — DLu(ts_y — 1)...Lu(t;y — Dx(p) : u(yy — 1),
u(ty — 1), ... ulty — 1) = b, O2ms - - ., Oam ).



I1. Controllability

eorem 4: Consider . Let m = M. en.
(" Theorem 4: Consider (8). Let L1y := M. Th )
1) 55,, is reachable from d, at the sth step if and only if
(M?*)ij > 0; ‘
2) (8)1s controllable from &2, if and only if all the entries
of Col; (me LA M*) are positive;
3) (8) is controllable if and only if all the entries of
min{2"t" —1 N} Mk ..
are positive,

ﬁeorgm 5: Consider (5). Let L1o» := M, and set
min{N, 2" —1}

k=1
@ere N is the length of (7). Y,
Based on the above preliminaries, our first main result on

testing the controllability of (5) is obtained.

~

M, if Ny >0
Mrg—f(fo)+s = é ’
025 2n, if Ny =0
s = 0, ..., 7(tg). Then:
1) &b, is reachable from Xo = (6%, ol ... Ir(m)) if and

only if ZT(IO) (Myy—z10)+1)iiy > 05 o
2) (5) is controllable from Xo = (050 s Oy v e s
r“0)) if and only if Zr(m) (Myy—z(19)+1)i.i; > 0 for all

on
i=1,2,...,2"

3) (5)1s control]able if and only if (8) is controllable;
4) (5) i1s controllable if and only if all the entries of
n+m
mew 27U R are positive.

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013



I1. Controllability |

Proof :

_ Conclusion (1): By the constructed forest of (5) and Lemma
ﬁwrem 5: Consider (5). Let Llyn = M, and set \ 1. 8, is reachable from Xo = (8%, 5. ..., 65”) if and only

if there exists a 0 < k < 7(fg) such that 5, is reachable from

min{Ns,Z”J”"— 1}

Z M*, if N, >0 5;";2,. in subsystem P, (s)+k- Hence the conclusion holds by

Miy—t(io)+s = i Theorem 4.

0on 5 on if Ny =0 Conclusion (2): It is a direct corollary of Conclusion (1).
Conclusion (3): The “IF” part holds by Definiton 1. For the
s =0,1,...,7(t). Then: “ONLY IF” part, if (8) (a controllability constructed path) is
1) o, is reachable from Xq = ( 512?’ , (Slzln . Izr"(rm) 4 el not controllable, then nor is any one of the paths of the related
7(19) constructed forest. Hence (5) is not controllable.
only if Z (Mig—z (i) +Diip > 0;

) io  sil Conclusion (4): For the “IF’ part, if all the entries of
2) (5) is controllable from Xo = (Jm,0m,..., me{N 2 ke o positive, then any one of the control-

r(r ) (t0)
dyn ) if and only if 3720 (My (1) 41)i;, > O for all lability constructed paths is controllable. Hence (5) is control-
t=1,2,...,2% lable. For the “ONLY IF” par, f e 2T gk =

3) (5)1s controllable if and only if (8) 1s controllable; i "
Q(S) is controllable if and only if all the entriesy 0 ff)r SOme:HO < i’,i” < 2", then 52” is not reachable from

N 2;1+m 1 ((51,1,...,(5!”).
me{ VL 2 2
T(tg)+1
Thus (5) is not controllable. [ |

are positive.

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013



11 Controllability |

ﬁorollary 1 \

Consider (5) with 7(7) constant. Let L1ym := M. Then:

1) &b is reachable from X = (51291, éln, e IUO)) if and
only if (Zk:l "l Mk)s,s; > 0 for some 0 <l < r(ro),
2) (5) is controllable from X, = (65?1, 5;1,,, .

t(’“)) if and only if 370 (271 prky > 0 for
alli =1,2,...,2"
3) (5) is controllable if and only if all the entries of

n+m
\ Zz ~! MK are positive. /

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013



I11. Example

Consider the following Boolean control network:

{A(H 1) =u(t) = At — 1)

B(t+1)=ux(t) Vv B(t — 7).

----------------------------------------------------------------------------------------------------------------

Denote x(r) = A(t)B(), and u(r) = u1(t)u(t); then its :

algebraic formis x(1+1) = Lu(t)x(t—z7), where L = M; (I4®

where M; = 5[1,2,1,1], My = &1, 1,1, 2].

f:ll M¥ by 1, we get

1111
0101
0011
0001

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013

By (3) of Corollary 1, (9) is not controllable for any

: nonnegative constant time delay z. Let 7 be 2, the initial
Mg)( @ W) = d4[1,1,3,3,1,2,3,4,1,1,1,1, 1,2, 1, 2],
respectively. By (1) of Corollary 1, seti =2, ip =1, i1 = 2,

The time delay function is time-invariant, so it is bounded,
then the controllability constructed path of (9) has countably
infinite vertices. After replacing all the nonzero entries of

state sequence be (4], 5&, 52), and the destination state be 53

i = 3. Since the (2,2)th entry of matrix (10) is positive,
53 is reachable from (4}, 5&,52). By (2) of Corollary 1, (9)
is controllable from (5%, 53, 53).

Note that from Example 1, we see that even if the constant

time delay 7 is unknown, we can use Corollary 1 to verify the
: global controllability of (5) with a constant time delay. While
(10) :
: verify the global controllability if 7 is unknown.

Theorem 3.5 of [7] can only verify the reachability, it cannot

End



IV. Control Design Algorithm

Algorithm 6:| Since cﬁén e R(5,), by Theorem 4,

(M?);; > 0 for some p.

1) Step 1: Find one (or the smallest) s, such that (M?);j >
0, set x(19) = 53’,1, x(ty) = (55,?, go to Step 2.

2) Step 2: If s = 1, find one [, such that (L&, );; > 0,
set u(ty, — 1) = 6;,,1, stop. Else, find one k, such that
M > 0, (M*~1); > 0, set x(t;_1) = J5,; find one I,
such that (Lé"zm)fk > 0,setu(t;—1) = o ssets =s—1,
i =k, go back to Step 2.

Theorem 7: For (8), assume that x; and xq are two states,
and x; € Rs(xp). Then the control sequence {u(f; — 1),
u(ty —1),...,u(ty — 1)} generated by Algorithm 6 drives xg
to x4, and the corresponding trajectory is the state sequence

Theorem 8: For (5), assume that x; € R(Xp), where x4
and X are the destination state and the initial state sequence,
respectively. So, there exists a path in the form of (8), where
the initial time step is ty such that 7o — 7(f9) < to < fto,
x(to) € Xo, and xg € Ry(x(tp)) for some positive integer
s. Then the control sequence of (5) driving Xop to x; and
the corresponding controlled trajectory can be constructed as
follows.

1) Use Algorithm 6 to generate the control sequence
{u(f] - 1)5 M(fz - 1): SRR M(IS - 1)} = UAlgorithm dIlVlng
x(tp) to xg4.

2) Set u(t) = i, wheret € {l € Z:19 <1 < t; — 1}\
{tr, —1:k=1,2,...,s}; and use the symbol Ut to
denote the set of these controls.

3) Use the symbol U to denote the control sequence

@("0) = x0,x(t1), ..., x(ts) = x4} generated by Algorithm 6)

Ualgorithm U Usree that drives Xg to x4, and use U and
\fo to calculate the controlled trajectory Xo, ..., V

Zhang, et al. Controllability and Observability of Boolean Control Networks With Time-Variant Delays in States[J].2013



V. Observability

Theorem 9: System (4) 1s observable if and only if
each subsystem of the set {Py,_r(1)> Pro—z(t0)+1s - - - » Fro} 18
observable.

[ Definition 3: Consider (4). For any given initial timeh
and any given time delay function, (4) i1s said to be observ-
able if for each initial state sequence (x (7o — 7(fp)), x(fg — -
7(10) + 1), ....x(t0)) € D"T@W+D_ there exists a control Now let P, and N, be any one given shortest path of the se!

sequence {u(tp), u(to+1), ...} C D" such that the initial state {Pio—t(t0)> Pro—t(t0)+1> - - - » Pry} and the length of Py, respec-

sequence can be uniquely determined by the output sequence tively. P, is called an observability constructed path, since
Q(l‘o) y(to + 1),...} c DI. / it determines the observability of (5) (See Theorem 10).

According to Definition 3, it is easy to see that a control- [ Theorem 10: System (4) is observable if and only if System]
lability constructed path of (4) cannot generally determine P, is observable.

its observability, while the set { Py, 7 (), Pig—z(10)+1> - - -» Pro} Proof: Based on the above dism'Jssion, if systel.n P, is
can. Hence we call the set {Py_r(0)> Pro—c(i0)+1»- - -» Pry} 2 observable, then system P _;()+i 1?, observable, i = 0,
set of observability constructed paths. Then by Definition 3  ls---» 7(f0). Hence by Theorem 9, (4) is observable. If system
and (8), the following theorem holds: P, is not observable, then (4) is not observable by Theorem

? . 9- .
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V. Observability

Definition 4: System (4) is said to be strongly controllable
if system P, is controllable.

Define a sequence of sets of matrices ['; C Laqxon.

I'o=1{H}
I ={HLS, :i=1,2,...,2M}

T, = {ngmm;%ﬂ LSS, inia, . is=1,2,...,2")
(16)
In [10], it was proved that there exists s* such that
Iy CU_oTk, Vs> s* (17)

Denote by O; a matrix consisting of the elements in I'; and
arranged in a column. Precisely

H Lo, HLGy ... LSy

H L3, HLOy ... L5
OOZH,O]_: . ,...,Os*: .
HLSZ, HL33, ...L33,

(18)

Theorem 11: Assume system P, is controllable and N, >

211+m(2m{s*+l)_1)
2m_]

. Then it is observable if and only if

T

rank [O], 0] ,...,0L] =2". (19)

(" Theorem 12: Assume that (5) 1s strongly controllable and
N, > (2mtm@mG™+D _ 1))/(2™ —1). Then it is observable
if and only if

rank [0, 0T, ..., 0] =2". (20)

. J
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Controllability of BCN With Multiple Time Delays

‘ The concept of controllability matrices

An iterative algorithm to calculate
controllability matrices

A concise criterion for controllability

Sufficient and necessary conditions for
controllability

Ding Y, et al. Controllability of Boolean Control Networks With Multiple Time Delays[J].2018



I. The considered BCN

A BCN with multiple time-varying delays can be expressed
as follows:

er(f—Q—l) = fi (Xl(f—’rl(f))....,Xl(t—’i‘q(f)),?..,

Xn(t+1) = fo (Xl(z‘—'rl(f))....._Xl(t—rq(t)),...._

\ Un (1))
4)

r(t+1) = Lu(t)e(t — (1) - x(t — 74 (1)) (5)

where [, € Lon yomvan . Here, 7 Zog — N; ={0,1,...,T;},
U N

{ Then, a standard form of BCN with multiple time-varying
| delays is defined by
. v(t+ 1) = L(t)u(t)x; (11)
\

Ding Y, et al. Controllability of Boolean Control Networks With Multiple Time Delays[J].2018

For every N;, we construct a one-to-one correspondence
: 1 -
between N; and Arp, 1, as 7; +— r)}l_tl 7 € Ni. We define

wi(t) = d?mﬂ, which is called the vector form of the time

1
delay 7;(t). Obviously. it holds that 7;(¢) = pT w;(t), where
T —[01 ... T;]. We require the following lemma.
Lemma 1 (See [20]): For any vy, v, ..., vy € Agm and

w € Ay, it holds that
v va ... vy |w = Gwuivy ... UN (7
where G € Lon , yovw 1s defined as follows:
G=1[G1 Gy ... Gy] (8)
with
Gi= (135 1ym @ Iom ) Wigim ov symp. j=1,...,N.

