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I. Basic Concepts of PBNs

+ Boolean network (BN) was first proposed by Kauff-
man1 as a qualitative model for GRNs.

+ Even though a BN provides a rougher description of
GRNs, it is still capable of efficiently predicting the
long-term behavior of GRNs2.

+ Probabilistic Boolean network (PBN)3 is a stochas-
tic generalization of deterministic BN, aiming to de-
scribe uncertainties and stochasticity in GRNs.

1Stuart A Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic nets”. In: Journal of
Theoretical Biology 22.3 (1969), pp. 437–467.

2Gautier Stoll et al. “Continuous time boolean modeling for biological signaling: application of Gillespie algorithm”.
In: Bmc Systems Biology 6.1 (2012), pp. 116–116.

3Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. “From Boolean to probabilistic Boolean networks as
models of genetic regulatory networks”. In: Proceedings of the IEEE 90.11 (2002), pp. 1778–1792.
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+ This lecture is based on the work regarding stability and stabi-
lization4,5,6,7,8,9,10 , controllability and observability11,12,13,14.

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–
699.

5Yuqian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE Transac-
tions on Automatic Control 64 (2 2019), pp. 736–742.

6Rongpei Zhou and Yuqian Guo. “Set Stabilization in Distribution of Probabilistic Boolean Control Networks”. In:
Proceedings of the 2018 13th World Congress on Intelligent Control and Automation July 4-8, 2018, Changsha, China.
2018, pp. 274–279.

7Rongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:
IEEE Transactions on Neural Network & Learning Systems (2020), DOI: 10.1109/TNNLS.2019.2955974.

8Liqing Wang, Yang Liu, and & Cybernetics: Systems Wu. “Stabilization and Finite-Time Stabilization of Proba-
bilistic Boolean Control Networks”. In: (2020), DOI: 10.1109/TSMC.2019.2898880.

9Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1–14.

10Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272–1278.

11Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1–14.

12Fangfei Li and Jitao Sun. “Controllability of probabilistic Boolean control networks”. In: Automatica 47.12 (2011),
pp. 2765–2771.

13Ettore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: IEEE Control Systems Letters 4.2 (2020), pp. 319–324.

14J. Zhao and Z. Liu. “Observability of probabilistic Boolean networks”. In: Proceedings of the Chinese Control
Conference, 2015. 2015, pp. 183–186.
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+ A PBN is a randomly switched Boolean network

x1(t + 1) = f σ1(t)
1

({
xj(t)

∣∣ j ∈ N σ1(t)
1

})
x2(t + 1) = f σ2(t)

2

({
xj(t)

∣∣ j ∈ N σ2(t)
2

})
...
xn(t + 1) = f σn(t)

n

({
xj(t)

∣∣ j ∈ N σn(t)
n

}) (1)

xi ∈ D := {0, 1};
σi(t) ∈ DNi := {0, 1, · · · ,Ni − 1}, i ∈ [1 : n], are random
switching sequences; and
f j
i , i ∈ [1 : n], j ∈ DNi , are Boolean functions of their

respective neighbouring nodes
{

xk(t)
∣∣ k ∈ N j

i

}
.
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+ Constituent networks (or contexts, subnetworks)

σ1 σ2 · · · σn−1 σn

K :=



0 0 · · · 0 0
0 0 · · · 0 1
...

... · · · ...
...

0 0 · · · 0 Nn − 1
0 0 · · · 1 0
0 0 · · · 1 1
...

... · · · ...
...

0 0 · · · 1 Nn − 1
...

... · · · ...
...

N1 − 1 N2 − 1 · · · Nn−1 − 1 Nn − 1


(Πn

i=1Ni)×n

The jth row from bottom defines the jth subnetwork Σj

There are N := Πn
i=1Ni subnetworks in total.

8 / 115



+ Basic assumptions15:
σi(t), i ∈ [1 : n], are mutually independent;

σi(t) is independent and identically distributed,

P{σi(t) = j} = pj
i, i ∈ [1 : n], j ∈ [0 : Ni − 1]

+ Selection probabilities of constituent networks

P{σ1(t) = j1, · · · , σn(t) = jn} = pj1
1 · · · p

jn
n

+ Under the basic assumptions, a PBN is essentially a
finite-state homogenous Markovian chain. Thus the
stability of a PBN is completely determined by its state
transition probabilities.

15A PBN does not necessarily satisfy these assumptions, such as context-sensitive PBNs and Markovian switching
PBNs.
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+ The vector-form of a logic variable α ∈ Dm is defined
as

δm−α
m := Colm−α(Im).

Then,
f j
i (x1, x2, · · · , xn) = Li,jx1x2 · · · xn

Thus, in the vector-form, the PBN becomes
x1(t + 1) = L1 n σ1(t) n x1(t) n x2(t) n · · ·n xn(t)
x2(t + 1) = L2 n σ2(t) n x1(t) n x2(t) n · · ·n xn(t)
...
xn(t + 1) = Ln n σn(t) n x1(t) n x2(t) n · · ·n xn(t)

(2)
where

Li = [Li,Ni−1,Li,Ni−2, · · · ,Li,1,Li,0]
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+ Define
x(t) = x1(t) n x2(t) n · · ·n xn(t)

σ(t) = σ1(t) n σ2(t) n · · ·n σn(t)

The PBN becomes

x(t + 1) = L n σ(t) n x(t)

where
L is a logic matrix;
σ(t) ∈ ∆N is an independent and identically distributed
(i.i.d.) random sequences with

P{σ(t) = δj
N} = P {The jth subnetwork Σj is selected}
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+ Transitional Probability Matrix (TPM) P 16

[P]i,j := P
{

x(t + 1) = δi
2n

∣∣ x(t) = δj
2n

}
[P]i,j ≥ 0,

∑
i

[P]i,j = 1

Define the probability distribution vector (PDV) of σ as

[pσ]j = P{σ(t) = δj
N}.

Then,
P = L n pσ

16Conventionally, the TPM is defined as P>
12 / 115



+ State Transfer Graph (STG):
The STG of a PBN is a weighted directed graph (N , E ,W)
where

N = ∆2n is the set of nodes;
E =

{
(δj

2n , δi
2n)
∣∣ [P]i,j > 0

}
is the set of directed edges;

W : E → (0, 1], (δj
2n , δi

2n) 7→ [P]i,j, is the weight of edge.

