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I. Basic Concepts of PBNs

1= Boolean network (BN) was first proposed by Kauff-
man' as a qualitative model for GRNs.

= Even though a BN provides a rougher description of
GRNs, it is still capable of efficiently predicting the
long-term behavior of GRNs?.

TStuart A Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic nets”. In: Journal of
Theoretical Biology 22.3 (1969), pp. 437—467.

2Gautier Stoll et al. “Continuous time boolean modeling for biological signaling: application of Gillespie algorithm”.
In: Bmc Systems Biology 6.1 (2012), pp. 116—116.
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I. Basic Concepts of PBNs

1= Boolean network (BN) was first proposed by Kauff-
man' as a qualitative model for GRNs.

= Even though a BN provides a rougher description of
GRNs, it is still capable of efficiently predicting the
long-term behavior of GRNs?.

= Probabilistic Boolean network (PBN)? is a stochas-
tic generalization of deterministic BN, aiming to de-
scribe uncertainties and stochasticity in GRNs.

TStuart A Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic nets”. In: Journal of
Theoretical Biology 22.3 (1969), pp. 437—467.

2Gautier Stoll et al. “Continuous time boolean modeling for biological signaling: application of Gillespie algorithm”.
In: Bmc Systems Biology 6.1 (2012), pp. 116—116.

Sllya Shmulevich, Edward R Dougherty, and Wei Zhang. “From Boolean to probabilistic Boolean networks as

models of genetic regulatory networks”. In: Proceedings of the IEEE 90.11 (2002), pp. 1778-1792. 4/115



Probabilistic Boolean Networks

The Modeling and Control
of Gene Regulatory Networks

This i the first comprehensive treatment of probabilistic Boolean networks (PBNs), an
important model class for studying genetic regulatory networks. This book covers basic
model properties, including

« the relationships between network structure and dynamics,

«  steady-state analysis, an

«  relationships to other model classes.
It also discusses the inference of model parameters from experimental data and control
strateges for driving network behavior towards desirable states.
The PBN model is well suited to serve as a mathematical framework to study basic issues
dealing with systems-based genomics, specifically, the relevant aspects of stochastic,
nontinear dynamical systems. The book builds a rigorous mathematical foundation for
exploring these issues, which include
long-run dynamical properties and how these correspond to therapeutic goals,
«the effect of complexity on model inference and the resulting consequences of
model uncertainty,
altering network dynamics via structural intervention, such as perturbing gene logic,
optimal control of regulatory networks over time,
limitations imposed on the ability to achieve optimal control owing to model
complexity, and
the effects of asynchronicity.
The authors attempt to unify different strands of current research and address emerging
issues such as constrained control, greedy control, and asynchronicity.
Researchers in mathematics, computer science, and engineering are exposed to important
applications in systems biology and presented with ample opportunities for developing new
approaches and methods. The book is also appropriate for advanced undergraduates,
graduate students, and scientists working in the fields of computational biology, genomic
signal processing, control and systems theory, and computer science.
Tlya Shmulevich is a professor at the Institute for Systems Biology, Seattle, WA.
Edward R. Dougherty is a professor and director of the Génomic Signal Processing
Laboratory at Texas A&M University, College Station, TX. He is also co-director of the
Computational Biology Division of the Translational Genomics Research Institute,
Phoenix, AZ.

.

For more information about SIAM books, journals,
conferences, memberships, or activities, contact:
v

Sidam.

Society for Industrial and Applied Mathematics
3600 Market Street, 6th Floor
Philadelphia, PA 19104-2688 USA
+1-215-382-9800 » Fax +1-215-386-7999
siam@siam.org ® www.siam.org

A Reference Book
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= This lecture is based on the work regarding stability and stabi-
lization#%:6:7:8.9.10 "controllability and observability'?:12:13,14,

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -Il: Express Briefs 67.4 (2020), pp. 695—
699.

5Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: [EEE Transac-
tions on Automatic Control 64 (2 2019), pp. 736—742.

6Rongpei Zhou and Yugian Guo. “Set Stabilization in Distribution of Probabilistic Boolean Control Networks”. In:
Proceedings of the 2018 13th World Congress on Intelligent Control and Automation July 4-8, 2018, Changsha, China.
2018, pp. 274-279.

7Rongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:
IEEE Transactions on Neural Network & Learning Systems (2020), DOI: 10.1109/TNNLS.2019.2955974.

8Liging Wang, Yang Liu, and & Cybernetics: Systems Wu. “Stabilization and Finite-Time Stabilization of Proba-
bilistic Boolean Control Networks”. [n: (2020), DOI: 10.1109/TSMC.2019.2898880.

9Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1-14.

10Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272—1278.

"Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1-14.

12Fangfei Li and Jitao Sun. “Controllability of probabilistic Boolean control networks”. In: Automatica 47.12 (2011),
pp. 2765-2771.

'3Ettore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: I[EEE Control Systems Letters 4.2 (2020), pp. 319-324.

14J. Zhao and Z. Liu. “Observability of probabilistic Boolean networks”. In: Proceedings of the Chinese Control
Conference, 2015. 2015, pp. 183-186.
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== A PBN is a randomly switched Boolean network

(

w(t+1) =0 ({x0) | j e NOO

w(e+ )= (0 1€ A7)

;Cn(H 1) = o ({xj(t) !je/\/,f"(’)}>

\

o x; € 2:={0,1};

e 0i(t) € Dy, :={0,1,--- ,N;— 1}, i €[l : n], are random
switching sequences; and

o f,ie[l:n],je Py, are Boolean functions of their

respective neighbouring nodes {xk(t) \ ke /\/{}.
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1= Constituent networks (or contexts, subnetworks)

01 (%))
[ 0 0
0 0
0 0
0 0
K= 0 0
0 0
| N —1 N, —1

On—1 On
0 -
0 1
N, —1
0
1
1 N, —1

Noy—1 N,—1

(T ;) xn

e The jth row from bottom defines the jth subnetwork %;
e There are N := II7_, N; subnetworks in total.
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ww Basic assumptions’®:
@ o4(1), i € [l : n], are mutually independent;

e o,(1) is independent and identically distributed,
Ploi(t) =j} =p}, i€[l:n],je[0: N —1]

== Selection probabilities of constituent networks

P{o\(t) =j1, - ,0u(t) = ju} =P - P

= Under the basic assumptions, a PBN is essentially a
finite-state homogenous Markovian chain. Thus the
stability of a PBN is completely determined by its state
transition probabilities.

