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CIRNAEERE T FII2E R

» W. Zhang and B. S. Chen, On stabilizability and exact
observability of stochastic systems with their applications,
Automatica, 40(1), pp.87-94, Jan. 2004

» W. Zhang, B. S. Chen. H-Representation and Applications to
Generalized Lyapunov Equations and Linear Stochastic
Systems, IEEE Trans. Automatic Control, 57(12): pp. 3009-
3022, 2012.
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L1 R . gRgRmER

PRI T T o AREEE D T

X(t)= AX(t), x(0)= x, (1.1)

BATE IR BB E R
EHL 1 (Hurwitz 22D . RGE (1) RENLREN T LEFMFRERE A WTE
FEEEGE AT WAL EFEA, B

lim_ x(t)=0<= c(A)cC

t—o0

ZHL Lyapunov ERZ V(x) = Xx'Px U] F Lyapunovi& SE LB, 7R A,

SEHL 2 (yapunov EH) . R4 (1) REHERERN RS VLESRMHR T Lyapunov

2 PA+AP=-Q, Q>0

B¢ Lyapunov A
BIEREMEFE P>0

PA+A'P <0



- — mnmenms

WEL LOREEEL 1 AMEHL 2 BRESL () FEREENAS LELE, HEX
FAERGE, NTZEIREH R B S ARBHF R BETHS,

> NG HENARZRGERREHZETNS, EHL 1 ENEHEHR, BEMUE
WRATRSG (1. 1)RABHINERE, WHEBD A HFIEEEELEEEFHER ARG
B, BATKAET AN RS (1) FIRSOERE. TEHE 1.2 JAgEEIRERAN]
RARBEHIEIE .

> 4%, H Lyapunov RBTEMERMBETAEERERARNZRSA,
R IEE VR R . T HREXT TR M2 RS

X(t)= A@)x(), x(0)= X,
FHIEE TR R R
u(t) = Kx(t)

> EH 1.1 2AEHERRAREX—FHRERM. rERSEERIK
B R RERNEK , FHHRERERE (A+BK) R EEIEF 2R FETE
R n AK AL A A, B o(A+BK)={4, 4, 4, }


HP
高亮


L3 BEMHIT . gRgRmER

Hig IFAHER: R A KHMEEAFR THEEMBRZ, R4 (1.1 ik

SUEBERRR, B SR R A SO B R R
Bl 1.1. FRETFI X -RGEM X, -R4G:

001 0 05
Xl(t):{ ; _Olz}xl(t), xl(O):{O.B}

5 0 05
Xz(t):{o _sz(t), xz(O)Z{O.:J

B, X -RENRLEELER, FNigoEEE®S. Fig.1 M Fig.2 1
RGURZS M B £ R R T XA ESE,

PE L2 WFRERS X()= Ax(®)+Bu(t), x(0)=x,, ATHIEEKKSGE
B, PLZRyE TREREHTHRSLE.



L3 BEMHIT . gRgRmER

05 T T T T T T T T T 05
0.45 045F
04r 04
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0.05F

\
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Fig. 1 X — R GRS N i 28 Fig. 2 X Z GRS N i 2%



1.3 B%!

T . gRgRmER

TR b LR T A b o i L IX 3

Ay Ay Ay

><V

“a [0 X —[ /—a 0
% C,l

NN

17 T X 45 R X 45 EEPIARSE
» M. Chilali and P. Gahinet, “ H_design with pole placement
constraints:An LMI approach, IEEE Trans. Autom. Control, vol. 41, no.3,
pp. 358-367, Mar. 1996.
» M. Chilali, P. Gahinet, and P. Apkarian, “Robust pole placementin LMI

regions,” |EEE Trans. Autom. Control, vol. 44, no. 12, pp.2257-2269,
Dec. 1999.



1.4 Hautus- 23118 . gRgRmER

EF 1.3 (T. Kailath, Linear Systems, 1998) . % F3PIRS-HH RSt

{x(t) = AXx(t), x(0) = X, (1.2)
y(t) = Dx(t)

(AH) 22U LEFZMFRAGAEZTERNESeC, BH1eC, T
YRR AT
Af=1E DE=0,1eC.

(AH) 2 5EaRefill i) 728 o0 W EFM AR R S eC”, FH(Re(1)20, {fTF
BT R BT

AZ = A& DE =0, Re(1) > 0.
PRAES: T 1.3 & 582 Re AR AT I R R AR A, A R s LR i B 1)
PROEZCRES . BeAa I A2 RE A 14 BE 55 L



L 4 B RS IE I . gRgRmER

B 1. X5 NAILIERENLN AAL Ito 558, WAL S e 3L A B B R AL AR
FRERIEFIIE? (AR TREER )

dx(t) = Ax(t)dt + Cx(t)dW (t), x(0) = X, (1.3)
FLARW (t) & bR 7 Wiener i 2.