Example

P =


0.6 0.3 0 0.5
0.4 0 0.5 0.5
0 0 0.2 0
0 0.7 0.3 0


δ1

4 δ2
4

δ3
4δ4

4

0.6
0.4

0.3

0.7

0.5

0.2
0.3

0.5
0.5
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+ An Example:
Consider a simplified apoptosis network [Kobayashi &

Hiraish (2011)17]
x1(t + 1) = f σ1(t)

1 (x1(t), x2(t))
x2(t + 1) = f σ2(t)

2 (x1(t), x2(t), x3(t))
x3(t + 1) = f σ3(t)

3 (x1(t), x2(t))
(3)

x1(t), x2(t), and x3(t) represent the concentration level
of the inhibitor of apoptosis proteins, active caspase-
3, and active caspase-8, respectively.
The switching signals σj(t) ∈ {0, 1}, j = 1, 2, 3, are i.i.d.
processes where

f 0
1 = x1(t), f 1

1 = ¬x1(t) ∧ x2(t),
f 0
2 = ¬x1(t) ∧ x3(t), f 1

2 = x1(t) ∧ x2(t),
f 0
3 = x2(t), f 1

3 = x1(t) ∧ x2(t)
17Koichi Kobayashi and Kunihiko Hiraishi. “An integer programming approach to optimal control problems in context-

sensitive probabilistic Boolean networks”. In: Automatica 47.6 (2011), pp. 1260–1264.
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Algebraic Form:

x(t + 1) = L n σ(t) n x(t)

L = [L1,L2,L3,L4,L5,L6,L7,L8]

x(t) = x1(t) n x2(t) n x3(t)

σ(t) = σ1(t) n σ2(t) n σ3(t)

L1 = δ8[3 3 4 4 5 7 6 8], L2 = δ8[3 3 4 4 6 8 6 8],
L3 = δ8[1 1 4 4 7 7 8 8], L4 = δ8[1 1 4 4 8 8 8 8],
L5 = δ8[7 7 8 8 1 3 6 8], L6 = δ8[7 7 8 8 2 4 6 8],
L7 = δ8[5 5 8 8 3 3 8 8], L8 = δ8[5 5 8 8 4 4 8 8]
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Selection probabilities:

P(σi(t) = j) = pj
i, i = 1, 2, 3, j = 0, 1

p0
1 = 0.4, p1

1 = 0.6
p0

2 = 0.7, p1
2 = 0.3

p0
3 = 0.2, p1

3 = 0.8.

For any j, decompose δj
8 as δj

8 = δj1
2 n δj2

2 n δj3
2 . Then,

[pσ]j = P{σ(t) = δj
8}

= P{σ1(t) = δj1
2 , σ2(t) = δj2

2 , σ2(t) = δj3
2 }

= pj1
1 pj2

2 pj3
3

⇓

pσ = 0.01× [5.6 22.4 2.4 9.6 8.4 33.6 3.6 14.4]> .
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The TPM:

P = L n pσ =
8∑

j=1

[pσ]jLj

=



0.12 0.12 0 0 0.084 0 0 0
0 0 0 0 0.336 0 0 0

0.28 0.28 0 0 0.036 0.12 0 0
0 0 0.4 0.4 0.144 0.48 0 0

0.18 0.18 0 0 0.056 0 0 0
0 0 0 0 0.224 0 0.7 0

0.42 0.42 0 0 0.024 0.08 0 0
0 0 0.6 0.6 0.096 0.32 0.3 1


.
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+ Accessibility and Communicate
State δj

2n is accessible from state δi
2n , denote by i → j,

if

P
{

x(t) = δj
2n , for some t ≥ 1

∣∣ x(0) = δi
2n

}
> 0

Two states δi
2n and δj

2n that are accessible to each other
are said to communicate, denote by i↔ j.

Lemma
For any i 6= j, the following statements are equivalent:

δi
2n → δj

2n;
[Pt]j,i > 0 for some t with 1 ≤ t ≤ 2n − 1;
There is a path from δi

2n to δj
2n in the STG.
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+ Recurrent States
A state δj

2n is said to be recurrent if

P
{

x(t) = δj
2n for some t ≥ 1

∣∣ x(0) = δj
2n

}
= 1.

Lemma

δi
2n → δj

2n and δi
2n is recurrent.

⇓

δi
2n ↔ δj

2n and δj
2n is recurrent.
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+ Invariant Set (or Closed Set)
A subset C ⊂ ∆2n is called an invariant subset if

P
{

x(t + 1) ∈ C
∣∣ x(t) ∈ C

}
= 1.

A subset C ⊂ ∆2n is invariant if and only if∑
i∈idx(C)

[P]i,j = 1 ∀j ∈ idx(C) :=
{

j
∣∣ δj

2n ∈ C
}

Lemma
The transition probability from any state to an invariant
subset is increasing with time.
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+ The Largest Invariant Subset
The union of two invariant subsets is still invariant.
The union of all invariant subsets contained in M is
referred to as the largest invariant subset inM, de-
noted by I(M).

Proposition

Suppose thatM = {δj
2n

∣∣ j ∈ Λ0}, where Λ0 ⊆ [1 : 2n]. We
define a sequence of subsets of indices as follows:

Λs =

j ∈ Λs−1

∣∣∣∣∣∣
∑

i∈Λs−1

[P]i,j = 1

 , s = 1, 2, · · · .