5A PBN does not necessarily satisfy these assumptions, such as context-sensitive PBNs and Markovian switching
HERE 9/115



= The vector-form of a logic variable « € 2, is defined
as
= .= Coly_o(Ln)-

m

Then,

‘fl.j<x1’x% 000 7xn> = Lin1x2 cee Xy,

Thus, in the vector-form, the PBN becomes

- X X, (1)
-+ X X, (1)

Sl 1) = Ly 1< 0y () X 50 (£ 5 i) X o 3¢ ()

where
Li=[Lin-1,Lin—2,--- ,Li1,Lig)
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ww Define
x(t) = x1(2) X x2(2) X -+ - X x,(2)

o(t) = o1(t) X 02(t) X -+ X 7,()
The PBN becomes
x(t4+1) =L x o(t) x x(t)

where
@ L is alogic matrix;

@ o(1) € Ay is an independent and identically distributed
(i.i.d.) random sequences with

P{o(r) = &} = P {The jth subnetwork ¥; is selected}
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== Transitional Probability Matrix (TPM) P 16
x(1) = & }
[P];; >0, E]Huzl

i

Define the probability distribution vector (PDV) of ¢ as
p?); = P{o(t) = &y}

P, =P {x(H— 1) = 3,

Then,
P=Lxp°

16 ; ; : T
Conventionally, the TPM is defined as P 12/115



iz State Transfer Graph (STG):
The STG of a PBN is a weighted directed graph (N, &, W)
where

o N = Ay is the set of nodes;
o &= {(6’2,,,53,1) [P)ij > 0} is the set of directed edges;

o W:E&— (0,1], (8, d5) — [P, is the weight of edge.

06 03 0 05
04 0 05 05
0 0 02 O
0 07 03 0

P—
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= An Example:

Consider a simplified apoptosis network [kobayashi &
Hiraish (2011)"]

x4+ 1) = 79 x (1), x:(1))
01+ 1) = 720 (01 (1), x2(1), %3(1)) (3)

@ x(1), x2(1), and x3(¢) represent the concentration level
of the inhibitor of apoptosis proteins, active caspase-
3, and active caspase-8, respectively.

@ The switching signals o;(r) € {0,1},j=1,2,3, arei.i.d.
processes where

R =x(), i = (1) Axa(t),
B=x () Axs(t), f3 =x1(t) Axao(2),
A =x(), 3 =x1(t) Axo(2)

17 Koichi Kobayashi and Kunihiko Hiraishi. “An integer programming approach to optimal control problems in context-
sensitive probabilistic Boolean networks”. In: Automatica 47.6 (2011), pp. 1260—1264. 14/115



@ Algebraic Form:
x(t4+1)=Lx o(t) x x(t)
L — [LluLZJL37L47L57L67L77L8]
x(2) = x1(2) X x2(¢) X x3(¢)

o(t) = o1(t) x oa(t) x 03(t)

33445768|, L,=03334468638],

Ly =0 ] [ ]
11447788, Ly=05[11448888],
] [ ]
] [ ]

L3:($8
L5:58
L; = o3

77881368|, Le=03]77882468
55883388], Lg=10355884488

)

——a—

15/115



@ Selection probabilities:
P<Ji<t) :]>:pi i:172737 ]2071

pl =04, p;=06
py5=07, p)=023
py=02, pl=038.

For any j, decompose &, as & = & x &} x &5. Then,

Pl = Plo() = &) | |
= P{ow(t) = &, 0(t) = &, 00(0) = %)
— Pins
J
p°’ =0.01 x[5.622.42.49.68433.63.6 14.4]T .
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@ The TPM:

P

8
Lxp”=> [p°liL,
j=1

0
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= Accessibility and Communicate
o State &, is accessible from state 4;,, denote by i — j,

if
P{x(t) = &), for some t > 1 | x(0) = 5§n} >0

o Two states 4}, and &, that are accessible to each other
are said to communicate, denote by i < ;.
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= Accessibility and Communicate

o State 6’2 is accessible from state 4%,, denote by i — j,
if

P{x(t) = &), for some t > 1 | x(0) = 53,,} >0

o Two states &}, and &}, that are accessible to each other
are said to communicate, denote by i < ;.

For any i # j, the following statements are equivalent:
@ 0l — &,
@ [P, >0 forsometwithl <t<2"—1;
@ There is a path from &, to &, in the STG.
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= Recurrent States
o A state &), is said to be recurrent if

P{x(t) = &, for some > 1 | x(0) = 5’2} =1.
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= Recurrent States
o A state &), is said to be recurrent if

IP{x(t) = &, for some > 1 | x(0) = 5’2} =1.

i, — &, and &%, is recurrent.

4

L. <> 8, and &, is recurrent.
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iz |nvariant Set (or Closed Set)
@ A subset C C Ay is called an invariant subset if

P{x(t+1)eC|x() eC} =1

@ A subset C C A isinvariant if and only if

> Ply=1 Vjeidx(C):={j| & ec}

i€idx(C)
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= |nvariant Set (or Closed Set)
@ A subset C C Ay is called an invariant subset if

P{x(t+1)eC|x() eC} =1

@ A subset C C A isinvariant if and only if

> Ply=1 Vjeidx(C):={j| & ec}

i€idx(C)

The transition probability from any state to an invariant
subset is increasing with time.
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= The Largest Invariant Subset

@ The union of two invariant subsets is still invariant.

@ The union of all invariant subsets contained in M is
referred to as the largest invariant subset in M, de-
noted by 71(M).
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= The Largest Invariant Subset

@ The union of two invariant subsets is still invariant.

@ The union of all invariant subsets contained in M is
referred to as the largest invariant subset in M, de-
noted by 71(M).

Proposition

Suppose that M = {5,
define a sequence of subsets of indices as follows:

As: jEAS_l Z[P]ldzl 5 S:1727---

€A,

Then, there must exist an integer k < | M| such that Ay =
Ax_1. In addition, it holds that (M) = {&. | j € Ax}.