ARE 2: X FIBEHLIRAS - 7R
{dx(t) = Ax(t) dt+ C x(®)dW (t), X(0) = X, (1.4)
y(t) = Dx(t)
R A B LA R RE AU 4 BT Hautus- 78 ) 4 Fe A4 2

ARE 3. WAl 2 i e CEEALIE S RS S BCE (pole placement) ©

dx(t) = [Ax(t) + Bu(t)]dt +[Cx(t) + Du(t)]dW (t), x(0) = X, (1.5)



B H#5

EFERAREENH



2.1 Hh BRI ZORTMBARNEA

EX 2.1, RENAZRRS

dx(t) = Ax(t)dt + Cx(t)dW (t), x(0) = X,
RWL e e KEEAR (A, C) BIGER), B
E[x@)]" =0

lim

t—o

SEX 2.2. (Zhang and Chen, Automatica, 2004) &% iR R4, &N~ X

Lyapunov EF4IF ( ”(”; D_ i) .

Lyc: XeS"—= AX + XA'+CXC'eS"

H, S" BRMWHREMES.

EHE 2.1, (AC) REEHASVEFRMR o(Ly)cC.

FIH)™ X Lyapunov HF L. , T RASI#EHTHIFE € e X

SEN 2.3 (AC) RIEFRBER, WHR o(L,)cC® (HMAXREFH) .
PRE 2.1 @it 5137 X Lyapunov HF, 837 5% # 1.1 HFETHRE L.



. 2.2 WRAETMAAE M E [ BRSO L

X 2.4 (Gk4kds, WYL KRFREZALC, 1998; Liu Yazeng, WHRKZFEE LR

3, 1999) . RERNAZ RS
dx () = Ax(t) dt+ Cx(H)dW (1), x(0) = X,
{ y(t) = Dx(t)
~RAEHEEM (exactly observable) FIERfFR (A,C|D) RIEHREE, =ig
y(t)=0,as.,t€[0,T],VT>0=x,=0

EX 2.5. (W.Zhang, etal, IEEE TAC, 2008) (A,C|D) R¥&#gekaM (exactly
detectable) KJ, Ei&

y(t)=0,as.,te[0,T], VT >0=lim,__ E | x(t)|f=0.

SEH 2.2. (Popov-Belevith-Hautus #|#E) (A,C|D) 2A&HH BB 78 43 b B kA4 =2
ANFEIEFR X fE AL

L,c X=AX+ XA"+CXC'=4AX,DX =0,4€C


HP
高亮


. 2.2 WRAETMAAE M E [ BRSO L

SEH 2.3. (Popov-Belevith-Hautus #[#&) (A,C|D) 2A&HH BRI i) 78 43 b B %44
—ANFEIEER X 46K AL

L, X=AX+XA+CXC'=1X,DX=0,Re(1) =0.

SR T R R B (B X 2.4), HAMZEEHEEGIANT RBob—re X GBI gkt
SHE) , FRABENLRERLMIPE (stochastic detectability)

SEX 2.5 (T.Damm, 2004, V.Dragan, etal,1997) . (A,C|D) #RANEFEHL AR
), WRAFE ALK, 2

dx(t) = (A+ KD)x(t)dt + Cx(t)dW (t), x(0) = X,
ML TR ER .
FAEE 2.3, RATATLIER: (A CD)KIEMARKMIM:, BEPLAERIIH: LK
(AD) Wil (ZREgEmltE) , BFTFIEEXEA:



. 2.2 WRAETMAAE M E [ BRSO L

& [ (A.C|D)tEfRER M ]
% [ (A.D)STERERM ]

[ (A,C|D)FEHL gE#&M ]

{BZ (A,C|D) H5fAgell 5 (A, D) T2 ERMZ BN FEE I XA



. 2.2 WRAETMAAE M E [ BRSO L

Bl 2.1. BUER: A C,DINF:
1 0 1 1
A{ },D:[O 1],@:{ }
0 0 1 1

MF A 2.3-PBH H#E, ZHHIE (ACD) RIEFERNN. R, 255%KiE
AREMEM K=[k k], ff (A+KD) & Hurwitz %8¢ (FaesEkE) , Hik
(AD) FEFEEREARN T

B 2.2. BUERE A C,DIATF:
A=-1,,, D=[0 1],C=2l,,.

BT ARBERFER, B FEMKIFER D, (AD) 2EEmkuie. E-FH

PBH HJ1E, T EAEERIME X :{1 0},122,% (ACID) JEHEHIEEH

‘ 0 0
ME
L, X = AX+ XA+ CXC'= 21X, DX =0, Re(2) > 0.



. 2.3 MABSKAERMER (e SR BAIR L

EN 2.6. —Fr#E Lyapunov F8%%:

L, =lim,_, sup[¢log E || x(t) ]

EF 2. 4.(Zhang, Xie, IEEE TAC, 2009) #
o(Lyc)={A:-B<Re(d)<-a,a,p>0}

i
(i) RS

dx(t) = Ax(t)dt + Cx(t)dW (t), X(0) = X,
RIEEHHTREN, WSCEEL O “ kR, K o) 1&.

(ii) —,6' < Li <—a, Li = maxlsiSn(nJrl)/Z Re(ﬂ’.) .