Then, there must exist an integer k ≤ |M| such that Λk =
Λk−1. In addition, it holds that I(M) = {δj

2n

∣∣ j ∈ Λk}.
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+ Probabilistic Boolean Control Network (PBCN)
x1(t + 1) = f σ1(t)

1 (u1(t), · · · , um(t), x1(t), · · · , xn(t))
x2(t + 1) = f σ2(t)

2 (u1(t), · · · , um(t), x1(t), · · · , xn(t))
...
xn(t + 1) = f σn(t)

n (u1(t), · · · , um(t), x1(t), · · · , xn(t)))

⇓

x(t + 1) = L n σ(t) n u(t) n x(t)

TPMs
P = L n pσ

Pj = L n pσ n δj
2m

Note: Pj is the TPM when u(t) ≡ δj
2m
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+ Closed-loop TPM:

u(t) = Kx(t), K ∈ L2m×2n

⇓

x(t + 1) = L n σ(t) n u(t) n x(t)
= L n σ(t) n K n x(t) n x(t)
= L n σ(t) n KΦnx(t)

Φn: Power-reducing Matrix

⇓

PK = (L n pσ)KΦn.
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+ Reachability
xd is said to be k-step reachable from x0 if there is a
control sequence u = {u(t)} such that

P{x(k; x0,u) = xd} > 0.

xd is said to be reachable from x0 (denoted by x0 → xd)
if there is a control sequence u = {u(t)} such that

P{x(t; x0,u) = xd for some t ≥ 1} > 0.

xd is reachable from x0 if and only if xd is k-step reach-
able from x0 for some k ≤ 2n − 1.
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Reachability Matrix

R =
2n−1∑
k=1

(P n 12m)k

Proposition

δi
2n → δj

2n ⇔ [R]j,i > 0

Sketchy Proof:

(P n 12m)k = (P1 + P2 + · · ·+ P2m)k

=
∑

all possible combinations

Pik−1 · · ·Pi1Pi0

Thus,
[
(P n 12m)k

]
j,i
> 0 if and only if xd is k-step reachable

from x0.
25 / 115



+ Control Invariant Subsets
A subset C ⊆ ∆2n is called a control invariant subset
if, for any state x0 ∈ C, there exists a control u0 ∈ ∆2m

such that

P{x(t + 1) ∈ C
∣∣ x(t) = x0} = 1. (4)

The union of any two control invariant subsets is still
control invariant.
The union of all control invariant subsets contained in
a given subsetM⊆ ∆2n is termed as the largest con-
trol invariant subset contained inM and is denoted
by Ic(M).
If C = {xe} is control invariant, then, xe is called a con-
trol fixed point.
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Proposition
Suppose thatM0 = {δi

2n|i ∈ Λ0}. A sequence of index sets
Λs, s ∈ Z+, is defined as

Λs =

j ∈ Λs−1

∣∣∣∃k ∈ [1 : 2m], s.t.
∑

i∈Λs−1

[Pk]i,j = 1

 .

Subsequently, there must exist a positive integer η 6 |M0|
such that Λη = Λη+1. Additionally, Ic(M0) = {δj

2n|j ∈ Λη}
holds.
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II. Stability Analysis of PBNs

+ Consider a PBN

x(t + 1) = L n σ(t) n x(t)

x(t) ∈ ∆2n is the state;
L ∈ L2n×N2m is a logic matrix,

L = [L1,L2, · · · ,LN ];

σ(t) ∈ ∆N is an i.i.d. random sequence with a PDV pσ.
The TPM is P = L n pσ.
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II.1 Finite-time Stability

Definition (Finite-time Stability (FTS))
A state xe ∈ ∆2n is said to be finite-time stable if there is a
positive integer T such that

P{x(t) = xe

∣∣ x(0) = x0} = 1 ∀t ≥ T,∀x0 ∈ ∆2n .

[Li, Yang, & Chu (2014)a]

aRui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272–1278.
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Definition (Finite-time Set Stability)
A subsetM⊂ ∆2n is said to be finite-time stable if there is
a positive integer T such that

P{x(t) ∈M
∣∣ x(0) = x0} = 1 ∀t ≥ T, ∀x0 ∈ ∆2n .

[Li, Yang, & Chu (2016)a]

aLi Rui, Yang Meng, and Chu Tianguang. “VÇÙ��ä�8Ü	½��”. In: XÚ�Æ�êÆ 36.3 (2016),
pp. 371–380.

+ Typical Set Stability Problems:
Synchronization of networks
Node Synchronization
Output Tracking
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+ Criterion of FT Stability in terms of TPM

Theorem
A PBN is finite-time stable with respect to xe if and only if

Col
{

P2n−1} = {xe} (5)

Sketchy Proof:(Necessity) FT stability⇒ xe is a fixed point,
and the solution from any initial state reaches xe with 2n−1
steps. ⇒ (5)
(Sufficiency) (5)⇒

Pxe = P2n
x0 = P2n−1(Px0) = [xe, · · · , xe](Px0) = xe

⇒ xe is a fixed point⇒ For any t ≥ 2n, any x0,

P{x(t) = xe

∣∣ x(0) = x0} ≥ P{x(2n − 1) = xe

∣∣ x(0) = x0} = 1

⇒ FT stability
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+ Criterion of FT Stability in terms of STG18

P{x(t) = xe

∣∣ x(0) = x0} = 1 ∀t ≥ T,∀x0 ∈ ∆2n .

m
(i) xe is a fixed point
(ii) x0 → xe ∀x0

(iii) The paths from any x0 to xe in G \ (xe, xe) is bounded

m

G \ (xe, xe) is acyclic

Note: G \ (xe, xe) is the graph obtained from the STG
G of the PBN by removing the self-loop of xe

18Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–
699.

34 / 115



+ Criterion of FT Stability in terms of STG18

P{x(t) = xe

∣∣ x(0) = x0} = 1 ∀t ≥ T,∀x0 ∈ ∆2n .

m
(i) xe is a fixed point
(ii) x0 → xe ∀x0

(iii) The paths from any x0 to xe in G \ (xe, xe) is bounded

m

G \ (xe, xe) is acyclic

Note: G \ (xe, xe) is the graph obtained from the STG
G of the PBN by removing the self-loop of xe

18Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–
699.

34 / 115



+ Criterion of FT Stability in terms of STG18

P{x(t) = xe

∣∣ x(0) = x0} = 1 ∀t ≥ T,∀x0 ∈ ∆2n .

m
(i) xe is a fixed point
(ii) x0 → xe ∀x0

(iii) The paths from any x0 to xe in G \ (xe, xe) is bounded

m

G \ (xe, xe) is acyclic

Note: G \ (xe, xe) is the graph obtained from the STG
G of the PBN by removing the self-loop of xe

18Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–
699.

34 / 115



+ Criterion of FT Stability in terms of STG18

P{x(t) = xe

∣∣ x(0) = x0} = 1 ∀t ≥ T,∀x0 ∈ ∆2n .

m
(i) xe is a fixed point
(ii) x0 → xe ∀x0

(iii) The paths from any x0 to xe in G \ (xe, xe) is bounded

m

G \ (xe, xe) is acyclic

Note: G \ (xe, xe) is the graph obtained from the STG
G of the PBN by removing the self-loop of xe

18Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–
699.