Jj € Ao}, where Ay C [1:2%]. We

21/115



= Probabilistic Boolean Control Network (PBCN)

X1<t+ 1)
+1

X2(l'

5ot 4 1) = £ Our(6), - un8) 31 (6), -

Y

x(t+1) =L x o(t) x u(t) x x(t)

TPMs
P=Lxp°

P, =L x p° x &,
Note: P; is the TPM when u(r) = &,

=K (@), (0,2 (0),
)= (0), - un(t) (1),

22/115



= Closed-loop TPM:

u(t) = Kx(t), K E D%’"XZ”

x(t+1)

Y

L x o(t) x u(t) x x(t)
L x o(t) x K x x() x x(1)
L x o(t) x KP,x(1)

: Power-reducing Matrix

Y

PK = (L X pU)K(I)n.

23/115



== Reachability

@ x, is said to be k-step reachable from x, if there is a
control sequence u = {u(¢)} such that

P{x(k; xp,u) = x4} > 0.

x4 is said to be reachable from x, (denoted by xo — x,)
if there is a control sequence u = {u(z)} such that

P{x(t; x0,u) = x4 for some ¢ > 1} > 0.

@ x, is reachable from x, if and only if x, is k-step reach-
able from x, for some k < 2" — 1.

24/115



@ Reachability Matrix

Proposition
55/1 — 5]2.,, <~ [R]j,i >0

Sketchy Proof:

(P X lzrn)k = (Pl + P2 + cc e + sz)k

= Z Pik—l o 'Pi1Pi0

all possible combinations

Thus, [(P X lzm)k} ~ > 0ifand only if x, is k-step reachable
j,l

from xo.
25/115



=z Control Invariant Subsets

@ A subset C C A, is called a control invariant subset
if, for any state xo € C, there exists a control uy € Ay
such that

P{x(r+ 1) eC ‘ silo) = sl = I (4)

e The union of any two control invariant subsets is still
control invariant.

@ The union of all control invariant subsets contained in
a given subset M C Ay is termed as the largest con-
trol invariant subset contained in M and is denoted
by 1.(M).

e If C = {x.} is control invariant, then, x, is called a con-
trol fixed point.
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Proposition

Suppose that M, = {05,
A, s € 7T, is defined as

A, = {je A [Tk e [1:2, 5.8 ) [Py = 1}_
€A

Subsequently, there must exist a positive integer n < | M|
such that A, = A, ;. Additionally, 1.(M,) = {&]j € A,}
holds.

i € Ao}. A sequence of index sets

v
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Outline

o Stability Analysis of PBNs
@ Finite-time Stability
@ Asymptotical Stability
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Il. Stability Analysis of PBNs

== Consider a PBN

x(t+1) =L x o(t) X x(t)

@ x(t) € Ay is the state;
@ L € % non is alogic matrix,

L= [L17L27"' 7LN];

@ o(r) € Ay is ani.i.d. random sequence with a PDV p°.
@ The TPMisP =L x p°.
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Outline

o Stability Analysis of PBNs
@ Finite-time Stability
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II.1 Finite-time Stability

Definition (Finite-time Stability (FTS))
A state x, € A, is said to be finite-time stable if there is a
positive integer T such that

P{x(t) =x. | x(0) =xo} =1 Vi >T,Vxg € Ay

[Li, Yang, & Chu (2014)9

4Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272-1278.

<
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Definition (Finite-time Set Stability)

A subset M C A, is said to be finite-time stable if there is

a positive integer T such that

P{x(t) € M | x(0) =xo} =1 Vit >T,Vxo € Ap.

[Li, Yang, & Chu (2016)7]

4aLi Rui, Yang Meng, and Chu Tianguang. “#f 3 4 /K 4 45 ffg SE & BUE EH. In: R408

07

pp. 371-380.

5 5% 36.3 (2016),

y
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Definition (Finite-time Set Stability)

A subset M C A, is said to be finite-time stable if there is

a positive integer T such that

P{x(r) € M | x(0)=x0} =1 Vt>T,Vxg € Apn.

[Li, Yang, & Chu (2016)7]

4aLi Rui, Yang Meng, and Chu Tianguang. “#f 3 4 /K 4 45 ffg SE & BUE EH. In: R408

pp. 371-380.

5 5% 36.3 (2016),

4

iz Typical Set Stability Problems:
@ Synchronization of networks
e Node Synchronization
e Output Tracking
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= Criterion of FT Stability in terms of TPM

A PBN is finite-time stable with respect to x, if and only if

Col {P* '} = {x.} (5)

Sketchy Proof:
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A PBN is finite-time stable with respect to x, if and only if
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= Criterion of FT Stability in terms of TPM

A PBN is finite-time stable with respect to x, if and only if

Col {P* '} = {x.} (5)

Sketchy Proof:(Necessity) FT stability = x, is a fixed point,
and the solution from any initial state reaches x, with 2" — 1
steps.
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= Criterion of FT Stability in terms of TPM

A PBN is finite-time stable with respect to x, if and only if

Col {P* '} = {x.} (5)

Sketchy Proof:(Necessity) FT stability = x, is a fixed point,
and the solution from any initial state reaches x, with 2" — 1
steps. = (5)

(Sufficiency) (5) =

Px, = P¥xo = P77 (Pxo) = [xe, -+, x](Pxo) = x,
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= Criterion of FT Stability in terms of TPM

A PBN is finite-time stable with respect to x, if and only if

Col {P''} = {x.} (5)

Sketchy Proof:(Necessity) FT stability = x, is a fixed point,
and the solution from any initial state reaches x, with 2" — 1
steps. = (5)

(Sufficiency) (5) =

Px, = P¥xo = P77 (Pxo) = [xe, -+, x](Pxo) = x,

= x, is a fixed point
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= Criterion of FT Stability in terms of TPM

A PBN is finite-time stable with respect to x, if and only if

Col {P''} = {x.} (5)

Sketchy Proof:(Necessity) FT stability = x, is a fixed point
and the solution from any initial state reaches x, with 2" — 1
steps. = (5)

(Sufficiency) (5) =

Px, = Pxg = P 7' (Pxg) = [x.,- -, x.](Pxo) = x.
= x, is a fixed point=- For any ¢ > 2", any x,

P{x(t) = x. | x(0) =xo} > P{x(2" — 1) =x. | x(0) = x} = 1
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= Criterion of FT Stability in terms of TPM

A PBN is finite-time stable with respect to x, if and only if

Col {P''} = {x.} (5)

Sketchy Proof:(Necessity) FT stability = x, is a fixed point,
and the solution from any initial state reaches x, with 2" — 1
steps. = (5)