. 2.4 BHARGHRARE TOWTFMEARINA

FEDL R S
dx(t) = [Ax(t) + Bu(t)]dt +[Cx(t) + Du(t)]dW (t), x(0) = X,
HItRk R E Z EREE X ?
X 2.7 FEXNEPEERER (D2 AR 4,4, Ay BATERAT AREB]— AR5
WRFERE K, EARETHIE
LK pcp: X €S" > (A+BK)X + X (A+BK)'+(C +DK)X(C +DK)'eS"

T /2
O'(L A,B:C, D) {ﬂl Ay n(n+1)/2}



. 2.4 BLRGNBARE TOWTFMEARINA

B, Lhieco KIFEHEETR

Lo p: X €S" > X (A+BK)+(A+BK)X+(C +DK)'X(C +DK)eS"

X 2.8 BATHRA REEVZER KRG — DA T BBEE, WREEFEFHX cS”
, FEXMEM B R B MR K, #f5

L};,B;C,D (X)=4X, A I—}:B;C,D(X) =AX.

e 2.5, A BR—PMAABIINEN RS DEZHRGFEEZENX cS", TIHFH
FE 3 [F B AL
XA+ A'X +C'XC =X,
XB+C'XD =0, (2.1)
D'XD=0



. 2.4 BHARGHRARE TOWTFMEARINA

TE: B (L) O BENLRGAONAERLN, SRIEIHR (A B;C,D) RAERAM.

BAAE: FEELERSE (A B) BRBHNASVEFZMAR L, AUB3HHEARE
EEEFHEA. FEAETFEHBILRFZ S RARIL,

%l 2.3. BR—HERLE. B D=0, MAFEEFHX=0 L (2.1), HED=0
BB T, REAPFESABINLE. RARERWAS LEFRGFR

B*+2BCD-2AD’ >0, (2.2)
B8R, 2.2) AAFEHTD=0.

MR ERAN EEREEEN T (A+BK) HIRHLERBESIE, EREHIASER
HEIRBEIEIRZMET, Laoco WBHRRERRE. 6] 2.3 REHANEEN, #
RIENREREE, FA

o(Lhpep)=422A- 20 4 C?

é )

» S.Peng. Backward stochastic differential equation and exact controllability of
stochastic control systems, Progress in Natural Science, 4, 274-284, 1994.

se—————————————————————————————————————————————




. 2.5 "R Riccati 8 TOWTFMEARINA

BEHLLQ SR XAREL Riccati FHHE:

PA+A'P +C'PC +Q—(PB +C'PD)
(R+D'PD)*(B'P +D'PC) =0,

R+D'PD>0 (2.3)

£ 29 PeS" FRAR (23) WIRBEERIE 0(Lisco) cC; FRNRBM (
strong solution) & (LK p) T

A

PFE: de Souza (Systems and Control Letters, 14, 233-239, 1990) A o(A+BK)c C~
ReX (2.3) HiFafE, XRHIRK, UH EBRERETEZ BRI E .



. 2.5 "R Riccati 8 TOWTFMEARINA

w26 (HUBEH) . % (AB;CD) ggfaly, (QR)eS"xS" . % P RS
MXAE Riccati FFERSEXTFRAR

PA+A'P+C'PC+Q—(PB+C'PD) (2.4)
(R+D'PD)*(B'P+D'PC) =0,
R+D'PD>0

g R=RQ2Q, W/~ XA¥ Riccati H#2 (23) H— B AMP P>P.
TiE, P R—AEMR.
B REBRR R,

f

»W. Zhang, H. Zhang, B.S. Chen. Generalized Lyapunov Equation Approach to State-

Dependent Stochastic Stabilization/Detectability Criterion, IEEE TAC, 53(7), 1630-1642,
2008.

—
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. 3.1 % (background) EOHRRHARKNA

Bn%t SDE
o dx(t) = Ax(t)dt +Cx(t)dW (t), x(0) = x,
X (t) = E[Xx() x(t)']

}Eﬁ Ito /A.\:_CE’

X(t)=Lye (X)=AX(t) + X(t)AT +CX(1)CT,
X (0) = X, X, -

Xt LIRS FRFERE S FE, FIH Kronecker FREW, W UMEAE|TAIKRELE:

X(1)=[A® 1 +1®A+COCIX(t), X (0) = x, X (3.1)

B 3.1. A& (B.1) RIMRENKEREE?

FRE 3.2, WK (3.1 BUN—IMIRERLRERS?



. 3.1 % (background) EOHRRHARKNA

& 3.1 BE%: No. (3.1 AR—AIHERNEERS. A, HELKER
FHIE XA A?

BAI5I FH T HIBA K Definition 3.1 WIF:

» W. L. Brogan: Modern Control Theory, 3rd, 1990.

“The state variables of a system consist of a minimum set of parameters

which completely summarize the system’s status”.



. 3.1. #R (background) EOHRREARIEA

Bl 3.1. &
1 2 1 t
A= ,C= 0 ,X(1) = () ,
11 2 2 X, (t)
mj
X(t){ SHE) E[xl(t>x2(t)]Hxn xﬂ}
E[XZ (t) Xl (t)] EXZ2 (t) X12 X22
(1 0 2 0] (1 2 0 0] (1 0 0 0
0 1 0 2 1 1 00 2 2 0 0
A® I = A QA= ,C®C = :
1 01 0 0 01 2 2 0 2 0
01 0 1] 0 0 1 1] 4 4 4 4




. 3.1. #R (background) EOHRREARIEA

B TR (3.1) &R

X, (1)
X5, (1)
X12 (t)

| X22 (t)_

Xi-
[l
o NN O

A W w w
o O &~ DN
o A O DN

REERMNM-TRE, EhERA -, BAR_NE=TRSZEMFA

!