34 / 115



8

12

3 4 5

67

1

1
1

0.5

0.5

0.5

0.30.20.4

0.6

0.6 0.4

0.3

0.7

STG G

8

12

3 4 5

67

1
1

0.5

0.5

0.5

0.30.20.4

0.6

0.6 0.4

0.3

0.7

G \ (xe, xe)

35 / 115



Theorem
A PBN is finite-time stable with respect to xe if and only if
G \ (xe, xe) is acyclic.
[Zhu, Lu, W.C.Ho (2020)a]

aShiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695–
699.
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+ Finite-time Set Stability

Finite-time stability w.r.t. M

⇔ Finite-time stability w.r.t. the largest invariant subset
inM, denoted by I(M)

⇔ Col{P2n−|I(M)|} ⊆ I(M)

⇔ I(M) 6= ∅ and the STG has no cycles outside I(M).
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The STG of a PBN that is finite-time stable w.r.t. M
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II.2 Asymptotical Stability
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lim
t→∞

P{x(t) = δ4
4

∣∣ x(0) = x0}

= lim
t→∞

[Ptx0]4 = 1
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Definition (Stability with Probability One (SPO))
A state xe ∈ ∆2n is said to be stable with probability one if

P
{

lim
t→∞

x(t) = xe

∣∣ x(0) = x0

}
= 1 ∀x0 ∈ ∆2n .

[Zhao & Cheng (2014)a]

aYin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1–14.
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Definition (Stability in Stochastic Sense (SSS))
A state xe ∈ ∆2n is said to be stable in stochastic sense if

lim
t→∞

Ex(t; x0) = xe ∀x0 ∈ ∆2n .

[Meng, Liu, & Feng(2017)a]

aMin Meng, Lu Liu, and Gang Feng. “Stability and l1 gain analysis of Boolean networks with Markovian jump
parameters”. In: IEEE Transactions on Automatic Control 62.8 (2017), pp. 4222–4228.
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Definition (Stability in Distribution (SD))
A state xe ∈ ∆2n is said to be stable in distribution if

lim
t→∞

P
{

x(t) = xe

∣∣ x(0) = x0
}

= 1 ∀x0 ∈ ∆2n .

[Guo, Zhou, Wu, Gui, & Yang(2019)a]

aYuqian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE Transac-
tions on Automatic Control 64 (2 2019), pp. 736–742.

+ These three definitions of stability are equivalent, as
shown latter.

+ The concept of stability in distribution is easily gener-
alized to set stability.
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Definition (Set Stability in Distribution (SSD))
A subsetM⊂ ∆2n is said to be stable in distribution if

lim
t→∞

P
{

x(t) ∈M
∣∣ x(0) = x0

}
= 1 ∀x0 ∈ ∆2n .

[Guo, Zhou, Wu, Gui, & Yang(2019)a]

aYuqian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE Transac-
tions on Automatic Control 64 (2 2019), pp. 736–742.
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+ Criterion of Stability with Probability One19

P
{

lim
t→∞

x(t) = xe

∣∣ x(0) = x0

}
= 1 ∀x0 ∈ ∆2n .

m{
xe is a fixed point.(Thus, it is recurrent)
x0 → xe ∀x0.(Thus, it is the unique recurrent state)

m
xe is a fixed point.

Rowi

(
2n−1∑
k=1

Pk

)
� 0 (where xe = δi

2n)

19Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1–14.
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Theorem
A PBN is asymptotically stable w.r.t. xe = δi

2n with probabil-
ity one if and only if xe is a fixed point and

Rowi

(
2n−1∑
k=1

Pk

)
� 0 (6)

[Zhao & Cheng (2014)a]

aYin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1–14.

Note: Condition (6) can be replaced by

Rowi
(
P2n−1) � 0

because the transition probability from any state to a fixed
point is nondecreasing.
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+ Criterion of asymptotical stability in distribution
A Necessary Condition:

lim
t→∞

P
{

x(t) = xe
∣∣ x(0) = x0

}
= 1 ∀x0 ∈ ∆2n .

⇓{
xe is a fixed point.
x0 → xe ∀x0

It is also sufficient.
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Sketchy Proof of Sufficiency.

lim
t→∞

P
{

x(t) = xe

∣∣ x(0) = x0
}

= 1 ∀x0 ∈ ∆2n .

m

lim
t→∞

Pt =

[
0(2n−1)×2n

1T
2n

]
(Assume xe = δ2n

2n )

m

lim
t→∞

α(t) = 12n−1, where Pt :=

[
ΓT(t) 0(2n−1)×1

αT(t) 1

]
.

m

lim
t→∞

α(2nt) = 12n−1 (By Monotonicity)
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P(2n(t + 1)) = P(2nt)P(2n)

⇓

α(2n(t+1)) = Γ(2n)α(2nt)+α(2n).

⇓

η(t + 1) = Γ(2n)η(t)

η(t) := α(2nt)− 12n−1

{
xe is a fixed point.
x0 → xe ∀x0

⇓

α(2n) � 0

⇓

Γ(2n) is strictly Schur stable

︸ ︷︷ ︸
⇓

lim
t→∞

η(t) = 0

⇓

lim
t→∞

α(t) = 12n−1
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Theorem
A PBN is asymptotically stable w.r.t. xe in distribution if and
only if {

xe is a fixed point.
x0 → xe ∀x0.

Or, equivalently, xe is a fixed point and

Rowi
(
P2n−1) � 0

[Guo, Zhou, Wu, Gui, & Yang(2019)a]

aYuqian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE Transac-
tions on Automatic Control 64 (2 2019), pp. 736–742.
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+ Criterion of asymptotical stability in stochastic sense

lim
t→∞

Ex(t; x0) = xe ∀x0 ∈ ∆2n .

m Ex(t; x0) = Ptx0

lim
t→∞

Ptx0 = xe ∀x0 ∈ ∆2n

m

Asymptotically stable in distribution

52 / 115



+ Relations between Different Definitions of Stabil-
ity

FTS

SDSSS SPO
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+ Asymptotical Set Stability

lim
t→∞

P
{

x(t) ∈M
∣∣ x(0) = x0

}
= 1 ∀x0 ∈ ∆2n .

m

lim
t→∞

P
{

x(t) ∈ I(M)
∣∣ x(0) = x0

}
= 1 ∀x0 ∈ ∆2n .

m{
I(M) 6= ∅
x0 → I(M) ∀x0

Note: x0 → I(M) means x0 → x for some x ∈ I(M).