(Sufficiency) (5) =

Px, = P¥'xy = P '(Pxy) = [x., - -+, x.](Pxo) = X,
= x, is a fixed point=- For any ¢ > 2", any x,
P{x(t) = x. | x(0) =xo} > P{x(2" — 1) =x. | x(0) = x} = 1

= FT stability
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i Criterion of FT Stability in terms of STG®

8Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695—

be; 34/115



i Criterion of FT Stability in terms of STG®
P{x(t) =x. | x(0) =xo} =1 Vi>T,Vxg € Ay

8Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695—
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i Criterion of FT Stability in terms of STG®
P{x(t) =x. | x(0) =xo} =1 Vi>T,Vxg € Ay

)
(i) x. is a fixed point
(i) xo = x.  Vxo
(iii) The paths from any x, to x, in G \ (x.,x,) is bounded

18Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695—
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i Criterion of FT Stability in terms of STG®
P{x(t) =x. | x(0) =xo} =1 Vi>T,Vxg € Ay

)
(i) x. is a fixed point
(i) xo = x.  Vxo
(iii) The paths from any x, to x, in G \ (x.,x,) is bounded

)

G\ (x.,x.) is acyclic

@ Note: G \ (x.,x.) is the graph obtained from the STG
G of the PBN by removing the self-loop of x,

18Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020), pp. 695—

699. 34/115



STG G
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Theorem

A PBN is finite-time stable with respect to x, if and only if
g\ (x.,x.) is acyclic.

[zhu, Lu, W.C.Ho (2020)%]

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A Topo-
logical Sorting Approach”. In: IEEE Transactions on Circuits & Systems -Il: Express Briefs 67.4 (2020), pp. 695—
699.

v
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= Finite-time Set Stability
@ Finite-time stability w.r.t. M

< Finite-time stability w.r.t. the largest invariant subset
in M, denoted by 7(M)

& Col{P¥'~IMI} € [(M)

& I(M) # () and the STG has no cycles outside 1(M).
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The STG of a PBN that is finite-time stable w.r.t. M

38/115



Outline

o Stability Analysis of PBNs

@ Asymptotical Stability
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I1.2 Asymptotical Stability
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I1.2 Asymptotical Stability

STG of a PBN that is not FT stable
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I1.2 Asymptotical Stability

0 0050
p_| 0 0050
020 0 0
08 1 0 1

STG of a PBN that is not FT stable
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Definition (Stability with Probability One (SPO))

A state x, € A, is said to be stable with probability one if

]P’{lim x(t) = x. | x(0) :xo} =1 Vxo € Ay

t—00

[zZhao & Cheng (2014)9

4Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1-14.

v
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Definition (Stability in Stochastic Sense (SSS))

A state x, € Ay is said to be stable in stochastic sense if

lim Ex(#;x9) = x.  Vxo € Apn.

t—00

[Meng, Liu, & Feng(2017)9]

aMin Meng, Lu Liu, and Gang Feng. “Stability and /; gain analysis of Boolean networks with Markovian jump
parameters”. In: [EEE Transactions on Automatic Control 62.8 (2017), pp. 4222—-4228.

v
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Definition (Stability in Distribution (SD))

A state x, € A, is said to be stable in distribution if

lim P {x(t) =x. | x(0) =xo} =1 Vxg € Ap.

t—00

[Guo, Zhou, Wu, Gui, & Yang(2019)9]

@Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: [EEE Transac-
tions on Automatic Control 64 (2 2019), pp. 736—742.

V.
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Definition (Stability in Distribution (SD))

A state x, € A, is said to be stable in distribution if

lim P {x(t) =x. | x(0) =xo} =1 Vxg € Ap.

t—00

[Guo, Zhou, Wu, Gui, & Yang(2019)9]

@Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE Transac-
tions on Automatic Control 64 (2 2019), pp. 736—742.

V.

1= These three definitions of stability are equivalent, as
shown latter.

1= The concept of stability in distribution is easily gener-
alized to set stability.
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@ The limitations

—00 —00

do not exist;
@ However, for any x,

010 05
p_| 10002 Jimn [P € A |
~ 1000 03
001 0
M = {6;, 6}

lim x(¢), lim Ex(¢)

—)C()}Zl
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Definition (Set Stability in Distribution (SSD))

A subset M C A, is said to be stable in distribution if

llmP{x E/\/l‘x —xo}zl Vxo € Agn.

—00

[Guo, Zzhou, Wu, Gui, & Yang(2019)9]

4Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: [EEE Transac-

tions on Automatic Control 64 (2 2019), pp. 736-742.

v
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= Criterion of Stability with Probability One'®

]P’{lim x(t) = x. | x(0) :xo} =1 Vxp € Ap.

t—00

19Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1-14. 46/115
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= Criterion of Stability with Probability One'®
IP’{lim x(t) = x. | x(0) :xo} =1 Vxp € Ap.

t—00

x. is a fixed point.(Thus, it is recurrent)
xo — x. Vxo.(Thus, it is the unique recurrent state)

v

x, is a fixed point.
2"—1

Row; [ > P*| =0 (where x, = d},)

k=1

19Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1-14. 46/115



Theorem

A PBN is asymptotically stable w.r.t. x, = 55, with probabil-
ity one if and only if x, is a fixed point and

2"—1

Row; [ > P“] =0 (6)

k=1

[zhao & Cheng (2014)9]

4Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1-14.

v

47 /115



Theorem

A PBN is asymptotically stable w.r.t. x, = 55, with probabil-
ity one if and only if x, is a fixed point and

2"—1
Row; [ > P“] =0 (6)

k=1

[zhao & Cheng (2014)9]

4Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:
Science China Information Sciences 57.1 (2014), pp. 1-14.

v

Note: Condition (6) can be replaced by
Row; (P*71) =0

because the transition probability from any state to a fixed
point is nondecreasing.
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= Criterion of asymptotical stability in distribution
o A Necessary Condition:

lim P {x(t) = x, | x(0)=xo} =1 Vxg € Apn.

t—00

4

x. is a fixed point.
X0 — Xe  Vxo
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= Criterion of asymptotical stability in distribution
o A Necessary Condition:

lim P {x(t) = x, | x(0)=xo} =1 Vxg € Apn.

t—00

4

x. is a fixed point.
X0 — Xe  Vxo

o It is also sufficient.
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Sketchy Proof of Sufficiency.

lim P {x(t) =x. | x(0) =xo} =1 Vxo € Ap.

t—00
T
- O@@r—1)x2n %
t—o0 12/1
T
. FT(I) O(Zn,l) 1
_ t._ X
tlig]o a(t) =1, where P := { o (1 )
T

lim «(2"t) = 1,»_; (By Monotonicity)

t—00
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P(2"(t+ 1)) =P(2"t)P(2") x. is a fixed point.
Xo — X, Vxp

¢ I
a(2'(1+1)) = T2 a(2'0)+(2"). (@) > 0
b Y
n(r+1) = I'(2")n(r) I'(2") is strictly Schur stable

n(t) = a(2') — Ly
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b Y
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Theorem

A PBN is asymptotically stable w.r.t. x, in distribution if and
only if

X, is a fixed point.
Xo — X, Vxo.