. 3.1. #R (background) EOHRREARIEA

#l 3. 2.

w1 0 0 07 x,]

X, |0 10 0 x|
- 0 -1 0 0| x, '
X12

“1 1o 0 0 1] xy,)
_X22

Oeo(A),but !im x(t) =0.

Zi1R:  Hurwitz F2RE AR DU R AE L 1 R G AL !



. 3.1. #R (background) EOHRREARIEA

Fis F, D.L.Kleinman (IEEE TAC, 14(4),1969) 5 248 24 SR #ii\ H(3.1) B R B4E P

I'=[A®I+1®A+C&®C]
—EH BRRHEME, THRREREHX—KS2ERE.

-3 1/2 2 0
A: ) C — '
BRI

& 48%1 (Zhang and Xie, IEEE TAC, 2009)

% 3. 3.

o(0)={-3+i,-3—i,-2,~4}
®’A BERRHEE !



3.1. HR (background) EOHRREARIEA

FAIMRIER, HSEE EEH 2.1,

(AC)FBE < o(l,.)=C,

HAEZ,
G(LAC) {ﬂ1 /1 n(n+1)/2}
o[A® 1 +1®A+C®CI={A, 4, s a1 423
I H, o(Lpc) co(A® 1+ 1® A+ C®C)
i1 R«

(AC)FaE = o(AR I+ I®A+C®C)cC?
C=01BERIEMK], C=0, 25 HARBHRH . TR L2 BB 4R H .



. 3.2. B-RFEAR _

NTEZERZ 3.2, Bl IEisERLERS
X () =[A® 1 +1®A+CRCIX(t)

ARG, 513 H-RABAR:
B X2—A4 p-4ERTFEER, €88, & X K—dE, N
X :Zp:xiei.

R X ZLERE, W x eR ; MRXARERE, WX ecC. M ERTENEER (
KB, A

X
[l
1
<P |
NE
=P |
| I
[l
I
>

EX 3.1. HXFRAR X K H-Fx.



_ 3.2, B-RFREBAR _

Bl 3.4 X=5%, “HYRHRERERE. BX=(x,),,cX, W dim(X)=3, iz

W
{1 0} {O 1} {O O}
el: ’e2: ,e3:
0 0 1 0 0 1

W X =HX BRTWAT:

X, - 1 0 0
o X, | o “u 010
X=| ’X:X”’H201o'
12
X
| % | - 0 0 1




. 3.2. B-RFEAR _

%] 3.5. X=S7?2, ZHrRXNFREREZNE. W X=(X;)50 € X, Mdim(X) =1, AR

FHINTF:
S
€= :
10

W X =HX HBRTWAT:

0
> X . 1
X=| "2 [,X=x, H-=
— Xy, -1
_O_ _O_

AILAMERR: XH{E(ZsE] X, H ZEREE 5 mTRAY.



. 3.2. B-RFEAR _

AN H-R ] LS eI LR R 4
X (1) =[A®1+1®A+CRCIX(t)
AR RS -
HX (1) =[A® | + 1 ® A+C ®CJHX (t)
EXZERUH,
H'HX =H'(A® 1 + 1 ®A+C ®C)HX,

BT HIHE, (H'H) 7%, BT

(X =(HTH)*HT(A® | +1 ® A+C ®C)HX
i =H'(A®1+1®A+C®C)HX =HX,
| X(0).

(3.2)




. 3.2. B-RFEAR _

XHEBRNTBAIERRER LIRS 3. 1) BN ERZE RS (3.2) . 7E(B.2) H,
H*=[H'H]'H" & H ) Moore-Penrose ¥,

H=H"(A®1+1®A+C®C)H.

EE 3.1, (1) (A0 REREMASVLERMR oc(H)cC , B AR

”(“2+1>x”<”2+1> WAERE. (11) o(F) =0 (Lac). (T AR R R R A A A D)

PHE: A H-RaGoR T BURHR 2 BN 1 SR N R PE R SR . R
E_riERErE. HRARGRRNE. RRRNPEE.



. 33 mmz—: dawERe [ENISEREARSRRTL

® H-RRBRT LA TIRK MR F R ERNERE MR, R TERRXE:

» X. Zhao. F. Deng. Moment stability of discreat stochastic systems with time-delays based
on H-representation technique, Automatica, 50(2), 530-536, 2014.

» X. Zhao. F. Deng. Moment stability of nonlinear stochastic systems with time-delays based
on H-representation technique, IEEE TAC, 59(3), 814-819, 2014



(33 BAZZ: "X Lyapunov 7572 [EEHERORBOA Bt

® H-FRRHFEATFLUATHZT X Lyapunov F57z:

PA+A'P+C'PC =-Q. (3.3)
YRR B E

%TW%ﬁ?‘ LA,C 5'[‘: &'ﬂ\]ﬁ:glﬁ_‘/l\}iwﬁ\ﬁ? L_A,C ﬁﬂ-F:
Lic:X €S AX + XA+ CXC'

H =H (A®Il+I®A+C®C)H_

H & XeS"HK H-RRER.