54 / 115



STG of a PBN that is asymptotically stable w.r.t. M
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+ Stability of Markovian Switching PBNs

x(t + 1) = L n σ(t) n x(t)

x(t) ∈ ∆2n

L ∈ L2n×n2n

σ(t) ∈ ∆N is a homogeneous Markov chain with tran-
sition probability matrix Pσ, where

pσij := [Pσ]i,j = P
{
σ(t + 1) = δi

N

∣∣ σ(t) = δj
N

}
.

56 / 115



Define
ξ(t) := σ(t) n x(t) ∈ ∆2nN .

Then, ξ(t) is a homogeneous Markov chain.
Denote the 1-step transition probability matrix of ξ(t)
as Pξ; that is,

pξij := [Pξ]i,j = P
{
ξ(t + 1) = δi

2nN

∣∣ ξ(t) = δj
2nN

}
.

Proposition
The Markovian switching PBN is finite-time (or asymptoti-
cally) M-stable with M = {δj

2n

∣∣ j ∈ ΛM} iff ξ(t) is finite-
time (or asymptotically)Md-stable, where

Md = ∆N nM :=
{
δi

N n δj
2n

∣∣ i ∈ [1 : N], j ∈ ΛM

}
. (7)

How to calculate Pξ ?
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Lemma

Pξ =
(
PσD[N,2n]

)
∗ L.

Proof: Take any δi
2nN = δi1

N n δi2
2n, δj

2nN = δj1
N n δj2

2n. Then,

pξij =P(σ(t + 1) = δi1
N , x(t + 1) = δi2

2n

∣∣ σ(t) = δj1
N , x(t) = δj2

2n)

=P(σ(t + 1) = δi1
N

∣∣ σ(t) = δj1
N )

× P(x(t + 1) = δi2
2n

∣∣ σ(t) = δj1
N , x(t) = δj2

2n)

=
[
Pσδj1

N

]
i1

[
Lδj1

Nδ
j2
2n

]
i2

=
[(

Pσδj1
N

)(
Lδj1

Nδ
j2
2n

)]
2n(i1−1)+i2

=
[(

PσD[N,2n]δ
j1
Nδ

j2
2n

)(
Lδj1

Nδ
j2
2n

)]
2n(i1−1)+i2

=
[((

PσD[N,2n]

)
∗ L
)
δj1

Nδ
j2
2n

]
2n(i1−1)+i2

=
[((

PσD[N,2n]

)
∗ L
)
δ

2n(j1−1)+j2
N2n

]
2n(i1−1)+i2

=
[(

PσD[N,2n]

)
∗ L
]

i,j (“∗” represents Khatri-Rao Product of matrices.)
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+ Synchronization of PBNs

Z1

Z2 Z3

Y1

Y2 Y3

Master network Slave network

Master Network:

z(t + 1) = Lzz(t), z(t) ∈ ∆2n

Slave Network:

y(t + 1) = L n σ(t) n z(t) n y(t), z(t) ∈ ∆2n

σ(t) ∈ ∆N is a homogeneous Markov chain.
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Definition
Finite-time synchronization:

P{y(t; y0) = z(t; z0)} = 1 ∀t ≥ T,∀y0,∀z0,∀σ0.

Asymptotical synchronization:

lim
t→∞

P{y(t; y0) = z(t; z0)} = 1 ∀y0,∀z0,∀σ0.
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Rewrite the master network as

z(t + 1) = Lzz(t) =
[
1T

N ⊗ (LzD[2n,2n])
]
n σ(t) n z(t) n y(t)

Define x(t) = z(t) n y(t). Then, the coupled network
can be expressed as

x(t + 1) = L̄ n σ(t) n x(t)

L̄ :=
[
1T

N ⊗ (LzD[2n,2n])
]
∗ L

“∗” represents Khatri-Rao Product of matrices.
Define ξ(t) = σ(t) n x(t). Then, ξ(t) is a homogenous
Markov chain with TPM

Pξ =
(
PσD[N,22n]

)
∗
[
1T

N ⊗ (LzD[2n,2n])
]
∗ L.
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Finite-time (or asymptotical) synchronization

m

x(t) = z(t) n y(t) converges toMsyn

in Finite-time (or asymptotically)
Msyn = {δj

2n n δj
2n

∣∣ j = 1, 2, · · · , 2n}

m

ξ(t) = σ(t) n z(t) n y(t) converges to M̄syn

in Finite-time (or asymptotically)
M̄syn = {δi

N n δj
2n n δj

2n

∣∣ i = 1, 2, · · · ,N, j = 1, 2, · · · , 2n}
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Example
Consider master BN

z(t + 1) = Lzz(t), z(t) ∈ ∆2n

with n = 2, Lz = δ4[3 1 4 3] and slave PBN

y(t + 1) = L n σ(t) n z(t) n y(t), z(t) ∈ ∆2n

with L = [L1,L2] and

L1 = δ4[1 1 1 2 1 1 2 1 4 4 4 4 3 1 2 3],

L2 = δ4[3 3 3 3 2 1 2 2 3 3 4 3 1 3 1 3].

σ(t) ∈ ∆2 is a homogenous Markov chain with

Pσ =

[
0.3 0.6
0.7 0.4

]
.
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Define ξ(t) = σ(t) n z(t) n y(t), then

L̄ :=
[
1T

2 ⊗ (LzD[4,4])
]
∗ [L1 L2]

= δ16[9 9 9 10 1 1 2 1 16 16 16 16 11 9 10 11
11 11 11 11 2 1 2 2 15 15 16 15 9 11 9 11].

Pξ =
(
PσD[2,16]

)
∗ L̄
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(Pξ)> =



0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0

0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7
0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0
0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0
0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0
0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0
0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.4 0 0 0 0 0
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Set of Synchronization States:

M̄syn = {δi
N n δj

2n n δj
2n

∣∣ i = 1, 2, · · · ,N, j = 1, 2, · · · , 2n}
= {δj

16

∣∣ j ∈ Λ0}
Λ0 = {16(i− 1) + 4(j− 1) + j

∣∣ i = 1, 2, j = 1, 2, 3, 4}
= {1, 6, 11, 16, 17, 22, 27, 32}.