Or, equivalently, x, is a fixed point and
Row; (Pzn_1) >0

[Guo, Zzhou, Wu, Gui, & Yang(2019)9]

4Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE Transac-
tions on Automatic Control 64 (2 2019), pp. 736-742.

4
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= Criterion of asymptotical stability in stochastic sense

lim Ex(¢;x0) = x, Vxo € A
t—00
T Ex(t;x0) =P
lim P'xg =x, Vxo € Ay

1—00

Asymptotically stable in distribution
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=z Relations between Different Definitions of Stabil-

ity
()
CEBOWBO
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= Asymptotical Set Stability

lim P {x(r) € M | x(0) =xo} =1 Vxo € Ay

)
lim P {x() e IM) | x(0) =x0} =1 Vxg € Ap.
)
{ I(M) #0
X0 — I(M) VX()

Note: xo — I(M) means x, — x for some x € I(M).
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STG of a PBN that is asymptotically stable w.r.t. M
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== Stability of Markovian Switching PBNs

x(t+1)=Lx o(t) x x(¢)

° x(t) € A

o L € ZLnypom

e o(t) € Ay is a homogeneous Markov chain with tran-
sition probability matrix P, where

pi =[P = P{U<t+ D=dy|ol)= yN}
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@ Define
E(1) == o(t) X x(t) € Apy.
Then, &(¢) is a homogeneous Markov chain.

@ Denote the 1-step transition probability matrix of £(z)
as P¢; that is,

pfj = [P*);; =P {f(t+ 1) = 8y | () = 5£"N} :

57/115



@ Define
E(1) == o(t) X x(t) € Apy.
Then, &(¢) is a homogeneous Markov chain.

@ Denote the 1-step transition probability matrix of £(z)
as P¢; that is,

P i= [Py = P{e(t+1) = Sy | £0) = Sy }

Proposition

The Markovian switching PBN is finite-time (or asymptoti-
cally) M-stable with M = {é), \ J € A} iff &(2) is finite-
time (or asymptotically) M -stable, where

Md:ANxM:{a;'Vxéén\ieu:N],jeAM}. (7)
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@ Define
E(1) == o(t) X x(t) € Apy.
Then, &(¢) is a homogeneous Markov chain.

@ Denote the 1-step transition probability matrix of £(z)
as P¢; that is,

P i= [Py = P{e(t+1) = Sy | £0) = Sy }

Proposition

The Markovian switching PBN is finite-time (or asymptoti-
cally) M-stable with M = {é), \ J € A} iff &(2) is finite-
time (or asymptotically) M -stable, where

Md:ANxM:{a;'Vxéén\ieu:N],jeAM}. (7)

@ How to calculate P¢ ?
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P* = (P'Dy.) * L.

Proof: Take any &b,y = 0x X 0%, by = 0% x 82. Then,
pi =P(o(t+1) = 4, x(t + 1) = &5 | () = 5y, x(r) = %)
=P(o(t+1) = 5,1.\} ’ o(t) = 5’1\1,)
X P(x(t+1) = & | o(t) = &, x(t) = &5)

= [pral], [Lavas], = [(Pah) (Laves)],., ..
_ '(pon N,Q,,]aw) (Lagag)]

2n(iy—1)~+ip

<( B2 ) )5/ 512 2n(iy—1)+i
_ 2" (j1—1)+j2
- (< zn]) ) Oar ]2'1(51—1)+52
[ ( [N on ) ] . (“+” represents Khatri-Rao Product of matrices.)

58/115



= Synchronization of PBNs

Y, = Y3

Master network Slave network
o Master Network:
Z(t+1) =Lz(t), z(t) € Ax
e Slave Network:
yit+1)=Lxo(t) x z(t) x (), z(t) € Apn

@ o(r) € Ay is a homogeneous Markov chain.
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Definition
@ Finite-time synchronization:

P{y(t;y0) = z(t;20)} =1 Vit > T,Vyo, Vz0, Voy.
@ Asymptotical synchronization:

}l}rglo P{y(tv )’0) = Z(t; ZO)} =1 vyOavZ():vaO-
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@ Rewrite the master network as
Z(t+1) = Lz(t) = [1} ® (LDpn )] x o(2) x z(r) X y(1)

@ Define x(¢) = z(r) x y(¢). Then, the coupled network
can be expressed as

x(t+1)=Lx o(t) x x(t)

L= [1;, ® (LZD[zﬂ,zn])} * L
“x” represents Khatri-Rao Product of matrices.

@ Define £(r) = o(r) x x(¢). Then, £(z) is a homogenous
Markov chain with TPM

P¢ = (P'Dyy ) * [15 ® (LDppi )] * L
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Finite-time (or asymptotical) synchronization

r
x(1) = z(r) x y(¢) converges to Mgy,
in Finite-time (or asymptotically)
Msyn:{yznxéjzn j:1727"'72n}

T
(1) = o(t) x z(t) x y(t) converges to Mgy,
in Finite-time (or asymptotically)
Meyn = {04 x & x &, | i=1,2,--- N, j=1,2,--- 2"}
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Consider master BN
zZ(t+1)=Lxz(t), =z(t) € Ax
with n = 2, L, = §,[3 1 4 3] and slave PBN
yit+1)=Lxo(r) x z(t) x y(t), z(t) € Ap
with L = [L,, L,] and
Li=01112112144443123],

L,=0,3333212233431313].

o(t) € A, is a homogenous Markov chain with

., [03 06
F _[0.7 0.4}

”
63/115



@ Define £(r) = o (1) x z() x y(1), then

L = [1§®<LZD[474})] *[L] Lz]
= 0,699910112116161616119 1011
I11111112122151516159119 11].