O
By Lemma 1, it holds that

ot —7i(t)) = [x(t) x(t —1) -+ x(t — T;)]w;(t)

— Gwi ()w(t)ae(t —1)--x(t —T;)



I. The definition of controllability

A standard form of BCN with multiple time-varying delays is
defined by
x(t+1) = L(t)u(t)x;. (11)

For a given initial state x¢ = x(ty) X z(tg — 1)
X x(ty —7) € Ayui-+1y and a control sequence u =
{u(t)}icz,.,, . the solution to BCN (11) is denoted by
x(t; ty, Xg, 1

The set of all k-step reachable states from x € Ay, (-+1) att
is denoted by R*"'**) (x). The set of all reachable states from x
at ¢ is denoted by R'(x). For any A C A,.(-41) and k € Z>1,
define

R(t,f+k)(A) = UxeAR(t’f+k)(X).
Definition 1: A state X € A, issaid to be k-step reachable’ \

from X) € Agn(r+1) atty if there exists a control sequence u = I Definition 2: BCN (11) is said to be controllable at ¢ if
{U(t)}fez>t] such that Rf (X) = Agn Vx € A2:1(1+1).

! z(to + k;to, %9, u) = X. (12) I
! A state X € Ay is said to be reachable from xy € Agn -+ 1) I
\ at £y if (12) holds for some positive integer. ]
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I1. Controllability matrices ‘

Definition 3 (Controllability Matrix):
1) The k-step controllability matrix C(t,t+ k) € |
PByn on(++1) 1s defined as follows: o BTN

1 55“ c R (t,t+k) (5} )
on (r+1)
(C(t t+k)) {0 5t §E R(t.t+k) (5}71 f+1})

(13)
2) The controllability matrix C; € HByu (on(-+1) is defined
as follows:
1, 6% € Rf(é )
(Cf)z n({r+1) (14)
’ 0, 050 & R (03irs1))-

By the definitions, a BCN is controllable at ¢ if and only if all *
components of C; are equal to 1.

Lemma 2: The following statements hold.
1) For any logical vector X € A,.(-+1), it holds that

REFR (X)) = .7 (C(t,t + k) X).

2) For any Boolean vector Y € %,.(-+1),, and any positive

|
|
|
|
|
: integer k, it holds that
|

|
I
I
I
I
I
I
I

. R(i,f+k)[!5ﬁ(y)] = Z[C(t,t+k)xzY]. (15,)'
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I1. Controllability matrices f\

a Proposition 1: The k-step controllability matrices for BCI.\I\- ; Then, f?r k 2 2, it holds that
. (11) are given by i RIHH (x)
C(t,t+1) = L(t) x  1om : : = ZER{rQ”(x) ROFLER) g (t) -2t — 7+ 1)]
i bt =l Lt ea Gl D ' ' = RUFLIER L2 [C(¢,t + D)xa(t) ---z(t — 7 + 1)]}.
! F=nde I 'Note that
‘where I := Winr gniconMygor. "1 ) a4

Proot: For any state X € Ay o1, we define’a Boolean |
vector r(t-t+1) (x) = (L(t) X 5 1am )x. By (11), it holds that =z(t)x(t—1)- -zt —T1)zt) 2t —7+1)
y (r(t..f+l)(x)) :R(f.t+1)(x) I — 1/17[2717:271(7'+1]}ﬂr’fp‘207:r(t)"'I(t*T‘Pl)l‘(th)
Thus, we have that | = I'x.
Ct,t+1)= [r(t,tﬂ) (6L iin)) s pltt+D) (52"““)})] | Thus, by Lemma 2, it holds that

2:1(T+l .
I RGFF) (x) = RUFLIHR) [ (C(¢,t + 1)Tx))]

. . . = t+1,t t,t+1
For any 24 € Ay, 25 € RIEHF) (%) if and only if there ex- [C+1,t+ k) kg (Clt, £ + 1)1)x]
ists 2 € R such that ! which implies that C(t, ¢ + k) = C(t + 1,¢ + k) x4 C(t, t +
I1)I". This completes the proof. O

xg € RUTLHR a(t) - a(t — 7 + 1)].
|
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I1. Controllability matrices

_I‘ Corollary 1: For all k > 2, the k-step controllability matri- "y | Proof: According to Proposition 1, it holds that

I ces for BCN (11) can be calculated as follows: 1} Ct,t+k) = C(t+1,t+ k) xz(C(t, t + 1)I)

| ') = 5 — m |

i Ct,t+k)=L(t+k—1)xz1, ! = C(t+2.t+ k) xg[C(t + 1,1+ 2)T]
. g { X ai_o[(L(t + k — 1) xg 1on )I]}. | x 5[C(t, ¢ + 1)T]

According to the definition of controllability matrices and
Proposition 1, the controllability matrix of BCN (11) is given

by =C(t+k—-1,t+k)xz
+00 {xat ,[Clt+k—it+k—i+1)T]}.
Ci = (#) Z C(t,t +k). (16) It is easy to check that for any 1 < ¢ < £, it holds that
k=1

Proposition 2: BCN (11) is controllable at a given initial Clt+k—it+k—itl)=L{t+k—1)xglym.

time instant ¢ if and only if there exists an integer ¢ such that all
components of Q; (¢) are equal to 1, where Q; (t) € PBon yon(-+1)
1s defined as follows:

Thus,

i Xz {Xzi_o[(L(t + k — i) X5 13n )T]} .
Qi(t) :==(#) Y C(t,t+k). (17)
k=1
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~ 111. BCNs With Multiple Periodic Delays |

W EEm E s EEm E S P o B B B R B EEE § B o N o R

, Lemma 3: The following claims hold.
| 1) The k-step controllability matrix C(¢,t + k) for BCN
I (19) is T'-periodic with respect to the variable ¢; that 1s

Clt+T,t+T+k)=C(t,t+k) Vt,Vk.

2) The k-step controllability matrix C(¢,¢ + k) for BCN
(19) is pseudo T'-periodic with respect to the variable £,
in the sense that

C(t,t+T+k)=C(t,t + k) x g M(t) Vt,Vk

I where M(t) € PBon(r+1)xon(-+1) 1S a Boolean matrix-
valued function defined by

i M(t) == gz [(L(t+T — j) Xz 1on )I].  (21)

|
- 3) The controllability matrix C; is T-periodic; that is,
' Cf_|_T = Ct Vt

Ding Y, et al. Controllability of Boolean Control Networks With Multiple Time Delays[J].2018

/

R

Proof: The T-periodicity of C(t¢,t+ k) with respect to

t is an immediate outcome of Corollary 1, because L(t) is

T'-periodic. Thus, we only need to prove claim 2). By Corollary
1 and (20), it holds that

Cit,t+T+k)=Lt+T+k—-1)xglm Xg
[}z, S (Lt +T +k—i) xg 1y T)]
=L(t+T+k—-1)Xglm Xz
[xal_o(L(t+T +k — i) X 19n T)]
Xz [Xg,_) (L(t+T — j) Xz 1ym T)]
=L(t+k—1)Xglm Xz
[xal_o(L(t +k — i) X 15 T)]
Xz [Xai_ (Lt +T —j) Xz 1om T)]
= C(t,t + k) x M(t).



~111. BCNs With Multiple Periodic Delays

Ci=(28)) C(t,t+k)
T s s s ~. k=1
I Proposition 3: The controllability matrix of BCN (5)—(1 8)\ +00 (s+1)T
jis given by I = (A) Z(%’) Z C(t,t+ k)
. I s=0 k=sT+1
| T z?n (t+1) '
| Co=(B)) _Cltt+w)| %z |[(B) Y M) 1 <X
: w=1 “—0 : =(@)Z @)ZCt t+ sT +w)
. (22) I s=I) w=1
I - . (0) (4 -— +oo
'where 7 is defined in (6), and M) (1) := Lyu(r+1). .
N a ¥ =@ ( @)ZCtHw) x 2 M) ()
s=0 w=1
Proof: By Lemma 3, it holds for any positive integer m that
C(t,t+mT + k) =C(t.t + (m — DT + k) x s M (¢) [ B) Z C(t,t +w)| xz [ ZM( ) ( t)]
w=1 s=0
— _ M2
=Ct,t+ (m=2)T + k) x5 M (1) Because M(t) is a 2"("+1) x 27(7+1) Boolean matrix, it
= holds that
(m) too g2n(reh)
In particular, the aforementioned formula also holds for m = 0 s=0 s=0
with M) () := L, (-+1). Thus, by (6), it holds that and, thus, (22) follows. 0
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I11. BCNs With Multiple Periodic Delays

{

I Proposition 4: BCN (19) with periodic delays is control- !
ilable at typ > 0 if and only if it is controllable at ¢ = 0; that is, -
"all components of C, are equal to 1.

Proof: We only need to prove the sufficiency of this
condition. Suppose that all components of C; are equal to
1. For any given initial time instant t;, let m € Z>; and
0 < k < T — 1 be integers such that t, = mT + k. Let x;, =
z(ty) x x(tg —1) X - X x(tg — 7) € Ayu(-+1) be any initial
state and u; = {u1(t)}s, <t<(m+1)r—1 be any segment of con-
trol sequence. Suppose that under this control sequence, the
system evolves to X(,, y 1y7 = z((m + 1)T) x z((m + 1)T —
1)x---xz((m+1)T —7) € Agu(-+1) at the time instant
t = (m + 1)T. By the T-periodicity of C; proved in Lemma 3,

Ding Y, et al. Controllability of Boolean Control Networks With Multiple Time Delays[J].2018

we have that C,, . 1)r = Cy, whose components are all equal
to 1. Thus, for any target state X € Ay~ there exists a control
sequence Uy = {uas(t)}(m+1)T<t<k 1 such that

:B(K' (TTL + l)Ta X(m+1)T> 112) = X.
Define a control sequence u = {u(t)};, <t<x -1 as follows:

ul(t), t(] S t § (m+ 1)T —1
u(t) = {uz(t), (m+1)T<t<K-—1.