The largest invariant Subset in M̄syn

I(M̄syn) = {δj
16

∣∣ j ∈ Λ2 := {11, 16, 17, 27, 32}}

∑
r∈Λ2

Rowr[(Pξ)3] > 0.

Thus, these two BNs are asymptotically synchronized.
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III. Feedback Stabilization of PBNs

+ Consider a PBCN

x(t + 1) = L n σ(t) n u(t) n x(t)

Structural matrix: L ∈ L2n×N2n+m ;
σ(t) ∈ ∆N is an i.i.d. random sequence;
TPM

P = L n pσ = [P1,P2, · · · ,P2m ]

[Pk]i,j = P
{

x(t + 1) = δi
2n

∣∣ x(t) = δj
2n , u(t) = δk

2m

}
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+ Problem: Find a state-feedback

u(t) = Fx(k)

to stabilize a PBN to a point or a subset in finite-time
or asymptotically.

+ If
F = δ2m [k1, k2, · · · , k2n ]

Then, the TPM of the closed loop, denoted by PF, is

Colj(PF) = Colj(Pkj)
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III.1 Fintie-time Feedback Stabilization

+ Hierarchical structure of the STG of a FT stable PBN

Ω0 = {xe}

Ω1 =
{

x
∣∣ P{x(t + 1) = xe

∣∣ x(t) = x} = 1
}

Ωk =
{

x
∣∣ P{x(t + 1) ∈ Ωk−1

∣∣ x(t) = x} = 1
}

We can always rearrange the STG
into the hierarchical structure for a
finite-time stable PBN.
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+ Construction of Finite-time Stabilizing Feedback
Based on [li, Yang, & Chu (2014)20]

Define a sequence of subsets as
Ω0 = {xe}
Ω1 =

{
x
∣∣ ∃u s.t. P{x(t + 1) = xe

∣∣ x(t) = x, u(t) = u} = 1
}

Ωk =
{

x
∣∣ ∃u s.t. P{x(t + 1) ∈ Ωk−1

∣∣ x(t) = x, u(t) = u} = 1
}

k = 2, 3, · · ·

If xe is control invariant, then

Ω0 ⊆ Ω1 ⊆ Ω2 ⊆ · · ·

20Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272–1278.
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Theorem
A PBN is finite-time stabilizable w.r.t. xe by a state feedback
if and only if

xe is control invariant;
There is a positive integer K such that ΩK = ∆2n .

[li, Yang, & Chu (2014)a]

aRui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272–1278.
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+ A finite-time stabilizing feedback gain F can be ob-
tained as follows:

Assigning a control effort u(xe) for xe such that

P{x(t + 1) = xe
∣∣ x(t) = xe} = 1;

Assigning a control effort u(x) for every x ∈ Ωk \ Ωk−1
such that

P{x(t + 1) ∈ Ωk−1
∣∣ x(t) = x} = 1.

Then,
F = [u(δ1

2n), u(δ2
2n), · · · , u(δ2n

2n )]

[li, Yang, & Chu (2014)21]

21Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272–1278.
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+ Finite-time Feedback Set Stabilization

Finite-time FeedbackM-Stabilizable

m

Finite-time Feedback Ic(M)-Stabilizable
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III.2 Asymptotical Feedback Stabilization

Consider a PBCN

x(t + 1) = L n σ(t) n u(t) n x(t)

Structural matrix: L ∈ L2n×N2n+m ;
σ(t) ∈ ∆N is an i.i.d. random sequence;
TPM

P = L n pσ = [P1,P2, · · · ,P2m ]

[Pk]i,j = P
{

x(t + 1) = δi
2n

∣∣ x(t) = δj
2n , u(t) = δk

2m

}
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+ Feedback Stabilizability

Theorem
A state xe is asymptotically feedback stabilizable iff

1 xe is a control-fixed point, and
2 x0 → xe ∀x0, that is,

x>e (P n 12m)2n−1 � 0.

[Zhou & Guo(2018)a]
[Zhou, Guo, Wu, & Gui(2019)b]
[Wang, Liu, Wu, Lu, & Yu(2019)c]

aRongpei Zhou and Yuqian Guo. “Set Stabilization in Distribution of Probabilistic Boolean Control Networks”. In:
Proceedings of the 2018 13th World Congress on Intelligent Control and Automation July 4-8, 2018, Changsha, China.
2018, pp. 274–279.

bRongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:
IEEE Transactions on Neural Network & Learning Systems (2020), DOI: 10.1109/TNNLS.2019.2955974.

cLiqing Wang, Yang Liu, and & Cybernetics: Systems Wu. “Stabilization and Finite-Time Stabilization of Proba-
bilistic Boolean Control Networks”. In: (2020), DOI: 10.1109/TSMC.2019.2898880.
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+ Feedback Set Stabilizability

Theorem
A subsetM is asymptotically feedback stabilizable iff

1 Ic(M) 6= ∅, and
2 x0 → Ic(M) ∀x0, that is,∑

j∈idx(Ic(M))

Rowj

[
(P n 12m)2n−1

]
� 0.

[Zhou, Guo, Wu, & Gui(2020)a]

aRongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:
IEEE Transactions on Neural Network & Learning Systems (2020), DOI: 10.1109/TNNLS.2019.2955974.
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+ Design of Asymptotically Stabilizing Feedback
Decomposition of State Space:

Ξk = {δs
2n |s ∈ Θk}, k ∈ [0 : λ],

Θ0 = idx(Ic(M)),

Θk =

j ∈

(
k−1⋃
s=0

Θs

)c ∣∣∣ ∑
i∈Θk−1

[P n 12m ]i,j > 0

 ,

k = 1, 2, · · · , λ.

(8)

Or equivalently,
Ξ0 := Ic(M)

Ξk :=

{
x ∈

(
k−1⋃
s=0

Ξs

)c ∣∣ x→ Ξk−1

}
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For any δj
2n ∈ ∆2n, we define a set of admissible con-

trols as follows:

κ(δj
2n) :=



{
δk

2m

∣∣∣∑
i∈Θ0

[Pk]i,j = 1

}
, if δj

2n ∈ Ξ0δk
2m

∣∣∣ ∑
i∈Θs−1

[Pk]i,j > 0

 , if δj
2n ∈ Ξs, s > 1.