P¢ = (P’Dpq) * L
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@ Set of Synchronization States:

Msyn = {5;\/ X &én X 5]271

= {5{6‘j€A0}

Ao = {16(i—1)+4(—1)+j|i=1,2j=1,23,4}
= {1,6,11,16,17,22,27,32}.

i:1727"' 7N7j:1727“' ’2n}

@ The largest invariant Subset in Mgy,

I(Meyn) = {8 | j € A == {11,16,17,27,32}}

> " Row,[(P*)’] > 0.

rEAz
Thus, these two BNs are asymptotically synchronized.
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Outline

© Feedback Stabilization of PBNs
@ Fintie-time Feedback Stabilization
@ Asymptotical Feedback Stabilization
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lll. Feedback Stabilization of PBNs

1> Consider a PBCN
x(t+1) =L x o(t) x u(t) x x(t)

o Structural matrix: L € Luy yonim;
@ o(r) € Ay is ani.i.d. random sequence;
e TPM
P=Lxp%=[P,Ps, -, Pou]

Py = P{x(t + 1) = 8 | (1) = &, u(r) = 85 }
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15> Problem: Find a state-feedback
u(t) = Fx(k)

to stabilize a PBN to a point or a subset in finite-time
or asymptotically.
i |f

F — 52m[k17k27 e 7k2"]
Then, the TPM of the closed loop, denoted by Py, is

COlj (PF) = COIJ (ij)
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Outline

© Feedback Stabilization of PBNs
@ Fintie-time Feedback Stabilization
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lll.1 Fintie-time Feedback Stabilization

== Hierarchical structure of the STG of a FT stable PBN

= {x.}
@ = {x | Pa(r+ >_xe<x<f>:x}:1}
= {x| P{x(t+ 1) € Q1 | x(1) =x} = 1}

@ We can always rearrange the STG
into the hierarchical structure for a
finite-time stable PBN.
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How to construct a finite-time stable STG?
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How to construct a finite-time stable STG?
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= Construction of Finite-time Stabilizing Feedback
Basedon[1i, Yang, & Chu (2014)20]

@ Define a sequence of subsets as

Q0 — {xe}
Q= {x|Just P{x(t+ 1) =x | x(t) =x,u(t) =u} =1}

Y ={x|Fust P{x(t+1) € Uy | x(t) =x,u(t) =u} =1}
k=23,

@ If x, is control invariant, then

QpCHHCT---

20Ryi Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272—-1278.
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Theorem

A PBN is finite-time stabilizable w.r.t. x, by a state feedback
if and only if

@ x, is control invariant;
@ There is a positive integer K such that Qg = Apn.
[1i, Yang, & Chu (2014)9]

@Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4 (2014), pp. 1272—-1278.

V.
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1= A finite-time stabilizing feedback gain F can be ob-
tained as follows:

@ Assigning a control effort u(x.) for x, such that
P{x(t+1) =x | x(1) =x.} = 1;

e Assigning a control effort u(x) for every x € Q; \ Q—;
such that

P{x(t+1) € Uy | x(t) =x} = 1.

@ Then,
F = [u(63),u(63:), -+ ,u(65,)]

[1i, Yang, & Chu (2014)2]

21Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:

Automatica 50.4 (2014), pp. 1272—-1278.
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,1,1,2,2,2]x

1,2,2

[

0

u =
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== Finite-time Feedback Set Stabilization

Finite-time Feedback M-Stabilizable

(i
Finite-time Feedback 7.(M)-Stabilizable
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Outline

© Feedback Stabilization of PBNs

@ Asymptotical Feedback Stabilization
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lll.2 Asymptotical Feedback Stabilization

@ Consider a PBCN

x(t+1) =L x o(t) x u(t) x x(t)

e Structural matrix: L € Z%ny yontm;
@ o(r) € Ay is ani.i.d. random sequence;
e TPM

P=Luxp’ =[PPy Pyl

[Pudiy =P {x(t+ 1) = 8 | x(t) = o, u(r) = 4n }
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= Feedback Stabilizability

Theorem

A state x, is asymptotically feedback stabilizable iff
@ x. is a control-fixed point, and
Q x, — x, Vxo, that is,

x] (P x13)" " = 0.

[Zhou & Guo (2018)9]
[Zhou, Guo, Wu, & Gui (2019)Y]
[Wang, Liu, Wu, Lu, & Yu(2019)¢

4Rongpei Zhou and Yugian Guo. “Set Stabilization in Distribution of Probabilistic Boolean Control Networks”. In:
Proceedings of the 2018 13th World Congress on Intelligent Control and Automation July 4-8, 2018, Changsha, China.
2018, pp. 274-279.

bRongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:
IEEE Transactions on Neural Network & Learning Systems (2020), DOI: 10.1109/TNNLS.2019.2955974.

CLiging Wang, Yang Liu, and & Cybernetics: Systems Wu. “Stabilization and Finite-Time Stabilization of Proba-
bilistic Boolean Control Networks”. In: (2020), DOI: 10.1109/TSMC.2019.2898880.

v
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1= Feedback Set Stabilizability

Theorem

A subset M is asymptotically feedback stabilizable iff
Q . (M) #£0, and
e Xo —> IC(M) Vxo, that iS,

S Row, [(P ™ 12m)2”‘1} 0.

Jjeidx(I(M))

[Zhou, Guo, Wu, & Gui(2020)2]

4Rongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:

IEEE Transactions on Neural Network & Learning Systems (2020), DOI: 10.1109/TNNLS.2019.2955974.

4
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== Design of Asymptotically Stabilizing Feedback
e Decomposition of State Space:

Ex={0n|s €06}, ke0:A]
Oy = ldX( (M))a

{J€<U®> ) Z PI><12m]m>0}, (8)
i€O;_1

k=1,2,-- A\

Or equivalently,
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@ For any &, € A,, we define a set of admissible con-
trols as follows:

(
{55,”}2[1),%: 1}, if 8, € =,

. i€E0g
R(0) = 4
{5;”

Based on the construction, under any state feedback

> [Pk]l,.>o}, if &, € 2,5 > 1.