Then, z(K;ty,x¢,,u) = X. Because t, x;,, and X are cho-
sen arbitrarily, we have that R; (x) = Agn VX € Agn(r11) VE €
Z>yg. L]



I11. BCNs With Multiple Periodic Delays

And the controllability matrix C € B,n, nq+1) is defined ‘where (C1T)®) := Iu(r+1). In addition, BCN (23) is control- !

as follows: _ ilable if and only if all components of C are equal to 1; that |
(C) 1, 53" S R(é‘jn +L)) 18 '

N O 62" éR( 9n ( +l))‘ \, c 1.(C . n( T+l) N

- o (C) =190, Vi=1,2,....2 (26)~

g R U N
Suppose that the time delays of BCN (5) are constant; that | ,°  Proposition 5: The k-step controllability matrices for BCN |
is, 7:(t) = a;, where a; € Z~ are non-negative integers. Then, I -(23) are given by .
< . L I
the BCN can be expressed as follows: i | Ci = Lyl |
o(t +1) = Lu(t)x:. (23) 1 Cp= Cryx5(CiT) = C; xg (Cy)* ;
I - .
i i I k= 23,. I
The set of all k-step reachable states from x, is denoted i .
by R < where T = Wiy g0cei My o/
y RY(xq). The set of all reachable states from xq is | WiL® L T 20 20t D) 0r 2l o s e e e
denoted by R(x,). The k-step controllability matrix C, € L » " Proposition 6: The controllability matrix for BCN (23) NS
. . \
B, n(z+1) IS defined as follows: i 'gwen by .
1 5 R(]‘-)((sj ) : i 2?1(‘T+1) 21:{1’+L] |
Y ‘?” S . gn{r+1 L] (k_l) .
(C}‘) = f L o2n(rrl) 1 C = (@) C.=C, xz (93) E (ClF) I
0, 52;1 % R(A)(5£11{7+1}) i ! k=1 k=1

I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

I
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V. BCNs With Multiple Constant Delays

Based on the definitions of controllability matrices, a state Zq4

is k-step reachable from )_(n_—_ Zo X e X T_s if and only if
@)
A path
X{1—>9“1—>'Bz—>"'—>$’a 1 = T =124 (28)

that

Ding Y, et al. Controllability of Boolean Control Networks With Multiple Time Delays[J].2018

[ Lemma 4: Suppose that X € A,, Y € A, and B €\

! ’gm X1 . Then |

: Y € #(BX) (29) 1

! if and only if !

X e #T(YTB) 30) !

\ ——————————————————————————————— /
e

” Proposition 7: Consider BCN (9). A path (28) is admlsmble \

| if and only if I

| x; € S 1
| Where

Vie{1.2,.. . k-1} ;

] |
! Sj_l = e_y[ClX-j_l A (l?gc,tc_f[’{’r[zu?_.2”}D[l‘2n7?2n]x?‘_l)T]. i

? mm s mm s mm o Em r Em o Em P o Em f o o EE § S F o o EEm F o " o § omm B



V. Example

Consider a BCN with a constant time delay

x(t+1) = Lu(t)x(t)x(t — 1)x(t — 2)
withz € Ay, u € Ay, and
L = 64[32142143 12233143 42442331 42321213

22134142 11412244 14244343 22121213
24442144 32334444 12432331 42221223
22442142 13333143 44432233 24321211].

(37)

Because 7 =2, the space of initial states is Agy. By
Proposition 5, we can calculate all k-step controllability ma-
trices C;, with 1 < ¢ < 64. For instance, the three-step control-

lability matrix Cg is given by
0111011110
1110110011

0111000010
1111101011

0011010001
1100100101
1111111011
0011111011

C,— 1110110011 .
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One sees that Coly(C3z) =[1 0 1 1], and so the three-
step reachable set from &}, = 6} x 0} x &} is RB)I(68,) =
{61, 03,01}. In addition, because the (2, 4)-entry of Cj is zero,
there exists no control sequence that drives the network from
8¢, to 87 in exactly three steps. The controllability matrix C
of this BCN can be calculated by using Proposition 6, which is
omitted here owing to restrictions on space. It is easy to check
that

(C),J—l ‘v’1<i<4‘v’1§j§64.

3

In the following, we set the 1n1tlal and destination states as
X) =g X T_] X T_g = 0j X 8} x 0 = &3] and x4 = &3, re-
spectively. We aim to design a control sequence to drive the
BCN from x; to x; in the fewest steps. It can be shown that
(62)TCijxy = 0fori = 1,2, 3,4,and (62)T C5xy = 1. Thisim-
plies that at least five steps are required to steer the system from
X to x4. An admissible path from x; to z; can be obtained.
More precisely, by Proposition 7 it holds that

T €S8y = jﬂ[ch(] A (-’17504{'{/[16,4]40[1,16,4]xll)T]

=.2[0001)" A(1001)T] = {5]}.



V. Example

Hence, z; = 43, and
s €8 =Y[Cix; A ($§C:3W[16,4]D[1,16,4]X1)T]
— o1},

Thus, 7, =§; € S;. By following the same argument,
it holds that S, = {&},87}. If we choose =3 =3, then
S3 = {0;}. That is, x4 = 6. Finally, an admissible path is
given by

02 5 §h ot Mo, gt sl g8, st ML 520 (38)

~
xp=01 x4l x63=621

In (38), the u;’s labeling the arrows represent the correspond-
ing control efforts, which can be calculated by using (33). For
instance, we have that

up € J(ﬂT [LBE;LI/V[QG,Q]X(]]
— (D) = {5} 52).

Similarly, u; € {03,023}, us € {83}, uz € {63}, and uy €
(0153}

Ding Y, et al. Controllability of Boolean Control Networks With Multiple Time Delays[J].2018 End



Stability of Boolean Networks

With Delays Using Pinning Control

. Problem Formulation |

named as higher order BNs or
A BN with a set of Boolean variables x1, ..., z,, and time (t + Dth-order BNs

delays is described as

¢ N B EEm ¥ EEm § EEN § EEN B B EES F EEN § EEE F BN § EEm N EEE § EEN § EEm B EE F EEm  EEm 5 Emm R o @

U gt + 1) = fi(zi(t), .. xn(t). et — 1),z (t—1),. .., -
! 2r(t =7, 2t — 1)) :
! i=1.2,....n a -
\ J

Definition 1

A Boolean control network with time delays (1) is globally stabilized to the fixed
point 85» , if for arbitrary initial state sequence x(0), x(—1), ..., x(—7) € 4y,
there exist control inputs and T € Z, such that x(t) = ;= , forevery t > T.

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011



Denote by FEi(05:852---05:7") the set consisting
of all the states d52---05+"'d3. that can be steered to
898052 -+ 597 in one step. That is F (054652 - dgn™) =

{5{21121, e 5;?‘:—’_15(‘??1 € AQn(T-i—l) . .’12(1; 6;21 e 5;;—’_15371) - (S

In addition, Ej (652052 -« gn '’

Qhet1 Ari1cq q
tl:fi sétzates CEEL - 0gn’ Ogn -+ Ogn
52n 52n et 5211,
provide the following Lemma.

.

.~ Lemma 3.1: Let Qaq, .
f the transition matrix L of the BNs (1) is

|

. L=6‘2n[a]_,...,a2n(r+1}].

|

- Then, forevery 1 < aj,...,Q9n41) <27

1) El(é;éﬁ;g et 5(211:4_1) - {5;:?1 Tt 5(21:1,4_1 53'}1,

T —
2 }a(a_2_1)2117+(a3_1)211[7—1)_'_“__i_q == a]_}.

I -
. 2) For all of the 055" - - - 0on ™" 04% - - - 625 € Er(054052
| 857"), we have Ej 11 (05652 - Gon ™) = Ey(dgn™ -+
\ 5;;+1 53711 .. 53“}1)
~

B omm s mm s mm s omm s omm s omm s oEm s oEm s omm s Em s oEm s oEm s oEm s oEm s oEm

s Qon(=+1) € {1,2,...,2"} such that"-

1<q<
a2 ...
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aj
on

) the set consisting of all
that can be steered to
in k steps. In order to calculate these sets, we

1.

-
R S R R R R S R R R S S R R R S

Proof :
1) It can be noted that for z(t)z(t—1)---z(t—71) =
052 -+ Oyn 1 8d,., we have

2)

x(t+1)=Lx(t)z(t —1)---x2(t — )
= L6% ... 507159,

— a2 =127 +(ag =12 (TN 4

2?1
— 61,
a A a
Thus, 052 - - - d5n " 64, can be steered to 051052 - - - dgn

in one step.
The physical meéming of aEl(c?gffH R A X R )
is that the state ont? -+ - 5577 04% - - - 635 535+ can reach

Sgntt - 057 08) - - - 63% in one step.
ap @ (13 .
52:;+1 . .52;+1 5331 . .53;1 c Ek(g;llggﬁ . 52;+1) im-

. ap a "
plies that dor ™" -+ - 0o T 0% - - - d9% can reach 551052 - - -

Sortt in k steps. That is, don "> - - - Gon - 64% - - 33k §axt?

can reach &5505%2---05:7" in k+1 steps, i.e.,
3 a L} '

Epyr (001622 .. 5570 Z B (50541 . 64+ 5L . 538,



Il. Algorithm & Proposition

|Algorithm 3.1:|
Step 1. Change the [(a — 1)2"7
a|th column of L to 65..

+(a—1)27=D 4. 4

on(r+1)
Step 2. Calculate E(65. ---05.) :== |J Er(05.---03n).
k=1 N—
T4+1 T+1
Step 3. Find a 09k -+ 6on ™ ZE(05n -+ 05n)
T+1
and we can change the column

COI[(01—1)2“T+(02 1)2n(r—1) 4. +a7+1]( ) into §%.
such that 6%%---6%7*" € Fy(0%.6%% ---6%) and
63?1 531]i, et (Sg'r: E E((Sgn - 6;};)

T+1

By doing this, L is changed to L" and (1) is globally stabilized

to the fixed point 65,..
|Proposition 3.1

to x*.

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011

Let * = 3.. Suppose that L is changed
into L' according to Algorithm 3.1, then the BNs with time
delays (1) with the transition matrix L' are globally stabilized

Proof:  For any initial states 51052 « - - don ™' € Agn(rt1),

then 654057 -+ 0on 't € E(05. Qn) according  to
T+1
Algorithm 3.1. Hence, 054052 - - - d9n " can reach 85, - - - 05,
T+1
in the most k steps, where k = 27(7+1),
It can be noted that
z(k+1) = L’x(k):z:(}c —1)--x(k—7)

L 211, e Sn Sn
= Col[(a_1)211?'+(a_2)2ﬂ[‘r—1)+.__+a] (L'r)
— 6Sn
which yields x(t) = 04., for t > k. That is, the BNs with time
delays (1) starting from any initial states can reach 65, and

stay at 05, forever. We can draw the conclusion due to the arbi-
trariness of initial states. |



I11. The design procedure

Assume that the transition matrix L of BNs (1) is changed to L according to Algorithm 3.1.
Without loss of generality, we assume that the 1st,..., mth columns of L alter and assume that
1st,..., mth columns of M, ..., M;, alter. We assume that M, ..., M;, alterto M'4, ..., M’,,.

Suppose that f;(x,(t), -, x,,(t — 7))) be changed to
Fi(uy, x1(6), - xn(t = 0)) = w;(x1.(6), - % (t = ) D fi(21(8), = 2 (t — D))

wherei =1,...,k, @; are logical functions, and u; are state feedback control inputs.

It can be verified that
Fi(ug, %1 (6), -+ % (6 = 7)) = Mgy, M;(Lynrsny @ My)@p(zs1)s (1), -+ xn (£ — 1)

| M®1Ml (Ipnir41) @ ﬂ'fl)‘l’n(TH) = M ‘ P R R
i : (7) ' I Proposition 3.2: Equation (7) is solvable.
. — I e e e e e s = = s e = J
[ ﬂf@k ﬂ'fk(fgn(r+1) & ﬂ'fk)(bn(,r+1) = ﬂf}; . }

N e st s s s s s s e = = - /l
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IV. Algorithm of pinning control for BNs (1) ‘

Algorithm 3.2:

1) Change the columns of the transition matrix L of (1) by
using Algorithm 3.1.