SEHE 3.2, XFARMIXTFRAERE Qe S”, I~ X Lyapunov 772 (3.3)8 ME— X R MR T 5 b
BEXMHR: O¢ O-(LA,C)'



(33 BAZZ: "X Lyapunov 7572 [EEHERORBOA Bt

SEHE 3.3, MTAEMRIIFRERE QeS™, X Lyapunov JFEH ME— AR T80 14
BEEMR: 0eo(L o)

WiE: Ogo(l,)/0go(l,c) 4T det(H)=0/det(H ) =0, FIRMIEQeS,(QeS.,)
WL T X Lyapunov 7572 (3.3) AME—HIXIAR CRXSFR) M. (R MRS HAHERRF Al
RN

tFH:  W. L. Brogan ( Modern Control Theory, 3rd, 1991 ) ¥r=: R , MOes,
Lyapunov 512 (3.3) HEMBU—x XM, T HEREHEHIX—¥ S 25 1RH .



(33 BAZZ: "X Lyapunov 7572 [EEHERORBOA Bt

$13.6. RAVTREFLHMHE Lyapunov 572, BIC=0, Q=0 , 1
0
A= ,
0 -1
{ 0 xlz}
P = ,
X,, 0

X, =Xy, P e SZ; M X,=—Xy ,PeS?; HABHT, P BABTHHREREBABT
B FREERE

HUABSHER B 2R



33 mRZE: mERGHRRt SRR RGO
THIRERIRANRMIERER R (A R,

(dx(t) = At)x(t)dt + C (t) x(t)dw(t)

X(0)=x, € R" (3.4)
LY(t) = D(t)x(t)

N

SEX 3.2. RB(AFERA t, e RZREEMAT, WIRFAE A FREIE[E XA

[t,.t] » t,>t, ZYy(t)=0as.,= x(t)=0,as.,

MR RGER I t e RERBUK, WRGERTERUH.

AMA =R, WLVRBENLARSG (3.4) KRR RN E TR R R G HIRT 5T -

{)?(t) =H(@®)X (), Ht)=H (A®)® 1 + 1 ® A(t) + D(t) ® D(t))H,

~ g (3.9)
Y (1) = N ()X (t), N(t)=H"(D(t)® D(t))H.



3.3 mAZE: MERGMERNE [ ETRSGSEARRRE L
4 O(t,t) R HERNZE RS (3. 5) IREFEHEHEIE, B

d)(t’to)zﬂ(t)q)(t’to)i Dty ty) =1

EH 3.4, FEVLRNZERRSIE L REEMK RS LEZMG_RFEL >, #f Grammian FERE
W(t, )= @ (t,1) N(O) NOD(L, t,) dt
IEw 71, B NIEEH .

W (t,t,)

#EiR: JRAG. HARARREGH, RARTERME CBRHEERK) 7B BEK

(P R,
Rank(A)=n(n+1)/2,

A=[N' (NH)' .. (NH"23)]



H-Ros SR e — M TR, "ERETSIGIELEBEAL % H] i) e AL vt e I R 4t
R AT KA, TR LTS 0 A E8 B 4518, ok, AMUR T3R5 1,

HAMAG R4 A B HITURE, SR HGER, R4S A . ik, &

M1 H-Ros AR EFR L B R BR 2R, IR ORIE 5T p-Bir B B9 RS TR AN p-Fr ke 1 e
WAL -

~ )
» H. Zhang, J. Xia, W. Zhang, et al. pth moment asymptotic stability/stabilization and
pth moment observability of linear stochastic systems: generalized H-representation,

IEEE Trans. TSMC, accepted for publication.
—
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An iterative algorithm to solve state-perturbed stochastic algebraic Ricca
equations in LQ zero-sum games

Yantao Feng®*|Brian D.O. Anderson £

a School of Engineering and Information Technology, The University of New South Wales
b Research School of Information Sciences and Engineering, The Australian National University, Australia
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[18] B.S. Chen, W. Zhang, Stochastic H,/Hs control with state-dependent noise, = 47k 2 .
IEEE Trans. Automat. Control 49 (1) (2004) 45-57. 2 Bﬂiﬁ%ﬁjmﬁk ' ":
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direct methods cannat sohve some Hee AREs well (see Bxample 3
in [3]1, Since AREs considered in [2,3] are from linear detzrminis-
tic systems, a natural question, and indeed the one arising here, is:
“can we extend the algorithm to linear stachastic systems?® The
immediate answer is yes, However, L) stochastic game problems
are more complicated than LQ) deterministic game problems, For
example, in L) stochastic game problems, noises can enter state,
control input and unknown disturbance input (see [7.1] and ref-
erences therein] Ako, Riccati equations with rand om coefficients
arisein Kalmanfilterand LQG controller design( see [8,9] and refer-
ences therein), Recently, stochastic diferential games with stage-
dependent noises have attracted much attention and have been
widely applicd ta various ficds (for cxample to stochastic Ha
in[10-12]1 Motivated by these applications, we focus on develop-
ing a new algorithm to sohve the SARE (1) arising in L} stechastic
dilferential games with state-dependent noises,

There exist many algorichms to sohee deterministic AREs, How-
ever, when the state-dependent naise is introduced into a LQ
deterministic game problem, in order to abtain the saddle point
solutions for cach player, one needs to sobve (11 This equation
is typically more difficult to solve than AREs in L) determinis-
tic game problems because of the additional disturbance term re-
flected in (1) Mewton's method can be used to sobve (1)isee [11,
12] for example); however, a serious issue is that in Mewton's
method, one must choose a suitable initial paint (e, convergence
assuring) to implement an algorithm and such an initial point is
niot abway s straighdforward o obtain,