Based on the construction, under any state feedback

u(t) = Kx(t)

satisfying, for all j ∈ [1 : 2n],

Colj(K) ∈ κ(δj
2n).
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An Algorithm [Zhou, Guo, Wu, & Gui(2020)22]

22Rongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:
IEEE Transactions on Neural Network & Learning Systems (2020), DOI: 10.1109/TNNLS.2019.2955974.
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+ Application to Output Tracking
We consider PBCN with q output nodes{

x(t + 1) = L n σ(t) n u(t) n x(t)
y(t) = Hx(t) (9)

where y(t) = nq
i=1yi(t) denotes the vector form of the

output variables and H ∈ L2q×2n.

Definition
We assume that that y∗ = δr

2q ∈ ∆2q corresponds to a ref-
erence signal. The asymptotical feedback output tracking
problem of the PBCN is said to be solvable if there is a
state feedback u(t) = Kx(t) such that, for any initial state
x0,

lim
t→∞

P{Hx(t) = y∗} = 1. (10)
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Theorem

Suppose that σ(t) is an i.i.d. process with the probability
distribution vector pσ. We define a sequence of index sets
as:

Λ0 = {j|Hδj
2n = δr

2q},

Λs =

j ∈ Λs−1

∣∣∣∃u = δk
2n , s.t.,

∑
i∈Λs−1

[Pk]i,j = 1

 .

s = 1, 2, · · · ,

We denote the smallest integer by η such that Λη = Λη+1.
Then, the asymptotical feedback output tracking problem
is solvable iff∑

i∈Λη

Rowi(L n pσ n 12m)2n−|Λη | � 0. (11)
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IV. Controllability of PBNs

+ Consider a PBCN

x(t + 1) = L n σ(t) n u(t) n x(t)

Structural matrix: L ∈ L2n×N2n+m ;
σ(t) ∈ ∆N is an i.i.d. random sequence;
TPM

P = L n pσ = [P1,P2, · · · ,P2m ]

[Pk]i,j = P
{

x(t + 1) = δi
2n

∣∣ x(t) = δj
2n , u(t) = δk

2m

}
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+ Definition of Controllability

Definition (Finite-time Controllability)

A PBCN is controllable if, for any pair of states (δi
2n , δ

j
2n),

there is a control sequence u and a positive integer T such
that

P
{

x(T) = δj
2n

∣∣ x(0) = δi
2n

}
= 1.

[Li & Sun (2011)a]

aFangfei Li and Jitao Sun. “Controllability of probabilistic Boolean control networks”. In: Automatica 47.12 (2011),
pp. 2765–2771.
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Definition

A PBCN is controllable if, for any pair of states (δi
2n , δ

j
2n),

there is a control sequence u such that

P
{

x(t) = δj
2n for some t ≥ 1

∣∣ x(0) = δi
2n

}
= 1.

[Zhao & Cheng (2014)a]

aYin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1–14.
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+ Criterion for Controllability

Theorem
The PBCN is controllability iff

R � 0,

where

R =
2n−1∑
k=1

(P n 12m)k .

[Zhao & Cheng (2014)a]

aYin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1–14.
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+ Criterion for Finite-time Controllability

Theorem
The PBCN is finite-time controllable if and only if for any
pair of states (x0, xd), there is a positive integer s such that

xd ∈ Col
((

PW[2n,2m]

)s x0
)

[Li & Sun (2011)a]

aFangfei Li and Jitao Sun. “Controllability of probabilistic Boolean control networks”. In: Automatica 47.12 (2011),
pp. 2765–2771.
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Sketchy Proof:

x(t + 1) = Liu(t)x(t) = LiW[2n,2m]x(t)u(t)

⇓

Ex(t + 1) = PW[2n,2m]Ex(t)u(t)

⇓

Ex(s) = PW[2n,2m]Ex(s− 1)u(s− 1)

= · · ·
=

(
PW[2n,2m]

)s x(0)u(0)u(1) · · · u(s− 1)
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+ Relations between Definitions
Finite-time controllability implies controllability;
The reverse is not true.

Example
Consider a PBCN with a state node and an input node and
P = [P1 P2], where

P1 =

[
1 0
0 1

]
, P2 =

[
0.5 1
0.5 0

]
.
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This PBCN is obviously controllable because the TPM
is completely connected under u(t) ≡ δ2

2.
However, under any control sequence, the n-step TPM
P̄(n) ∈ R2×2 is

P̄(n) =(P n un−1) · · · · (P n u1)(P n u0)

=(P1)
n−k · (P2)

k =

[
0.5 1
0.5 0

]k

=

[
1
3 × (−1

2)k + 2
3

2
3 −

2
3 × (−1

2)k

1
3 −

1
3 × (−1

2)k 2
3 × (−1

2)k + 1
3

]
.

where k the number of δ2
2 ’s in the control sequence. It

is easy to verify the following:

[P̄(n)]2,1 =
1
3
− 1

3
× (−1

2
)k 6 0.5 < 1.

97 / 115



Outline

1 Basic Concepts of PBNs

2 Stability Analysis of PBNs
Finite-time Stability
Asymptotical Stability

3 Feedback Stabilization of PBNs
Fintie-time Feedback Stabilization
Asymptotical Feedback Stabilization

4 Controllability of PBNs

5 Observability of PBNs

6 Questions

98 / 115



V. Observability of PBNs
{

x(t + 1) = L n σ(t) n x(t)
y(t) = H n x(t), (12)

x(t) ∈ ∆2n, y(t) ∈ ∆2q;
Structural matrix: L ∈ L2n×N2n, H ∈ L2q×2n;
σ(t) ∈ ∆N is an i.i.d. random sequence with PDV pσ;
TPM P = L n pσ

For convenience, we denote the state trajectory over
[0 : θ] starting from x0 by

x(θ;σ, x0) := [x0 x(1;σ, x0) · · · x(θ;σ, x0)]

and the corresponding output trajectory by

y(θ;σ, x0) := [y(x0) y(1;σ, x0) · · · y(θ;σ, x0)].
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+ Definitions of Observability

Definition (Finite-time Observability in Probability (FTOP))