2) Calculate the new structure matrices. Without loss of
generality, we assume that the Ist, ..., mth columns of
My, ..., My alterto My --- , M.

3) Suppose that f;(x,(t), -, x,(t — T))) be changed to

Fi(ui»xl(t)» X (= T))
= u; (%1 (2), -+ % (& = 1)) B fi(x1(8), - 2 (t — 1))
where i = 1, --- k. Solve Mg, M; from (7) by using proposition

3.2. Then, one can obtain the logical functions @;, u;. Hence,

the BNs (1) are globally stabilizable to the fixed point &= .

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011

The algorithm to design
pinning control



V. Example ‘

Consider the following biochemical network of coupled
oscillations in the cell cvcle
Alt+1)=f1 =—-(A(t —2) A B(t —1))
B(t+1)= fa=-(A(t —1)AB(t —2)).(0D
We want to stabilize the BNs (11) to 4.
By calculation, we have
L =0404,3,2,1,2,1,2,1,3,3,1,1,1,1,1,1,
4,3,2,1,2,1,2,1,3,3,1,1,1,1,1,1,
4,3,2,1,2,1,2,1,3,3,1,1,1,1,1,1,
4,3,2,1,2,1,2,1,3,3,1,1,1,1,1,1].
Using Algorithm 3.1, we can calculate that
5i6]6k € E(616363) fori, j, k = 1,234
Hence, the transition matrix L of (11) can be changed into

L', that is,
L'=64[1,1,2,1,2,1,2,1,3,3,1,1,1,1,1,1,

4,3,2,1,2,1,2,1,3,3,1,1,1,1,1,1,
4,3,2,1,2,1,3,1,3,3,1,1,1,1,1,1,
1,3,2,1,2,1,2,1,3,3,1,1,1,1,1,1].

Li F, et al. Controllability of Boolean control networks with time delays in states [J], 2011

Using Algorithm 3.2, we can calculate that
Mg, = Ma, =02[1,2,2,1]

Then, we have

ui(t) =[A({t)A(—-B(t)V-A(t—1) V-B(t—1)V-A(t — 2))]
V [CA(E) A (=B(t) VAt —1)
VB({t—1)VA({t—2)V-B(t—2).

u2(t) =[A(t) A (—B(t) VAt —1)
VBt —1) V(A —2) Vv B(t—2))]
V [CA(E) A (—B(t) VAt —1)
VB({t—1)VA({t—2)V-B(t—2).

End



Synchronization in an Array of

Output-Coupled BNs With Time Delay

I. Problem Formulation ’

We consider the following two kinds of arrays of M delayed
coupled BNs, with each BN being an N-nodes system:

E Xi(z+1)_fi(x}(r—r) X2(t— 1) Xj.\’(r—r) E
| yl(f—f) wit—1),...,ypu—1)) (l)i
0 =g &0 XF0) ,'
SR SRS—— .
| Xf;.(t—l-l):f}(X}(t—r), ..,X?’(t—r),yl(r),...,yM(c)) (2)i

o

yj(t) = 8;(X}(f)a e Xf,-v(f))

The main difference of models (1) and (2) is that the
communication delay between different BNs is considered in
(1) while it is not considered in (2). We can observe that the
state evolution of the BNs both for (1) and (2) depends on the
initial state sequence X;(-7), X;(1 — 7),..., X;(0),j = 1,2,...

M.

Definition 2 A
The array of BNs in (1) and (2) is said to be
synchronized if for any initial states

Xj(=1),..., X;(0)e{,0}V,j=1,..., M, there is

apositive integer k, such that ¢t > k satisfies
\X(t j(t) forany 1 <i,j <N. /

In this definition, k depends on the initial state

sequence X;(-1),....X;(0 e {LOW,j = 1. M.
Nevertheless, since the {1,0}" is a finite set, we can
by all means choose a k big enough, which is

independent of the initial state sequence.

Zhong J, et al. Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay[J], 2014



1. Main Result

We have
Xj(t+1) = (F} X Xi(t— 1) % y(t — 7)) X ®
N(F}N < X (t—1) % y(t — 1))

Thus, denote F}{x;‘;z[(lem ® F;Z) x ®pr4n]) by Fj,
we can obtain

Xjt+1)=Fx Xj(t—0)x y(t—1),j=1,...., M.

Similarly, if a 2 x 2N matrix G ; j 1s the structure matrix of g;, then
letting G = ® G gives that y(1) = G >< 1 Xj(0).

That is to say, we have obtained the foIIowmg equivalent
algebraic representations of BNs (1):

Xj(l-l- )= FjXJ;([ — 1)yt —1)
[{ y(1) = G %M X;(0) ] )

where FJ- is a 2V x 2MN matrix and G is a 2M x 2MN matrix.

and

T X () =

Q: plt+1)+q.

/Lemma 3: Let W= Wpm ong X Niﬂiz[(le ® W[gM,ng])‘I’Mh

and E = (@M F-) x W ix G x ®pn. Then, we have
1X (t+1)= ....[D(

—p+1[ D<

where p > 0 and 1 < ¢ < r + 1 are the unique integers satisfying

1 X —1)] (4)

1 Xjlg—-1-1)] (5)

J

Zhong J, et al. Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay[J], 2014



1. Main Result

meorem 1

Col(Ek+1y

g[ég;mi!—l+

~

Let (3) be the algebraic representations of the array of
delayed BNs (1). Then, synchronization occurs if and
only if there exists a positive integer k satisfying 1 <
k + 1 < k, such that

(i —HERMN —1)

i=1,2,...,2N 6
N ] ] (6)

were ko=min{i :1i > 1, 2l = =/ for some j > iy

Proof: (Necessity) If the array of BNs is synchronized, then
we can choose m > 1 such that X;(m) = X;(m) for all
XJ;(—r),...,Xj(O),j =1,....M and 1 < i, j < M. Moreover,
there must exist two unique integers m| and my such that m =
mi(tr+1)4+mpy. Letl <r < 2N satisfies Xj(m) = 5£N for each
1 < j < M. Then, it follows from Lemma 3 that

Ar
(M X ma—1=1)] =y & Sy - % 8y =8k

Em1+l
where 2, = 1+ (r — D@MYN —1)/2N — 1. Since X ;(mp — 1 —
t), Xo(my — 1 —1),..., Xps(mp — 1 — 7) are arbitrarily given, m|
satisfies the condition.

Now, let k be the smallest positive integer satisfying the above
property (6). To prove the property that 1 < k41 < k, we suppose to
get a contradiction, that k+1 > kg. Let sop = min{i > 0 : sho+i+l =
Eko}. Then, there exists kg <[ < kg+s¢g such that gl = =k+1 Since
Col(Ek0) = Col(gkotsot+1y < Col(E!) € Col(EX), it follows that
Col(Z%0) = Col(Z!) = Col(Z¥*1). This contradicts the minimality
of k. Therefore, one can conclude that 1 < k + 1 < k.

Zhong J, et al. Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay[J], 2014



1. Main Result

Sufficiency: Suppose there exists a positive integer ki such that
Col(2R+T) ¢ {5;;m Al =14+G=-DRMN N 1,0 =

1,2,..., 2N}. Let k = k1(r + 1) 4+ 1. Thus, for every t > k, there
meorem 1 \ are two unique integers p > 0 and 1 < g < 7 + 1 satisfying 1 =
) . 1 . Th he > k1, furth
Let (3) be the algebraic representations of the array of | 7 (z +1)+g. Then, we have p > ky, furthermore
delayed BNs (1). Then, synchronization occurs if and Col(EP+L) < Col(kt) C
. : o . - S v
only if there exists a positive integer k satisfying 1 < 5;MN pim14 G 1225\’2_1 D_10. 2N}.

k + 1 < k, such that
It follows from (4) that for every Xl(q — r) , Xpy(lg — 1),

Col(—k+1)
i _ (OMN _ 0 <g <t and every r > k, therelsl<r <2 buchthat
clort op =14 U2 ) i=1.2,...2 (6
2MN N _1 M A A w
D<J.=1XJ,-(I)=§2J’WN :52;, X ---|><¢52;,_

\where ko=min{i :1i > 1, 1, 2 = ZJ for some j > iy 1,
Then, we have Xj(r) = 52[\, for every 1 < j < M. Hence, the

sufficiency is proved. [ |

Theorem 1 is also applicable to an array of delay-free BNs by letting =0 in (1).

Zhong J, et al. Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay[J], 2014



1. Main Result

We now consider another type of array of coupled BNs (2), where the outputs y;(t) do not have time delay.
Using the STP, we can get the algebraic representations of BNs (2)

Xj(l‘—i- 1) = Fij(t —7)y(1)
[| y(t) =G xj?f:l X (1) ] N

where F; and G can be similarly defined with that of BNs (1).

/Lemma 4 \

The relationship between the state X;(¢) at time t and initial states can be presented as follows.
1) Let W = Wipm ony < {x X, [(lyn @ Wipm 5in)@pg]} and E =
(®L,Fj) x W x G. Then

X+ )= (A X @) (<A X (e=1). (8)
2) Let A(f) = (xjj.*f:lxj(r)) X (x;.”:lXj(r — 1)) x --- x  Then, A(t + 1) = @A(r) and

M
)2 Xt — and
( j=1 J( 7)) D(?’LIXJ'(I) = EdMN(r+l)W[ZMNrﬁzMN]GI(D(?I:IXj(O))K

- M . M .
0 = E (Lyy ® EdAMN)YWpuwe puniesn @are e O X (= o) (G, X (7))
\ where EdMNT — (Lune—1) ® Iun). /

Zhong J, et al. Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay[J], 2014




1. Main Result

ﬁ\eorem 2 \

Let (7) be the algebraic representations of coupled BNs
(2). Then, synchronization occurs if and only if there
exists a positive integer k, 1 <k <kO0, such that

Col(EdMN D Wy, 2MN]®"‘) c

_ 9
lazMN =148 ';(2_1 i=1,2,...,2N] ©)
where ky = min{i : i > 1, EAYNCHDW,une yun @ =

QMN““)W[QMM,QMN]@J,; > i},

Proof (Necessity): Suppose that the array of BNs (2) is synchro-
nized, then there is a positive integer k such that for any initial states
Xj(=7),....X;),j=1,...,M, we have X (k) = X; (k) for all
l<i,j<MLetl<rc< 2N be such that Xj(k) = §£N for each
1 <j <M. By Lemma 4, we have

EqMN(+1) W[ZMNr,zMN]@)k(K‘I}{:]Xj(O)) e (D(?:IXJ' (=7))

= dhy K djy X oo X doy
= %ﬁm
where Ar=14+0F—-—0DCMN 12N — 1,1 < r < 2V, Since
(l>< 1 X;0), ..., (X ?/I:IXJ;(—I)) are arbitrarily given, one has
COl(EdMN(T—i_l)W[zMNz 2un10F)
c{(s;m,l—w‘;'%z_lz 2}.