In contrast, in cur algorithm, we can always choose a particu-
larly simple initial point, viz Fo = @, and this is a major advantage
of ouralgorithm, In[13],a recursive algorithm is developed tosohve
H3z SAREs (ie. the quadratic term in SAREs is negative semidefi-
nitz): however, this algorichm cannot be used to solve SARE (1),
which has asign indefinite quadratic term, 5o our task is ta develop
anew recursive algorithm, which can be used to solve SARE (1 jand
this wark is motivated by the algorithm in [2,3], Our algorithm re-
places the task of solving a SARE (1) by the task of solving a se-
quence of S REs with negative semid efinite quadratic terms; then
by using the algorithm in [13], we can salve these SAREs recur-
sively, We prove that the solution of the ariginal SARE can ke ab-
tained by using thee salutions of these H ;- type SAREs, [n some sense
therdfore, our work in this paper is an extension of the work in
[2.3] since it provid es an algorichm to sobve SARE (1) which is mare
general than the AREs considered in [2,.3], Note also that the idea
in [2,3] is closely elated to the method in [14-16], In [14-16], it
is the proved that the existence of a stabilizing solution for an in-
difinite ARE is equivalent to the existence of stabilizing solutions
of two definite AREs; however, as painted out in [14], the methad
in [14-1€] is only used to prove the existence of the stabilizing so-
lution for an indefinite ARE, not for computation,

Anather motivation of this paper comes from the wark in
[12.17]. In [13,17], a SARE with a negative semidefinite quadratic
term is considered to salve an optimal contral problem associ-
ated with a kind of lincar stochastic systems where the system's
pararneters are deterministic but state-dependent noises are in-
cluded, In [12,17], a sufficient condition is cbtained for the exis-
tence af unique positive semidefinite and stabilizing solutions af
such SAREs: also, an iterative algorithm to solve such SAREs is de-
veloped in [13.17], Hence the question of how to actend the al-
gorithm in [13,17] to solve SAREs with a sign indefinite quadratic
term arises here, [n some sense, the algarithm to solve 34 REs witha
negative semidefinite quadratic term in [13,17] can be regarded as
an extension of the Kleinman algorithm in [6], since an additional
disturbance term is reflected in such SAREs,

There are some conceptual challenges when state-dependent
noises enter linear systems, For example, for our algorithm in the
LT case{i.e. thealgarithm in [2,3]), stabilizability and detectability

is required to implement our algorithm; so the question arises
here af how to define stabilizability and detectability when state-
dependent noises enter systems, In this paper, we will review the
definitions of these impartant control concepts in the literature as
appropriate for a stochastic framework,

The paper is organized as follows; Section 2 gives some defini-
tions and preliminany resules, Section 3 presents our main resule,
Section 4 states the algorithm, Section 5 presents a game theoretic
interpretation, Section 6 provides a numerical example, Section 7
records our conclusions,

Notation. B"™ denotes the set ofn » m real matrices: Z denotes
the set of integers with Z. . dencting the set of integers greater or
equal to o € Z Define function spaces as follows;

u=|u:11*—.|1’“

Ll .
f Juiri]*dr = oo, 6 & R*} .
]

y={y;n*—,nr

ot
f [wit]|*de < oc¥ea, en*I .
'

o[-1denctes the spectral radius of a square matrix; (- denates
the maximum singular value of a matrix: | - | denotes the
Euclidean norm, A matriz A & B'*" is said to be Hurwitz if all its
eigemvalucs have negative real part, Ei-) denotes the mathematical
S pectation,

Z Definitions and preliminary results

In this section, we will gve some definitions and preliminany
results,

Ta motivare the definitions in this section, we firstly define the
follow ing stochastic contral system A

Aru—+Y

, XE3| AT BRiEAETH
! [18,19]h LG HEIE X

l—r“!—) N e g
value, The ma TAeE T Be R, Ce
are all real, Wiw generality, throughout this paper, we
assume w o be a nsional standard Wiener process,

Whe first recall o, :pt of stabilizability for such a system,
which generalizes the  Jilizability of deterministic systems to
the stechastic contextan 1lays an impartant rolein cur algerichm,

Definition 1 E{TS.TQIJ. The system A is said to be stabilizable,

briefly (4, B} is stabilizable, if there exists a feedback control
uif) = Kxit), such that for any x; < B, the closed-loop system

dwit) = (A + B et)dt 4+ Ae(r)dme(r) (8}
is asymptotically mean square stable, ie

lirm Ex{rja () = 0.