€O

u(t) = Kx(r)
satisfying, for all j € [1 : 2"],
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@ An Algorithm [zhou,

Algorithm 1 We assume that that the PBCN (8) is asymptoti-
cally feedback M-stabilizable in distribution. We determine
the feedback gain matrix K* = dom[r] 73 --- 73.] that
maximizes J (5., u),i € [1:2"].

Input: The one-step CD-TMP P* = [P} PY ...
A+ 1 layers {Zx|k € [0: A} with

Ep={0n]s €0} kel0:A]

PY..], the

Output r 7[ ry -

cr=[00--- 0, 7*(()

on
2: for all i € Oy do
e{r T Pr=t
€O

3 JH(Gh) =1,

and [r]; = r}

22Rongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”.

Guo,

(IR

10:
e
12:

Wu, & Gui (2020)22]

: end for
: if n < A then

for all i € ©, do

J*(d5n) =max Z *(85n) [P},
SE€EO, -1

rj € argmax Z J*(50) [P
SEO, 1

and [r]; = r}
end for
n=n+1

else
break

end if

3: return r

IEEE Transactions on Neural Network & Learning Systems (2020), DOI: 10.1109/TNNLS.2019.2955974.

In:
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== Application to Output Tracking

We consider PBCN with g output nodes
{ x(t4+1) =L x o(t) x u(t) x x(t) (9)
y(1) = Hx(1)

where y(t) = xL,y;(r) denotes the vector form of the
output variables and H € %y on.

Definition

We assume that that y* = 65, € A, corresponds to a ref-
erence signal. The asymptotical feedback output tracking
problem of the PBCN is said to be solvable if there is a
state feedback u(r) = Kx(r) such that, for any initial state
X05

lim P{Hx(t) = y*} = 1. (10)

1—00

o
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Theorem

Suppose that o(t) is an i.i.d. process with the probability
distribution vector p°. We define a sequence of index sets
as:

Ao = {j|H®, = 8},

AS = {] S As—l du = 6§n, S.t., Z [Pk]iJ = 1} o
i€A3,1

s=1,2,-,

We denote the smallest integer by n such that A, = A,4,.
Then, the asymptotical feedback output tracking problem
is solvable iff

Z Row;(L x p? x 1pm)% 714l w0 (11)

ieh,,
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@ controliability of PBNs
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IV. Controllability of PBNs

== Consider a PBCN

x(t+1) =L x o(t) x u(t) x x(t)

e Structural matrix: L € Zny yontm;
@ o(t) € Ay is an i.i.d. random sequence;
e TPM
P=Lxp7=[P,Py, -, P

[Py =P {x(r+ 1) = 8 | x(t) = &, u(r) = &4 }
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== Definition of Controllability

Definition (Finite-time Controllability)

A PBCN is controllable if, for any pair of states (8., d.),
there is a control sequence u and a positive integer T such

that
x(0) = 8 | = 1.

P {x(T) =5,

[Li & Sun (2011) 9]

4Fangfei Li and Jitao Sun. “Controllability of probabilistic Boolean control networks”. In: Automatica 47.12 (2011),
pp. 2765-2771.

v
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Definition

A PBCN is controllable if, for any pair of states (4%, ),

there is a control sequence u such that
P {x(t) = &}, for some ¢ > 1 | x(0)

[Zhao & Cheng (2014)9]

@Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:

Science China Information Sciences 57.1 (2014), pp. 1-14.

= én}:L

v
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= Criterion for Controllability

Theorem

The PBCN is controllability iff
R > 0,

where
2n—1

R = Z (P x 15n)
k=1

[Zhao & Cheng (2014)9]

4Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”. In:

Science China Information Sciences 57.1 (2014), pp. 1-14.

4
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== Criterion for Finite-time Controllability

Theorem

The PBCN is finite-time controllable if and only if for any
pair of states (xy, x,), there is a positive integer s such that

x4 € Col ((PW[Qngm])sxO)

[Li & Sun (2011)9]

4Fangfei Li and Jitao Sun. “Controllability of probabilistic Boolean control networks”. In: Automatica 47.12 (2011)
pp. 2765-2771.

v
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Sketchy Proof:
x(t+1) = Lu(t)x(t) = LW omx(t)u(t)

4
Ex(t + 1) = PWpn om Ex(#)u(t)
U

Ex(s) = PWpiomEx(s — u(s — 1)

= (PWpom) x(0)u(0)u(1) - u(s — 1)
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iz Relations between Definitions

e Finite-time controllability implies controllability;
e The reverse is not true.

Consider a PBCN with a state node and an input node and
P= [P] Pz], where

10 05 1
Pl:[o 1]’ PZZ[O.S o}'

(@) u=63 (b) u=d2.

v
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@ This PBCN is obviously controllable because the TPM
is completely connected under u(z) = 65.

@ However, under any control sequence, the n-step TPM

1 1\k 2 2 2 1\k
X A
33X (=3 §x(=3)+3

where k the number of 43’s in the control sequence. It
is easy to verify the following:

_ 11 1
P == —x(—=F<05<1.
Py =5 —3 x (—5) <05<
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6 Observability of PBNs
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V. Observability of PBNs

{ X+ 1) = L x o(f) & x(t)
y(t) = H x x(t),

@ x(t) € Agn, ¥(1) € Agg;
@ Structural matrix: L € Buyno, H € Lraxom;

@ o(t) € Ay is ani.i.d. random sequence with PDV p?;
@ TPMP =L x p°

@ For convenience, we denote the state trajectory over
[0 : 6] starting from x, by

x(0;0,x0) := [xo x(1;0,x0) -+ x(0;0,x0)]
and the corresponding output trajectory by

¥(0;0,x0) = [y(x0) ¥(1;0,%0) --- ¥(0; 7, %0)].
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= Definitions of Observability

Definition (Finite-time Observability in Probability (FTOP))

A PBN is said to be observable in probability on [0 : 6] if,
for any two distinct initial states xo, xo € Ay, it holds that

P{y(0; 0,%0) # y(0;7,%)} > 0. (13)

A PBN is said to be finite-time observable in probability if
there is a non-negative integer ¢ such that it is observable
in probability on [0 : ].
[Zhao & Liu (2015)9]

4. Zhao and Z. Liu. “Observability of probabilistic Boolean networks”. In: Proceedings of the Chinese Control
Conference, 2015. 2015, pp. 183—-186
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Definition (Finite-time Observability with Probability One

(FTOPO))

A PBN is said to be observable with probability one on
[0 : 0] if, for any two distinct initial states xo, Xo € Ag, it
holds that

P{y(0;0,%0) # y(0;0,%)} = 1. (14)

It is said to be finite-time observable with probability one if
a non-negative integer 0 exists, such that the PBN is ob-
servable with probability one on [0 : 4].