Zhong J, et al. Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay[J], 2014



1. Main Result

ﬁ\eorem 2 \

Let (7) be the algebraic representations of coupled BNs
(2). Then, synchronization occurs if and only if there
exists a positive integer k, 1 <k <kO0, such that

Col(EdMN D Wis v Hun 0F) €

—1)eMN_yy ©)
lazMN 2; —1+“—;§VT),;=1,2,...,2N]

where ky = min{i : i > 1, EAYNCHDW,une yun @ =

QMN““)W[QMM,QMN]@J,; > i},

Sufficiency: Suppose that there exists a positive integer k satisfying
Property (9). Since

crol(fadf”f\”(f+‘)W[QMNr 2N ©") €

;=14 =DM -D

= ,i:l,2,...,2N}

‘SQMN
for t+ > k, it follows from Lemma 4 that for
X-(—r) X-(O) Jj =1,
I < r < 2N such that D<

Ar, = l+(r — l)(2MN — l)/ZN — 1. Hence, we have Xj(r) = 52rN
for each 1 < j < M. The proof is completed here.

every
, M and every t > k, there exists

1(r) = ZMN = ér - K §2N, where

Zhong J, et al. Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay[J], 2014



1. Exyple

Let T = l 1\f1 = (f]ls‘flza f]3) = (_'X? A))Zax}ax%),
3

f2 = (lea f223 f23) = (_'X%/\yl,)(%,x%), and 81 = _'xl’
82 = —'xé The algebraic representation of this BN
is then expressed as follows:

xi(t+1)=Fxi(t =Dyt — 1)

x2(t+ 1) = Fxo(t — )y1(t = 1)

vi(0) = G (1) (10)

y2(t) = Gxa(t)

Direct computation gives that £3= =, then we have k, = 3.
Moreover, we can obtain that 3 € {8¢,]i =
1,10,19,28,37,46,55,64}.Hence, the coupled BNs with time
delay can be synchronized using Theorem 1. Fig. 2 shows the
total synchronization error E(t).

25 T T T T T T T T T T

where

Et)

FZCSS[ ) 73?333738383438]

0.5

Hence, we have

= = 06437, 37, 38, 38, 39, 39, 40, 40, 37, 1, 38, 2, 39, 3, 40,
4,45,45,46,46,47,47,48,48,45,9, 46, 10,47, 11,
48, 12, 53, 53, 54, 54, 55, 55, 56, 56, 53, 17, 54, 18,
55, 19, 56, 20, 61, 61, 62, 62, 63, 63, 64, 64, 61, 25,
62, 26, 63, 27, 64, 28].

-05 1 I I 1 I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Fig. 2. Total synchronization error of the coupled BNs (10) with initial state
sequences x1(—1) = (1,1, 1), x2(=1) = (0,0,0). x;(0) = (0,0,0), and
x(0)= (1,1, 1).

Zhong J, et al. Synchronization in an Array of Output-Coupled Boolean Networks With Time Delay[J], 2014 End



Asymptotical Stability of PBN With State Delays

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020



Markov chain

Consider a Markov chain associated with a state space [1,n] and
a state transition matrix P, here and elsewhere P'T € 22" *"  Vector
r € 22'%" is called a stationary distribution if it satisfies r = rP.

For every initial state 2 and destination state j, the first arrival time
from i to j is defined as T;_.; := argmin,.,{k € A4 : [P*];; > 0},
where [A];; := (8' )T AdJ for matrix A € #"*" . Particularly, if such
an integer k does not exist, let T, ,; := oc. The first arrival probability
from i to j at the k-time step is denoted by fF, . =P{[P*];; >0,
[P'];; =0,t € [1,k — 1]}, where P{A} represents the probability of
event A occurring. Following it, the first arrival probability from i
to j is computed as fi_; :== > ;_; fI,,. Let d(i) be the maximum
common divisor of the integer set {Ff.: e N : [Pk} > 0}; it is called
the period of state 7 henceforth. Ifd(i".) > 1, state ¢ 1s periodic; otherwise

(i.e., d(i) = 1), it is aperiodic.

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020



In accordance with the first arrival time and the first arrival probabil-
ity, the state space |1, n] can be classified into different categories: for
each state z € [1 . n], itis called a recurrent state, if f;_,; = 1; otherwise
(i.e., f;_; < 1), 1tis called a transition state. More precisely, as for a
recurrent state ¢, it is said to be positive, if p; := > | k ko< 4oo;
otherwise (i.e., ;; = 400), it is called null.

For each state pair i, j € [1,n], if there exists a positive integer k
such that [Pk ] ij > (), then j 1s said to be reachable from 7, denoted by
1 — 7, states ¢ and j are called connected, denoted by 7 «— j,1f 1 — 3

and 7 — ¢. A Markov chain with each pair of states being connected 1s
called irreducible.

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020



Property 1 (see [1]) |

1) For each state pair i, j € [1, n], it holds that lim, _, [P*'Lj =
0, 4 1s a transition state or null recurrent state

fi —j
p'_j !

7 is a positive recurrent state with d(j) = 1.

. - k . . . A . . A . .
Besides, limj _.. [P"] ;; does not exist for any positive recurrent By the connection relationships of distinct states, one can split set 4

state j with d(j) > 1. into a series of basic recurrent closed sets €;,1 = 1,2,. . ., satisfying
2) Finite-state Markov chains does not have null recurrent state. all conditions:

3) All recurrent states make up of a closed set %,.

4) An irreducible aperiodic positive recurrent Markov chain has a > Ui € =%
unique stationary distribution r, where r; > 0 for each i € [1,n].
More precisely, stationary distribution r is exactly the limit
distribution of this Markov chain.

5) For two.co{mected states ¢ and j Q.e., i+ ), they process the > 3) different states in the same set ¢, are mutually connected. Subse-
same periodic and recurrent properties. quently, the state space [1, n| can be decomposed as [1,n| = U %
with ¢, =%, U%, U---, where the set .7 consists of all transition

states.

)2)"@ N%. = ¢,7 # k, thatis, arbitrary state in %; cannot be
mutually connected with any state in %};

[1]1 S. M. Ross, Stochastic Processes. New York, NY, USA: Wiley, 1996.
[2] Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020



‘ . Problem Formulation

An n nodes” PBN with bounded and coincident state delays reads

where z;(t) € 9, i € [1,n], are also called states, which can be
easily distinguished from those of the Markov chain from the con-
text. State delay 7(¢) is randomly chosen from [0,~] with respect
to the probability distribution [pg, p1,. .., p+].

By bijection o, x; can be expressed as a delta form in A,. Let
z(t) = x'_,x;(t) € Agn;denoteby E {x(t)} (respectively, E{z(¢)})
the overall mathematical expectation of the state variable x(t) (respec-
tively, z(t)); from Lemma 1 and the property of the swap matrix, one
can convert the PBN (1) into the following algebraic representation:

where F' € .@2 2" is called the transition matrix of the PBN (1).

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020



. Problem Formulation

*  Definition 2: For a given x; € Asn, the PBN (2) is said to be:\_
' olobally asymptotically stable at x4, if I

limlHE {x (t;2(0),z(=1),...,2(=y))} — 24 Hz =0 3) !

t—oo
' |

| holds for all z:(0), z(=1),...,2(—7) € Ay, where || - |2 is the Eu- I
; clidean norm, and the state trajectory of the PBN (2) with initial states :
- x(=k;2(0),2(=1),...,2(—)) = z(=k), k € [0,4], is recorded as .

Remark 1: By viewing x4 as a one-point distribution, an alternative
description of formula (3) 1s

tli_mlP{:s(t; 2(0),z(=1),...,2(—=y)) = x4} = L. 4)

In a more generalized case of z; € 22°" *! | formula (3) still works.
As for (4), a little modification is requisite, as

}Lnglcp{l (t;2(0), 2(=1),...,2(—=7)) = 6 } = [z4];

holds for all j € [1,2"] and (0), x(=1),...,2(—7) € Ayn, where
[v]; := (87 )Tv for w x 1 vector v.

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020



I1. The influence of state delays on asymptotical stability

In what follows, to facilitate the analysis, a novel argument system is constructed to eliminate the
appearance of state delays in the form. It begins with the expanding of formula (2) as

TE{z(t+ 1)}

[ \
- =poFE{z(t)} + m FE{z(t - 1)} + -+ p, FE{z(t —7)} |
I 5 .
: ' P \y—ii v - I
! = Z (piF(E[Q”]“'[iZ"])' E[zn]E{sznl(f—J)}) .
I i=0 |
: i - . _ I
! = (Z piF(E[gn]“"'[Qn])"-_TEEQ;;]) E{D(;:nﬂf(t —j)} .
I i=0 |
'\. = ME {x]_,z(t —j)} ”/

where M: = '—.Q. J,[)1 (EJ_”J LQ;:_L) y—i [2,,] e yzn x2m (1 +l)

Afterward, settind z(t) = x_,x(t — j), one obtains that

" - E ESE F S F S f . e o O

Normal method to deal
with time delay

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020

-—-—-—-—-—-—-—-—-—-—-—-—-—-—-—.

CE{z(t + 1)} \
L = E{xj_oz(t-j+1)} :
| =B+ 1) (B Wi ) K)oy 2(t =) :
L = ME{z(t) (B Wpnr on) 2(6)} |
: =M (Lnr+1) ® (Epr)Wiano 0n])) @9n 1) E{2(2)} I
' =TE{z(1)} 5) 1
® om s mm s mm o mm s mm s mm s mm s mm s mm s mm o s mm s mm s omm o omm s -

where I = M(Iiﬂ{“r-'—]_] ® (E[QIJ]“"’[EH'}’_.QJ?] ))@Qfl{o:r+1] =

Y+1 v+1 .s .
2 et [ can be regarded as the transition matrix of a

higher dimensional PBN (5).



I11. Asymptotical stability of a PBN

,' Theorem 1: For a given x4 € Asn, the PBN (2) is said to be glob-
ally asymptotically stable at 2, if and only if b = [zr,T? 1]T is the unique
nonnegative solution to equations

. {bLb ©
blon(v+1)4y =1

T Ogu('}—l]
0

Jand z; = x4 X - - - X 24.

Remark 2: In (6), the coefficient matrix L can be uniquely deter-
mined by the transition matrix I' of the PBN (5). Accordingly, equations
in (6) are termed as the induced equations of the PBN (5) henceforth.