B0

Here K isa constant matrix with suitable dimensions, In addition,
suppase ur) in (4] @tisfies ury = 0 if

dvit) = Axir) + Ax(t)duir) @
is asymptatically mean square stabile; then (4, A) is called stable,

We remark that for systems of the form de(r) = Apitidr +
Ageiridenry, the propery of asymptotic mean square stability
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XHE G 7 HE AR SO
[18,19] 5 th B E 3L

systems,

Definition 2 {181, , C, A bethe matrices appearing in the
system A; if there e al matrix H with suitable dimensions,
such that the closed-loop.  stem

e = (A + HOjude + Avdw (8}

is asymptotically mean square stable, then 4, CH) is call~*
stachastically detectable,

Definition 3. Let A, A, By, Rz, Cbether _ang in Eq,

IR T RIEAEXE[18]F
SBHmLEL. e

14
below,

Definition 4. Let A, By, B:. C be the real matrix fio-
appearing in (1), Suppose there exists a positive 57
stabilizing solution JT to (1), Let P = B'*" be a gy A,
LetAp & B9 be defined as

An=A 4+ B 5P — BELP,

. 51 A T BIE AN TECRR[18,
| 19]FR LA RILEL .

Lemima 5. Let A, A, By, Bz, C bethereal matrixfunctions appearing
in{1}) end suppose P, £  B'*7, Define

F: g™ — g
Po—s P+ ATP 4 ATPA — P(EBT — BET WP+ (T 2]

IFP =P andZ = 27, then
FiP+Zy=F(Py+ZA, +A[Z + 128 —Z (B8] — B,E])Z (10)

where Ap is the matrix in Definition 4, [Fin addition, there holds

0=74, + A7 + AT 74 - B, B2+ FiP) (113
then
FiP+Z)y=ImEZ (12
and
pIFP+Z)) = FiF I [REX

Proof. Thefirst result can be obtained by direct computations: the
second claim is then trivial, O

The next three lemmas {Lemmas 6-8) are known general re-
sults, The first of these gives sufficient conditions for the existence
af aunique pasitive semidefinite and stabilizing salution fora class
of SAREs,

Lemma & ([18]), Consider the system A and assume thar A, BjA;
iz stabilizable ond (A, C|A) is stochostically detectable. Then, there
exists a posiive semidefinite and stabilizing solution £ sarigfuing the
JFoll mevingr SARE

0=A"Z + A+ AITZA - IBF Z + C"C. (14}
Furthermore, £ iz the wnique stobilizing solution of (14) (e, thare is
no other srobilizing sohition fo (14) )

Prood. See 18] O

The - _«t lemma recalls a standard result on the stability af linear
_adthastic systems,

Lemma7 ([18,17,19]).Let A, A, € be the red matrix finctions ap-
pearing inthe system A, ond supposethar the pair (4, C|A) is stochas-
ticolly detectable, Then (A, A) is stable if and only § the following
Lyapumev-rype equistion;

0=PM+A™r ~ATPA 4 CTC (15}
hasawr & posiive semidefinite salurion P,
r Sec 181719 O

 nit lemma gives a uniqueness result regarding the stabilizing
solution af (1),

Lemma & Suppose there exists a stabilizing solwtion IT toi 1) then
this solurion must be the unique stabilizing solwtion to (1) (Le. there is
ne other stabilzing solution ro (1)), Furthermore, if 1T = 0, then the
system dwit) = (A — BoBLT ) wie) + Awit)dwe (¢) is asymprotically
memn square stahle,

Proof. Sec[24]. O

The next lemr a sets up some basic relationships between the
stabilizing sol on {T to Eq. (1) when it exists and the matrix

functions F. atisfying Eq. (111 It is nmot standard, but is
rminiscent o flar results in [2,221-23], [t plays a crucial role
in establishin alidity af the algarichm of the next section,
Lemama 8. L %y, By, C bethe mamrices appearing in (1) lef
P=F ¢ T =27 & 8" sarigh Eq (11} and let a
srabilizing I B0 sanisfy Eq. (1), Ler Ap be the matrix in
Definirion 4,

(i1 f! = y s @gpmprotically mean square srahle
i) (Apez. Wy mean square srable if /7 = (P4 ).

XA ERRYIERAR A T BIE
ATE ST [24] 7 46 H A IERR
fiko
via (9} substituting (17 } into{ 16 ) and rearranging. we have

0=E& +AIZ + IR E
+ (T = PBE]iT — Py + AT ZA, {18

where X = IT— (P42, Then since idp, A) is asympratically mean
square stable, we conclude T = (F+2) by using Lemma 7,
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Moment Stability of Nonlinear Stochastic Systems With ;{MW u\i\\‘ |
Time-Delays Based on H-Representation Technique — &,

Ll -

Xueyan Zhao, Student Member, IEEE, and Feiqi Deng,

In fact, [29] introduced some definitions and lemmas of H -represe
tation matrices. In addition, in order to conveniently prove our main
theorems, we present some more definitions and lemmas of the H -rep-
resenfation matrices i our own way.

Lemma 1 [11], [29]: There exists a rectangulhﬁr n* x (M) trans-
.—}

formation wAatih

-- ) ) [29] W. H. Zhang and B. S. Chen, ““H-Representation and applications to

[11] W. H. Zhang and B. S. Chen, “Some properties of generalized Lya- generalized Lyapunov equations and linear stochastic systems,” JEEE
punov equations,” in Proc. 2011 Conf. Control and Decision (CCDC), Trans. Autom. Control, vol. 57, no. 12, pp. 3009-3022, Dec. 2012.
2011, pp. 3137-3141.
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Automatica 50 (2014)530-536 ‘ ‘ o
2.1, X-representation matrices; related definitions and lemmas