A PBN is said to be observable in probability on [0 : θ] if,
for any two distinct initial states x0, x̄0 ∈ ∆2n, it holds that

P {y(θ;σ, x0) 6= y(θ;σ, x̄0)} > 0. (13)

A PBN is said to be finite-time observable in probability if
there is a non-negative integer θ such that it is observable
in probability on [0 : θ].
[Zhao & Liu (2015)a]

aJ. Zhao and Z. Liu. “Observability of probabilistic Boolean networks”. In: Proceedings of the Chinese Control
Conference, 2015. 2015, pp. 183–186.
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Definition (Finite-time Observability with Probability One
(FTOPO))

A PBN is said to be observable with probability one on
[0 : θ] if, for any two distinct initial states x0, x̄0 ∈ ∆2n, it
holds that

P {y(θ;σ, x0) 6= y(θ;σ, x̄0)} = 1. (14)

It is said to be finite-time observable with probability one if
a non-negative integer θ exists, such that the PBN is ob-
servable with probability one on [0 : θ].
[Zhou, Guo, & Gui (2019)a]

aRongpei Zhou and Yuqian Guo. “Set Stabilization in Distribution of Probabilistic Boolean Control Networks”. In:
Proceedings of the 2018 13th World Congress on Intelligent Control and Automation July 4-8, 2018, Changsha, China.
2018, pp. 274–279.
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Definition (Asymptotical Observability in Distribution
(AOD))
A PBN is said to be asymptotically observable in distribu-
tion if, for any two distinct initial states x0, x̄0 ∈ ∆2n, it holds
that

lim
t→∞

P {y(t;σ, x0) 6= y(t;σ, x̄0)} = 1. (15)

[Zhou, Guo, & Gui (2019)a]

aRongpei Zhou and Yuqian Guo. “Set Stabilization in Distribution of Probabilistic Boolean Control Networks”. In:
Proceedings of the 2018 13th World Congress on Intelligent Control and Automation July 4-8, 2018, Changsha, China.
2018, pp. 274–279.
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FTOPO

AOD

FTOP

Figure 1: The ellipses labeled with FTOP, AOD, and FTOPO
represent the set of PBNs that are observable in the sense of
FTOP, AOD, and FTOPO, respectively.
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Definition
Given a time instant T ∈ Z+, a PBN is observable in [0,T] if,
for every admissible output sequence y(0), y(1), . . . , y(T),
it is possible to uniquely identify the corresponding initial
condition x(0). The PBN is observable if it is observable in
some interval [0,T]
[Fornasini & Valcher (2020)a]

aEttore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: IEEE Control Systems Letters 4.2 (2020), pp. 319–324.
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Definition (Weakly Reconstructibility)
Given a PBN and a time instant T ∈ Z+, the PBN is weakly
reconstructible in [0,T] if for every admissible output se-
quence y(0), y(1), . . . , y(T), there exists τ ∈ [0,T] (depend-
ing on the specific output sequence) such that the knowl-
edge of the output samples y(0), y(1), . . . , y(τ) allows to
uniquely identify x(τ) ∈ LN. The PBN is weakly recon-
structible if it is weakly reconstructible in some interval
[0,T].
[Fornasini & Valcher (2020)a]

aEttore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: IEEE Control Systems Letters 4.2 (2020), pp. 319–324.

105 / 115



Definition (Strongly Reconstructibility))
Given a PBN and a time instant T ∈ Z+, we say that the
PBN is strongly reconstructible in [0,T] if, given any admis-
sible output sequence y(0), y(1), . . . , y(T) ∈ LP, it is possi-
ble to uniquely identify x(T) ∈ LN . The PBN (3) is strongly
reconstructible if it is strongly reconstructible in some inter-
val [0,T].
[Fornasini & Valcher (2020)a]

aEttore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: IEEE Control Systems Letters 4.2 (2020), pp. 319–324.
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+ [Fornasini & Valcher (2020)23]

23Ettore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: IEEE Control Systems Letters 4.2 (2020), pp. 319–324.
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+ Observability Analysis Based on Set Reachability

Definition (Finite-time Reachability)
Assume thatM0, Md ⊂ ∆2n are the initial and target sub-
sets, respectively. Md is said to be reachable with proba-
bility one fromM0 on [0 : θ] if, for any initial state x0 ∈M0,
it holds that

P {∃k ∈ [0 : θ], s.t. x(k;σ, x0) ∈Md} = 1. (16)

Md is said to be finite-time reachable with probability one
from M0 if there is a θ such that Md is reachable with
probability one fromM0 on [0 : θ].
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Definition (Asymptotical Reachability)
A target subset Md ⊂ ∆2n is said to be asymptotically
reachable in distribution from an initial subset M0 ⊂ ∆2n

if, for any initial state x0 ∈M0, it holds that

lim
t→∞

P {∃k ∈ [0 : t], s.t. x(k;σ, x0) ∈Md} = 1. (17)
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Parallel Extension:

{
x̄(t + 1) = L n σ(t) n x̄(t)
ȳ(t) = Hx̄(t)

Interconnected Network:
Define ξ(t) := x(t) n x̄(t), η(t) := y(t) n ȳ(t), σξ(t) :=
σ(t). Then, {

ξ(t + 1) = Lξσξ(t)ξ(t)
η(t) = Hξξ(t),

Lξ = LW[2n,N·2n]LW[N·2n,N·2n]W[N,N·2n]Mr,N , (18)
Hξ = HW[2q,2n]HW[2n,2n], (19)
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Distinguishable Set:

GH = {x n x̄|Hx 6= Hx̄}.

Initially Indistinguishable Set:

GI\H :=
{
δi

2n n δj
2n

∣∣∣Coli(H) = Colj(H) and i < j
}
.
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Proposition
(a) The original PBN is finite-time observable with proba-

bility one iff the subset GH is finite-time reachable with
probability one from GI\H for the interconnected PBN.

(b) The original PBN is asymptotically observable in dis-
tribution iff the subset GH is asymptotically reachable
in distribution from GI\H for the interconnected PBN.
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Questions

+ Are there other reasonable ways to define controllabil-
ity and observability of PBNs?

+ If your answer is “yes”, what is the difference between
the existing definitions and yours?

+ If one of your definitions tells a different story, find a
sufficient or even a necessary and sufficient condition.

+ Now you are ready to write a paper and publish it.
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Thank you!
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