[1]1 S. M. Ross, Stochastic Processes. New York, NY, USA: Wiley, 1996.
[2] Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020



I. Asymptotical stability of a PBN

e,

—

Proposition 1: For a given z; € 22" %L the PBN (5) is said\.iblock ', also corresponds to at least a stationary distribution r* . Hence,
;to be globally asymptotically stable at z, if and only if b = [z, 1]" is!:vector T2 = M|[*,r?,%|T is also a stationary distribution of the PBN
.the unique nonnegative solution to induced equations (6) and d(i) = 1;](5). From the Solution uniqueness of induced equations (6), one has
lfor alli € G, where G = {j € [1,27("+1)] : [2,]; > 0}. y ,[r *|T = [¥,r?,#|". This is a contradiction, because 0y~ is not a

Proof: [Sufficiency] A little deduction can verify that the PBN ! isolution to (6). Thus, there is only one basic recurrent closed set % .
(5) has a unique stationary distribution z;. Following this observa- ; iBesides, as 2) in Property I implies, all states in %fl{aiel }Jos?}t{lfflr)ecunent
tion, one can confirm that the PBN (5) has a unique basic recurrent Istates That is, a permutation matrix M € .Z ’ “
closed set %) . Without loss of generality, two basic recurrent closed :found o satisty
sets 41 and %5 are assumed. That is, one can find a permutation ma-
trix M € 22" 072" 0T hich satisfies MTM = I,u(y+1), such
that

can be

r, R
MTTM = ! ! ‘] . 7)
*  Q

I, = R, To proceed, this basic recurrent closed set %] is verified to be G.
MTTM — [ . T, Rg-l IFirst, one proves that G Q 6. If there ex1st_s an integer i € G\%,
Istate ¢ must be a transition state. By 1) in Property 1, [z,]; =

* * Q J ilimy. ;. .. Row; (I‘A‘) zq = 0, which contradicts with the fact i € G.

where “+” represents the appropriate dimensional submatrix block with | Afterward, one verifies that G = ;. According to d(i) = 1 fori € G
all entries being 0. Since the submatrix block I'; is still a probability iand G C %.. by 5) of Property 1, the Markov chain associated with
matrix, '] can act as a state transition matrix of a Markov chain, which :the state transition matrix '] is an irreducible aperiodic positive re-
has at least one stationary distribution, denoted by r'. Extend (r!)" lcurrent chain. According to 4) in Property 1, it has a unique stationary
into [r!,+]T € 22" *1 and make T = M[r', #|T; it is obviously ! | distribution ri. Moreover, the vector ¥ = M|r!, ¥]" is a stationary

a stationary distribution of the PBN (5). Analogously, the submatrix :distribution of the PBN (5). Assume there is a state i € %, \G; one

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020
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I. Asymptotical stability of a PBN

is . n(y+1
{ Proposition 1: For a given z; € A

ito be globally asymptotically stable at z, if and only if b = [z, 1] is

‘the unique nonnegative solution to induced equations (6) and d(i) = 1 .

I.foralli € G,where G = {j € [1,27 0+ 1] : [2,];

concludes that M [r!, |7 # z,, because the ith entries are distinct. It
contradicts with the solution uniqueness of induced equations (6). As
such, the proof of 41 = G is complete.

Finally, the PBN (5) is confirmed to be globally asymptotically stable
at z,. Utilizing the decomposition of the state space as [1,2"(7+1)] :=

FC\J €, set F consists of all transition states. By 1) in Property 1,
it 1s claimed that limy_; [I“]

[1,27(+1)]. Since all states in %’1 are aperiodic positive recurrent |
states, it is concluded that lim;. _, , [Fk]fj = [24]; foreachi € €, and |

I - - _ - -
jell, 2,?_(1,....1)]’]3){ 4) of Property 1. To sum up, the PBN (5) is globally ! (6). Besides, d(i) = 1 for each i € GG. The existence of such a solu-

asymptotically stable at z;. The proof of sufficiency is complete.

[Necessity] Suppose that the PBN (5) is globally asymptotically
stable at z,; if the number of basic recurrent closed sets 1s more than
one, there must exist a permutation matrix M &€ i ihan i)
such that

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020

*1_ the PBN (5) is said |

=0, for each i € 7 and j €

M'T'M =

Following that, each state in the basic recurrent closed set %; will not
enter the basic recurrent closed set %5, and this fact is also true for
states in %>. This is a contradiction, as the PBN (5) is globally stable.
Therefore, the state-space decomposition is presented in the form as
(7), and the basic recurrent closed set is unique.

Additionally, the Markov chain associated with the state transition
matrix '/ is an irreducible aperiodic positive recurrent chain. By 4) of
Property 1, it has a unique stationary distribution r', which acts as its
limit distribution.

Extend vector r! to [r!,*]T and make 7' = M|[r!, *|T; the vec-
tor obtained by adding 1 at the bottom of 7' is a feasible solution of

tion is proved. Furthermore, the stationary distribution r of the PBN
(5) should satisfy [r|; = 0 for each i € #; thus, the PBN (5) has a
unique stationary distribution, namely ! = z,. The proof of necessity
is complete. [ |



1. Asymptotical stability of a PBN

___________________________________ N
( Proposition 1: For a given zy € 22" 7" *1 the PBN (5) is said |
ito be globally asymptotically stable at z, if and only if b = [z, 1] is °
Ithe unique nonnegative solution to induced equations (6) and d(i) = 1 .
foralli € G, where G = {j € [1, 2n(+ 1] 1 [24]; > 0} !

Theorem 2: For a given zq € Ayu(y+1) with 24 := 52?,{””
!  PBN (5) is said to be globally asymptotically stable at z,; if and only if !
. [T];» = 1 and each solution A to equation det(Alyu(,+1)_; — Q) =0 :
| satisfies [Re(2)]? + [Im(4)]* < 1, where Q is the matrix obtained from |
-\I‘ by deleting the rth row and column. L

Proof: The PBN (5) 1s globally asymptotically stable at z; if and

only if 521,] (v+1) 18 a fixed point and the Markov chain with the state

transition matrix I' T is an absorbing chain. It has been proved in [31]
that a Markov chain is absorbing if and only if the spectral radius
p(Q) < 1. It amounts to say that [Re(A)]? + [Im(%)]*> < 1 for each
solution A. |

Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020



 IV. Influence of state delays on asymptotical stability

— oy,

Lemma 2 (see [25]): The PBN E{z(t+ 1)} =F x E{x(¢)} is
globally 65, -stable in distribution, if and only if,
1) 63, isafixed point, thatis, [F] == 1;
2) there exists an admissible path with length [,, < 2" — 1 from
initial state x to target state d;n. , for each zp € Asn .

Theorem 3: Fora given z; € A, , the PBN (2) is globally asymp- ‘|

Itotlcally stable at z, if and only if the PBN E{z(t+ 1)} =F x °

IE{x

)} is globally asymptotically stable at z,.

Proof: [Necessity] Suppose the PBN E{z(t+ 1)} =F x

E{x(t)} is not globally asymptotically stable at x4, where xg = 05, .

In accordance with Lemma 2, only two situations are admissible.
1) 5. is not a fixed point, that is, [F],, =& < 1.
2) There exists a state in Agn ,
05 .

Discuss case 1). Let ¢ at both sides of E{z(t + 1)} = FE{z(t —
7(t))} approaches infinity; according to Definition 2, one has that

/

[25] Guo Y, et al. Stability and set stability in distribution of probabilistic Boolean networks[J].2019.
Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020

85. = Fd5, = Col, (F). This is a contradiction, as [85. |, = 1.

from which any path cannot reach

[Sufficiency] Since the PBN E{xz(t + 1)} = F x E{x(t)} is sup-
posed to be globally asymptotically stable at x,, then lim,_, . F! =
1,. ® &} . For both sides of the PBN (2), let ¢ approaches infinity; it
holds that

lim . o E{z(t + 1)}

il 1 1 117
— J L5 ].Tn (T-n Ty T s sy — — 53’::
Sontak o) [ ] =8
where p; is the probability of the initial state being x(—i) and
>~ 1_o pi = 1. Thus, the proof of sufficiency is complete. [



IV. Influence of state delays on asymptotical stability

e e e i h e e e e e h ot = e e e = ks ma <

" Lemma 2 (see [25]): The PBN E{z(t+1)} =F x E{z(t)} is |

I globally 4. -stable in distribution, if and only if,

1) 85, is afixed point, that is, [F] = 1;

- 2) there exists an admissible path with length [,, < 2" —1 from |
initial state x to target state 05, , for each 2y € Asn. ,

,' Corollary 1: Foragivenz,; € Ay, the PBN (2)is globally asymp- 'y
| totically stable at x; if and only if ¢ = [LI:I, 1] is the unique nonneg- *
ative solution to equations

i {c:L’c .
[ D1

[elynyy =1

_{ Theorem 3: For a given x; € Ayn , the PBN (2) is globally asymp- |
I totically stable at x, if and only if the PBN E{z(t + 1)} = F x
| E{x(t)} is globally asymptotically stable at .

[25] Guo Y, et al. Stability and set stability in distribution of probabilistic Boolean networks[J].2019.
Zhu S, et al. Asymptotical Stability of Probabilistic Boolean Networks With State Delays[J].2020
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Completeness and Normal Form of Multi-valued Logical Functions

Main Results:

E Using algebraic form, a method is proposed to construct an adequate
set of connectives (ASC) for k-valued logical functions, which can
be used to express any k-valued logical functions.

The disjunctive normal form and conjunctive normal form of k-
valued logical functions are presented based on ASC. The ASC is
then simplified to a condensed set.

The normal forms are further extended to mix-valued logical
functions

Cheng D, et al. Completéness and Normal Form of Multi-valued Logical Functions[J], 2020



1. The algebraic form of k-valued logical functions J

7N

I
Definition 2.2. A k-valued logical variable x takes its values i |
D= |1, 22 k23 L ol k=3 :
e= b T 1 =1 Z 3 1 Assume F : D} — Dy is an n-variable k-valued logical function. Assume its algebraic form
We identify each logical value (¢;) with a vector (a;) as |18
: 1 [ — n ]
k — ) F(xp,...,x,) :=Mp X, x;, 24
o = Leaq=08, i=1,2. ...k I ¢ W) = Mp Koy X (&
k—1 | Where Mp € Lyxin s the structure matrix of F. Then we split MF into k"= blocks as
Denote by &, the set of unary operators on D. | My o= (M. M Mo ] 25)
F .= 1y PEERT k=11,
Let o € ®;. Then there exists a unique By = [e;,, ..., @; ], such that | . e
k q ﬂ ! k | Where Mj € Ly, j=1,...k 1
o(@)=a;, 1<j=<k I Then we define a set of unary operators as
Moreover, if x is expressed in vector form as x € Ay, then o € @, has | ¢ edy, j=1 s (26)
. . . J ’ — Ly ’
matrix form My = 8clir, o, ..., ik]. . . . :
I which have M; as their structure matrices respectively.
Now if x € Dy, o € ¥4, and assume I
§=o0(x). |
Then in vector form we have 1 :gr» {—I ,V,/\}

y = M;x, ;
where x and y are vector forms of x and & respectively. > Adequate Set of Connectives (ASC) : a set of |OgiC generators such
that any logical function can be expressed as a compounded function

of this set of generators.

Cheng D, et al. Completeness and Normal Form of Multi-valued Logical Functions[J], 2020



II. Normal Form and ASC J

* Disjunctive normal form:

;F(Xl"'-aXn _\/11 1\/17 . \/1,,1 II:D;(I (Xl) .
AP0 oo Ao o) N 1) | g

where ¢/t = ¢ with

Similarly to the Boolean case, we have the following result.
Theorem 3.1: Every k-valued logical function has its dis-
junctive normal form and its conjunctive normal form.

Proof: We give a constructive proof for them. Assume a
k-valued logical function F'(x1, -+, xk) : Df — Dy is given.

Moreover, assume that the structure matrix of F' is G=01=DE" 24+ (g = D"+ -+ (ino— Dk +in_1.