[Zhou, Guo, & Gui (2019)9]

4Rongpei Zhou and Yugian Guo. “Set Stabilization in Distribution of Probabilistic Boolean Control Networks”. In:
Proceedings of the 2018 13th World Congress on Intelligent Control and Automation July 4-8, 2018, Changsha, China.
2018, pp. 274-279.
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Definition (Asymptotical Observability in Distribution

(AOD))

A PBN is said to be asymptotically observable in distribu-
tion if, for any two distinct initial states xy, xo € A, it holds
that

lim P{y(t;0,x0) # y(t;0,%)} = 1. (15)

t—00

[Zhou, Guo, & Gui (2019)7]

4Rongpei Zhou and Yugian Guo. “Set Stabilization in Distribution of Probabilistic Boolean Control Networks”. In:
Proceedings of the 2018 13th World Congress on Intelligent Control and Automation July 4-8, 2018, Changsha, China.
2018, pp. 274-279.

v
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FTOP
AOD

Figure 1: The ellipses labeled with FTOP, AOD, and FTOPO
represent the set of PBNs that are observable in the sense of
FTOP, AOD, and FTOPO, respectively.
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Definition

GivenatimeinstantT € Z., a PBN is observable in [0, 77 if,
for every admissible output sequence y(0),y(1),...,y(T),
it is possible to uniquely identify the corresponding initial
condition x(0). The PBN is observable if it is observable in
some interval [0, 7]

[Fornasini & Valcher (2020)7]

4Ettore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: I[EEE Control Systems Letters 4.2 (2020), pp. 319-324.

v
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Definition (Weakly Reconstructibility)

Given a PBN and atime instant T € Z, , the PBN is weakly
reconstructible in [0, 7] if for every admissible output se-
quence y(0),y(1),...,y(T), there exists 7 € [0, T] (depend-
ing on the specific output sequence) such that the knowl-
edge of the output samples y(0),y(1),...,y(7) allows to
uniquely identify x(7) € Ly. The PBN is weakly recon-
structible if it is weakly reconstructible in some interval
[0, T).

[Fornasini & Valcher (2020)7]

@Ettore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: IEEE Control Systems Letters 4.2 (2020), pp. 319-324.
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Definition (Strongly Reconstructibility))

Given a PBN and a time instant T € Z,, we say that the
PBN is strongly reconstructible in [0, 7] if, given any admis-
sible output sequence y(0),y(1),...,y(T) € Lp, it is possi-
ble to uniquely identify x(T) € Ly. The PBN (3) is strongly
reconstructible if it is strongly reconstructible in some inter-
val [0, 7.

[Fornasini & Valcher (2020)7]

4Ettore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: I[EEE Control Systems Letters 4.2 (2020), pp. 319-324.

v
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IF [Fornasini & Valcher (2020)23]

Proposition 1: Given a PBN (3) and a time instant 7" € Z.,
Observability Matrix let 01,00, ..., og, where R = M7, be all the possible distinct

sequences o (1)t € [0, T — 1], taking values in [0, M]. The
PBN is observable in [0, 7] if and only if for every choice of

H the indices 7, j € [1, R] and h, k € [1, N], condition Oy, 7 8‘{(, —
HLg (0 Oy, 1 8 implies h = k.
Op1 = HLo (1)L () If all columns of the matrix
: Or =[Oa.1 Oyt - Ogur] ©
HLg(r-1y -+ Lo(1)Lo ) are distinct, then the PBN is observable in [0, T] (and, in this

particular case, one can identify from the output observation
also the sequence o;).

23Ettore Fornasini and Maria Elena Valcher. “Observability and Reconstructibility of Probabilistic Boolean Net-
works”. In: I[EEE Control Systems Letters 4.2 (2020), pp. 319-324. 107 /115



== Observability Analysis Based on Set Reachability

Definition (Finite-time Reachability)

Assume that M,, M, C A, are the initial and target sub-
sets, respectively. M, is said to be reachable with proba-
bility one from M, on [0 : 6] if, for any initial state xo € M,
it holds that

P{3k € [0: 0], s.t. x(k; 0,x0) € My} = 1. (16)

M, is said to be finite-time reachable with probability one
from M, if there is a 6 such that M, is reachable with
probability one from M, on [0 : 6].
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Definition (Asymptotical Reachability)

A target subset M,; C A, is said to be asymptotically
reachable in distribution from an initial subset M, C A,
if, for any initial state x, € M,, it holds that

lim P{3k € [0 : 7], s.t. x(k; 0,x9) € My} = 1. (17)

t—00

v

109/115



@ Parallel Extension:

ln
PBN -
X(t+1) =L x o(r) x X(1) x |1
y(t) = HX(t) Duplication Y
fo

@ Interconnected Network:

Define (1) := x(t) x x(2), n(t) = y(t) X ¥(t), o¢(t) :=
o(t). Then,

{ £(t+ 1) = Leoe(1)&(1)
n(t) = Hel(t),

Le = LWy yoLWinon noy Wi v M v, (18)
HE _— HW[2q72n]HW[2n,2n]7 (1 9)
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@ Distinguishable Set:
Gn = {x x X|Hx # Hx}.
@ Initially Indistinguishable Set:

G 1= {5; ” 5@1( Col;(H) = Col;(H) and i < j}.
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Proposition

(a) The original PBN is finite-time observable with proba-
bility one iff the subset Gy is finite-time reachable with
probability one from Gy for the interconnected PBN.

(b) The original PBN is asymptotically observable in dis-
tribution iff the subset Gy is asymptotically reachable
in distribution from G for the interconnected PBN.

V.
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e Questions
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= Are there other reasonable ways to define controllabil-
ity and observability of PBNs?
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=

Questions

Are there other reasonable ways to define controllabil-

ity and observability of PBNs?

If your answer is “yes”, what is the difference between

the existing definitions and yours?

If one of your definitions tells a different story, find a
sufficient or even a necessary and sufficient condition.

Now you are ready to write a paper and publish it.
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Thank you!
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