« Conjunctive normal form:

MF = [N15N25" ) ’Nk]n
Assume —F(x1, -+ ,Xn) has disjunctive normal form as

where N; € L 4n-1,%=1,---, k. Similar to Boolean case, (28). Then using De Morgan formula, we can have

E. F(Xla."'=Xn):./\z1 l/\’bg 1 "/\znl =1 .
[ VRV Ve ) @)
\ Rl kL, ki )} :

Note that in (28) and (29), V, A, and — are brief forms for
V(k), /\(k), and (%) respectively.

it is easy to prove that

F(X1s X2v -+ X)) = [PROXOD) AR (X2s -0 1) ]
V[P A Fa(x2s - X0 ]

V...

MEACORN AT ]

where F; has N; as its structure matrix, i = 1, ..., k. Corollary 3.2: For k-valued logic

By applying this procedure to each F; and their sub-functions and using LIPS NORVION ! (30)

Eq. (26) at the last step, we have
is an ASC.

Cheng D, et al. Completeness and Normal Form of Multi-valued Logical Functions[J], 2020



II. Normal Form and ASC J

v" In the following we consider how to reduce the size of this ASC.

Define Next, we consider W;. We first define an equivalence on Wy as follows:
U= {o € ®; | det(M,) # 0}, finition 3.5
Vs = {o € By, | det(M,) = 0}. /De/“‘t“’“ > \
Then _ _ _ o
By — T U, (i) Two unary operators)ay, 0, € W} are said to be equivalent, and this is denoted by
01~0>, if there exist uy, wy, € ¥, such that
Denote by
010 L] = [ 0 07. 31
Mp={M,| o € ¥}}, 101 = [12007 (31)
M§ :={M, | o € ®i}. (i) Two (matrices)M;, M, € M; are said to be equivalent, and this is denoted by M; ~ M,
We define a mapping 7 : ®j, — Mj, as if there exist P, P, € M}, such that
"o My, \_ MiPi =P 32

By restricting it on ¥} and ¥{ we have 7 : ¥} — M and

m: WS — Mg respectively. The following proposition is obvious.

Then the following relations are obvious. . 5
[ Proposition 3.3: (i) m: ¥ — M} is a group isomor- } Pr0p0s1t10n 3.6. Assume o, K€ \pk' Then
phism. o~ U M, NM/,L'

(i) m: ¥; — M} is a semigroup isomorphism.
Because of these isomorphisms, instead of ¥} and ¥;, we
can investigate M;' and M} respectively.

Cheng D, et al. Completeness and Normal Form of Multi-valued Logical Functions[J], 2020



'~ I1. Normal Form and ASC |

v"If two operators are equivalent, then one can be generated from the other one. Then we only need to choose one

representative operator from each equivalence class as an element of the generator set, denoted by (G; |.

According to Proposition 3.6, we need only to consider the

equivalence class on M;. Two rows are said to be equivalent

(denoted by ~), if they have same numbers of “1”. For
example, (1,1,0,0) ~ (0,1,0,1).

Let M, My € M;. M; and M, are said to be equivalent,
denoted by M; ~ Mo, if they have one-one corresponding

equivalent rows. For example, we have

1 1 0f~_  __- 0 1 O
Mi=10 0 1 "':f:,»%';' 0o 0 of, (33)
0 0 ol 11 0 1
because

Row (M) ~ Rows(M>),
Row, (M) ~ Rowy(M>),
Row3 (M) ~ Row,(M>).

Cheng D, et al. Completeness and Normal Form of Multi-valued Logical Functions[J], 2020

Dove-cage problem:

Consider “1” as a dove, “row” as a cage, the number of
equivalence classes, denoted by n(k), 1s equivalent to the

following classical dove-cage problem: put k doves into k — 1
cages. This is because o € ¥}, which means M, is singular.

k doves

lllllllllllllllll

------------------

k-1 cages

Then we can choose a representative from each equivalence



“111. The normal forms of mix-valued logical functions J

Definition 4.1: Assume x; € Dy,, ¢ =1,--- ,n, a mapping
F : 1l Dx, — Di,, denoted by F(x1,- - ,Xn) € Dg,, is
called a mix-valued logical function.

Proposition 4.2 ([2]): Given a mix-valued logical function

: H?:l Dy, — Dg,, assume x; € Dg, has vector form
i € Ag,, @ = 1,--- ,n. Then, there exists a unique logical
atrix Mp € Ly, xx (kK = [];—, k:), such that

Splitting My into t = k/k,, equal blocks as

Mf _ [Ll’m q1 ,Ll’m ,kn,la . ,Lkl,kQ,--. ,knil]’

b

we define a set of unary operators ¢'1%2"vin-1 : D —
Dy, with structure matrix Livtersin-t o= 1 ... ko 8=
1,---n — 1. Then we have the following normal form.

F(x1, JEp) = Mp X7, x;, x; € Ay, (39) Theorem 4.4: Assume F : [[_; Dy, — Dg, is an n-
'''''''''''''''''''''''''''''''''''''''''' variable mix-valued logical function with algebraic form
Definition 4.3: Assume x € D, £ € Dy, where p # q, we F(.’L‘l, T ) Mg D< LT, (40)

define
xNE=ENAXx =%, If&E=1 where Mp € Ly, x is the structure matrix of F.

xVE=E&Vx=x%x, if£{=0.

. D isjinctive nom al fom : * Conjunctive normal form:

W W W h Assume —F(xq, -, xn) has disjunctive normal form as (41).
Fp, soaxa) = S0k ees Koo () Then using De Morgan formula, the conjunctive normal form of
1= I9 = Iﬂ 1= s .
Vo, V i F(x1,**, xn) Can be obtained as
e ) e T e ) @ R () N ¥
7 F(Xla"'sxn)_/\ll 1/\17 1 /\l,,[ 1
A1) (42)

[ GOV GOV -V (o) Vghorimiodortzivn )|

Cheng D, et al. Completeness and Normal Form of Multi-valued Logical Functions[J], 2020



Controllability of dynamic-algebraic mix-valued

logical control networks

Main Results:

v" For the dynamic-algebraic mix-valued logical control networks,
several lower dimensional controllability matrices are defined,
then new necessary and sufficient conditions for the

controllability are presented as well.

Liu Y, et al. Controllability of dynamic-algebraic mix-valued logical control networks[J], 2017



I. The algebraic form of dynamic-algebraic mix-
valued logical control networks (DAMLCNS)

p S8 A o wedece 4 ogs o e R
then Dy, ~ Ay. 5?:22 =frya(z1(t), 22(t), ..., s (1)),
Now we study the controllability of DAMLCNSs. Consider (2b)
the following dynamic equations:
(C st 1) =fr (s (O)s ot (B 21 (B n (), ) %, =/n(ma(t),22(), . 2 (1)), _
x2(t+1) :f2(u1(t)="'7um(t)7x1(t)7"'7wn(t))v where Z’Z(t) € Aki,i € [1,71] and Uj(t) S Asj,j €

: [1,m] are states and control inputs, respectively. Let k =
' H?:l ]Ci, k = szl kz', k' = H:‘L:r—i—l ki, and q = Hm_l Sj.
Bt 1) = (1 (1), -t (8), 21(8), - 0 (1)), [ By = Arand f; 0 An 5 Api o€ [Lil g

\ ' . (_23 [r 4 1, n| are logical functions, respectively.
for ¢ > 0 and the state variables of remainder n — r satisfy

the following algebraic logical equations at ¢ > 0,

xl(t + 1) :fl(ul(t)v 000 aum(t)7$1(t)v coc 7$n(t))7

) . (b4 1) =fr(ur(t), ..., um(t), z1(t),. .., 2z, (t)),
The systems (2) can be rewritten as: L —fraa(@(8) 2a(t)s s (1),

O, =fa(@1(8), 22(2), - .., 20 (1),
k (y

\
Liu Y, et al. Controllability of dynamic-algebraic mix-valued logical control networks[J], 2017k




valued logical control networks (DAMLCNS)

~|. The algebraic form of dynamic-algebraic mix- J

The system (3) can be converted to the following
form using STP :

{ 2t + 1) = Lu(®)z! ()22 (1), (4),
1 _ 1 2 |
5t =(Gr' (£)22 (1), (4b)’

|
where z(t) = X! x;(t) € Ay, z'(t) = xI_,z;(t) € Ap,1
22(t) = X, 2;(t) € Ap,and L = My, % - % My, 6:

L ¢ is called the transition matrix of (4a), G = My, | *|
% My, € Lyxk, and * is the Khari-Rao product [4].

Liu Y, et al. Controllability of dynamic-algebraic mix-valued logical control networks[J], 2017

~

For (4b), we split G into k equal blocks as

[ G=[G1G; - G,;],J

where G; € Lpixpr, 1 € [1,]2:]. Denote by Z' the set of
indices i such that 6;, € Col(G;). Let X! be the set of all
canonical vectors 6% with i € Z'. Based on X!, we define

C! = Ap\X'" as the set of all canonical vector 4% for which
no vector 5%, can be found such that by assuming z! = 512

and 22 = §7,, condition (4b) holds. Moreover, denote by Z}
the set of indices ¢ such that only one of the columns of G;
coincides with 6;, and let X be the set of canonical vectors
0% with i € Zg. It is obvious that Xj C X'



~|. The algebraic form of dynamic-algebraic mix-

.~ valued logical control networks (DAMLCNS)

J

Define a new matrix M, of dimension k' x k with its en-
tries being

M

{ (M,);i = 1, if Col;(G;) = 6}, (5a)
g

(M,),; = 0, if Col;(G;) # 6. (5b)

For given i € ZI!, denote the set of all j such that
(My)ji = 1by s(i). If X5 (M,);i > 1, then there
are more than one element in s(¢). In fact, for any j €
s(i), #(t) = &, is the solution to (4b) corresponding to
a'(t) = 0%. Therefore, (4b) has multiple solutions 2 when

SF(My)ji > 1. Assume S(i) = {8}, : j € s(i)}, then

we define a set of matrices
g = - —— -
| S(My) = {M : Coly(M) e S(i)it Y (My) > 1,1
| = |
otherwise Col; (M) = Col;(My),i € Qy}
. ke

Liu Y, et al. Controllability of dynamic-algebraic mix-valued logical control networks[J], 2017

Therefore, equation (4b) can be equivalently rewritten as

2 (t) € S(M,)x' (1), z'(t) € &1, (7)
and system (3) is rewritten as
_( 2 (t+1) = Lu®)z ()22(1), . |
| 2*(t) € S(Mg)z' (1), ' (t) € X', J
o — e e —
[ 2t+1) elu@a' OSM)a () (9)_ |
i —Lu(t)S(M,)a’ (1), = () € X", ,'
where S(M,;) = (I} ® S(My))®;, and @ =
Diag{é}{, 5’%, e ,525} € Lj., ; is the power reducing ma-

trix. Specially, when Z! = 7}, then (9) can be rewritten

as
2 (t +1) = Lu(t) M,z (t), «*(t) € &1,

where M, = (I; @ M,)®;.

(10)



" |. The algebraic form of dynamic-algebraic mix-
.~ valued logical control networks (DAMLCNS)

Example 1. Assume that G =
53[1,2,3,2,2,3,1,1,1,1,2,2], Ir1,To € D2,$3 € Dg
and r = 2, then we have

Therefore, X' = {01,03,64}, XF = {01,031}
@ —  {65]1,0,1,1],65[1,0,2,1],85[1,0,3,1]}.
Taking © = 6i, = 0;0% for instance, one gets

M(5%2) - {53[1707171]763[1707271]753[1707371]}’
and x* = 61 = Ma' = M6, for any M € M(615).

{ (Mg)ji = 1, lfCOIJ(Gl) = 5él, (Sa) [
(M,);; = 0, if Col,;(G;) # 6}.. (5b) Mg = [

o O =
o O O
—_
o O =

S(M,) = {M : Col( 1fz

) =

Col( 9): % € Qrl/

otherwise Col, (M

Liu Y, et al. Controllability of dynamic-algebraic mix-valued logical control networks[J], 2017



I1. Controllability of DAMLCNSs J The solution set

of (4b)

Let X be the solution set of(4b), i.e., admissible state set
of system (3). Since (7) is equivalent to (4b), we have

When t = 0, we have from (9) that

X={z: zv=2x'2? € 2'S(M,)z", »' € X'}

Let C = Ak\)( and define X = {x = Zlfl(l) € Lu(O)S(Mg)xl(O) wtih I’l<0) el (11)
w1 S(My)zt, 2t € Xg}. If solution set X = (), then sys-
tem (3) is obvious unsolvable. Hence we assume that X' # ()

for a given mix-valued logical system.

[4, 7] Consider system (3) with a given ini%
state x(0) = x¢g € X and a final state 4 € Xy. x4 is
said to bfrom xo at the s-th step if there is a
control sequence U = {u(0),u(1),...,u(s— 1)}, such that
x(s) = xq4. x4 is said to be reachable from x, if there exists
s > 0, such that x4 is reachable from xq at the s-th step.
System (3) is said to be reachable from x if x4 is reachable
from xq, for every choice of x4 € Xy. System (3) is said to
b'f x4 is reachable from x, for every choice

KOfxOEX’ xq € Xo. /

Liu Y, et al. Controllability of dynamic-algebraic mix-valued logical control networks[J], 2017

Once 7(0) € X is fixed, there is a unique z?(0) correspond-
ing to 21(0) € X! such that z(0) = z'(0)z2(0). Tt is
learned from Definition 3 that the state sequence z(t),0 <
t < s, is determined uniquely by the system, which means
that z1 (1) € X, then by definition of M (x(0)), (1) =
Mzt (1) forany M € M(z(0)) C S(M,). Consequently,

z1(1) = LMu(0)z'(0) with 21 (0) € X, (12)

whereM:Iq®M.




1. Controllability of DAMLCNS J

As aresult, for ¢t > 0, it follows from (9) that

' (t+1) = LMu(t)z' (t), z*(t) € & (13)

Denote L := LM € M,;X,;q,we splitfjin to g blocks as B
Similarly, let Blk,(L) be the matrix obtained from

Blk,(L) by substituting zeros to the rows and columns of
Blk,(L) with indexes except 31, - - - , 35, , then denote W =

q . .

Y. Blk,(L). Since W, Wy and W depend on M, which
p=1

are determined by a given z(0), we use W (M), W1 (M) and
W (M) instead of W, W7 and W, respectively.

= [Blky (L) Blks(L) -~ Blk,(L)], (14

where Blk,(L) € L;. ;. p € [1,4].
Assume that Z§ = {f, - - ,581} r1(0) = 6Z and for a

given s > 0, z1(s) = (53 Let .W Z Blk,(L ) Denote
_ RS = S r
Blk, (L") by substituting zeros to the columns of Blk,(L)

except for the i-th one and substituting zeros to the rows of
Blk,(L) with indexes except (1, - ,s,. Then let W; =

q _
S Blk,(L).
p=1

Liu Y, et al. Controllability of dynamic-algebraic mix-valued logical control networks[J], 2017



\,

1. Controllability of DAMLCNS J

Theorem 1. Given x(0) = x9 € X, xg € Xpand s > 0
such that 2 (0) = 6%, x'(s) = o7 Aand z2(0) = Mz(0).
Consider system (3), and assume (W (M)*= W1 (M));; =
l. Then

L= U(s;2(0), za) = (2 (5))T (W(M)* " W1 (M))z' (0).
ads)

Proof. We prove this by induction. When s = 1, let

u', .-, u® be different control values that drive system (3)

from z(0) to z(d) = z(1). From (12), for any A € [1, a], we
have

1= (2'(1))7[Blk1(L) Blky(L) --- Blk,(L)Ju*z*(0).

Since each control value is a column of I, there exist b =
q — a different control value v*, v?, ..., v® such that

0 = (*(1))"[Blky(L) Blky(L) --- Blky(L)jv"z"(0),

where x € [1,b]. Summing up the above a+b = ¢ equations
yields
a = (z'(1))"[Biki (L) Blky(L) -+ Blk,(L)]1} 2" (0)
= (z'(1))" W (M)z"(0).
(16)
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It is learned from Definition 3 that there exist control se-
quences U such that ! (k) € X3,k > 0. Then we can get

a= (z'(1)"Wi(M)z'(0),

which proves (15) for s = 1.
For the induction step, given k > 0, let z'(k) = 65* c
X3, T € [1, s1], and consider

(@' (k + 1)TW (M) 121 (0)
= (z'(k + 1) W) - W (M) (0)

= Z(W(M)k)jﬁT(W(M))BTi a7

S1
= > (H)TW(M)RSE7 (827 W (M5}
T=1
From the definitions of Wi (M) and W (M), one can
obtain  that (62HTW (M)S: = (627)TWy(M)s: and
(6D)TW (M)*s2
= (8)TW (M)*s2.
Using (17) we have
(2 (k + 1)TW (M)t (0)
= D (SDTW(M)*57 (557)T WA (M8
=1
= > (@' (k+1)TW M)k (1) (2! (1) Wy (M)z (0).
z1(1)EXo

Applying the induction hypothesis yields
(z*(k + 1)TW(M)* Tzt (0)

1} = D> Uka),x(k+ 1)) - 1(1;2(0), 2(1)),
1 (1)eX,



L Controllability of DAMLCNSs J
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[ Theorem 1. Given x(0) = g € X, 24 € Xp and s > \

0
such that z*(0) = o, z'(s) = &/ flndx (0) = Mz(0).
Consider system (3), and assume (W (M)~ W (M)) =
l. Then

L= U(s;2(0),za) = (' ()T (W (M)* "' W1 (M))z* (0).

N 15 _J

Applying the induction hypothesis yields
= (' (ke + 1) "W (M) 12 0)
= Y Uke(l),z(k+1)) - U152(0),2(1),

xl(l)E.Xo

which is exactly the number of control sequences that steer
the system (3) from x(0) to x4 in k + 1 steps. The proof is
completed. []
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L Controllability of DAMLCNSs J

From Theorem 1 above, we have the following controlla-
bility criteria.

heorem 2. The following results hold for system (3),
1) Give z(0) € X, zq € Xy such that z*(0) =
o, xy = o7 and 2%2(0) = Max'(0). Then Tq is
reachable from x(0) at the s-th step if and only if
(W(M)S‘1W1(M))ji > 0.
2) Given x(0), x4 as 1). x4 is reachable from z(0) if and

only if i (W (M)*~ Wy (M)); > 0.
s=1

3) Given x(0) as 1). System (3) is globally Feachablel
LI
from x(0) if and only if Y (W (M) *W1(M));; >
s=1

0, forall j € T}.
4) System (3) is globally| controllable 'if and only if

K

> (W (M)

s=1

Wi(M))ji > 0, forall j € I3, i € I' and M €
S(My).
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Proof. 1) can be obtained directly from Theorem 1. By the
Cayley-Hamilton Theorem, given an k x k matrix A, AF
can be linear expressed by Iz, A, A%, ... ,A’;_l. There-
fore, it is easy to see that if given 1 < 4,J < l;:,

(W(M))* "Wy (M));; = 0, forany 1 < s < k, then
(W (M)*~'Wy(M));; = 0, forany s € N*. As a result, we
only consider {W (M)*~1W;(M)]1 < s < k}. From the

definition of controllability, =, is reachable from z(0) if and

only if > (W (M)*='Wy(M));; > 0, which is equivalent
s=1
koo
to > (W(M)*"*Wiy(M));; > 0 from the analysis above.
s=1
3) can be deduced from 2) easily. From Definition 3, sys-
tem (3) is globally controllable if and only if 3) holds for

x(0) € X. Therefore, 4) holds. O
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Example 2. Considering the following system with three n-
odes,

zl(t + 1) :fl(xl(t)’:B?(t)vx?wu(t))v
332(t + 1) :fQ(xl(t)’$2(t)7x3>u(t))v (18)
0y =fs(x1(t), z2(t), 23),

The truth table of systems (18) are listed as follow :

fs T Z2 3
1 0 0 0
0 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
0 1 0 1
0 1 1 0
1 1 1 1

Table 2: Truth tables of f3 in (18)
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a
S
N
8
w

— 00O~ ~ O~ 0O, O—0OFRR—=O0O~ROO—0O—O o
—_ O~ 00O~ O~ O~RO~,OO~R,O~RROO~O = —~|3
—— e, e, e S P o000 000 O
—_——= = = O OO0 O R P R, R, OO0 R~ =0000
—_—_, OO, P OO FRP P OO, PR OOR~P,OO~R,F~,OO
= I S T S o B S . R S e B S B S e T o S SR o S S o S ST o S S )

Table 1: Truth tables of f;,7 € [1,2] in (18)
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Using STP, the algebraic form of (18) is as
follows:

Split L into 3 blocks as L = |Ly Lo Ls|, where L; €
Lozyos, i € [1,3]. When i € [1,3], LiS(My)z'(t) <
X4, V2l (t) € X1 Therefore, the solution to (18) is not u-
nique.

- Let (0) = dg = 0503, one gets M = 051, 1, 1,2]. There-
whereL:54[332324314122323232322341] fore,]\Z/ 58[1358] thenM—Ig,@M SplthMmto
and G =02[12111221]. 3 blocks as LM = [Ly Ly Ls], then L, and Ly, p € [1,3),

|
|
|
|
|
|
i |
ol (t+ 1) =Lu(t)z' (t)z3(t), :
|
|
|
|
|
|
One gets X1 = {51,62,63,64), X1 = {51,63,68}, X = | can be obtained, respectively. Therefore,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

19
6y =Gt (t)2?(t), 1

(61,82, 82, 83,88, X = {oL, 83,05}, and : A 5.
wiM) =31 W(M) —Z_;Lp
1110 p=t "
Mg:[0101]. [0000} 00 0 2
1o o0 o0 o0 0000
) —{2 0 0 OJ, 2 0 10
Then S(M,) = {05[1,1,1,2],65[1,2,1,2]}, and S(M,) = 1020 Lo

(65]1,3,5.,8],68[1,4,5,8]}.
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\

Since
, [6 0 0 o]
. 0 00 0
s—1 _
Z;W(M) WM =116 0 0 ol
. 3 00 0
22
then it is easy to obtain that > (W (M)*= W1 (M))43 = 0,
s=1

which means xq = 8§ = 0705 is not reachable from xo =

End
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