Contents lists available at ScienceDirect

f aoraicn The #-representation technique s not well-known to the read-

Automatica ers, so we firstly give a brief introduction to the J-representation

Lk technique. The K-representation technique s one of the basic
FLSEVIER o B B g tools for our stability analysis of discrete stochastic systems, with

which we can reduce the dimension of the moment equation and
Brief paper the dimension of the related stability condition associated with the
moment equation, then we can more conveniently determine sta-
@CI"“M”“ bility properties of systems, In fact, an Jf-representation matrix is
Just a matrix which can realize expanded or compressed transfor-
mation of a moment or a vector.
In fact, Zhang and Chen (2012) introduced some definitions
and lemmas of H-representation matrices. In addition, in order o

Moment stability of nonlinear discrete stochastic systems with
time-delays based on A-representation technique”

Xueyan Zhao, Feiqi Deng'

Systems Enginering Institute, South China University of Technology, Guangzhou 510640, PR Ching
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In the last part of the paper, we propose a method to compute the pe-
riodic solution occurring at each step of a Kleinman type algorithm. Our
method is based on the so called H-representation technique recently de-
veloped in [21]. This method allows us to reduce the computation of the
periodic solution of a Lyapunov type =quation to the computation of the
pegiodic solution of a backward affine e, ation on an euclidian space of di-
ion n(n + 1)/2, n being the dimensic. ~f the state space of controlled
sysilem\under consideration. In the last sec. of the paper, a comparison

between several types of numerical methods « sed in the paper is done.

\

[21] W. Zhang, B. Chen. H-Representation and Applications to Generalized I AERETHRIBEAR . XFHHEARLIFRNEKL
Lyapunov Equations and Linear Stochastic Systems. [EEE Trans. on LyapunovElT5 12 B HRfRH & .

Aut. Contr.57 (12): 3009-3022, 2012.
. J
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4.2 | The H-representation technique revisited

In this paragraph we briefly recall the method of H-representation of
a Lyapunov operator in terms of a matrix on the space of dimension n =
@ . This allows us to rewrite the equation (28) in the form of an equation
of type (31).

For details we refer to [21], where this method was introduced. We re-
call that if X € R™", then U(X) = Vee(X) = (z(1),z(2),...,z(n))T € R™
where z(7) is the i'h line of the matrix X, 1 < i < n.

Let Ei1,E19, ..., Ein, By ooy Bopy oo, By 1n—1, En—1n, Enn be the standard
base of the space of symmetric matrices §,,.

This means that Epg = (epq(i, J));5_15 With epq(ij) = 1if (i5) € {(pq). (gp)}
and ep,(ij) = 0 otherwise. If X € §,, is an arbitrary symmetric matrix, then

X = Euz + ... + BgnZn + Eonfara+ ... + Bans. (35)
We introduce the linear operator ¢ : S, — R defined by
p(X) =z (36)

where x = (x1, 29, ..., Ts }T is the vector whose components occur in the right
hand side of (35). We introduce also the matrix

H=(VEy) U(Ea) .. V(B U(Eyp) .. V(B 1,) U(Ewm) ).
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Using the techniques of H-representation, introduced in [23] we obtain that

ng(na+1) |

Z(1) = ¢~ 1(&(7)) where ¢ : S,,, -+ R~ 2 — is the isomorphism introduced
in [23] and £(7) is the solution of the following problem with given initial
values:

L e(r) = O(LEB). €(0) = p(lum). (32)

where ©(t,7) is the matrix associated to the linear operator L4, (t.i) via
(9) from [23]. Invoking the boundedness of the functions ¢ — Ags(t,i) and
t — Ag2o(t,i) we may deduce that there exists ¥ > 0 not depending upon
(t,i) € R. x 9 such that |©(t, )| < 5.

On the other hand, from Lemma 3.1 (ii) from [23] applied in the case of
linear operator defined in (29), we infer that the spectrum of the operator
Ly (t.4) coincides to the spectrum of the matrix ©(7, 7).
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Brief paper
On detectability of stochastic systems
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Stochastic linear control systems have attracted consi
interest in the last 40 years. In the framework of It6
together with the notion of mean-square stability it h
observed that problems of e.g. linear quadratic and H°
can be treated quite analogously to the deterministic case, lead-
ing to generalized, but similar Riccati-type matrix equations ¢
corresponding LMI-problems (see for instance Hinrichs
Pritchard. 1998: Petersen, Ugrinovskii, & Savki
Wonham, 1970; Yong & Zhou, 1999). Still there seems to be an
ongoing struggle for the appropriate concepts of and rela-
tions between stabilizability and detectability, e.g. in Dragan,
Halanay, and Stoica (1997), Tessitore (1997), Freiling and
Hochhaus (2004), Zhang and Chen (2004).

Usually one defines a system to be detec if_all its un-
stable modes produce a non-zero output, i.e. if vamn
output y(¢z) =0 for all 7 implies that the state x(r) co
to zero.

In the deterministic case, it follows thata systey W. Zhang. B. S. Chen. On stabilizability and exact observability of ol

if and only if the dual system is stabilizable,

I Tobias Damm* l

stochastic systems with
pp.87-94., 2004.

¢ non-zero output is only a necessary but not
L condition for stabilizability of the dual system, and
e latter does not give rise to a practicable observer equation.
Moreover, there is a purely algebraic way to define an analogue
of the Hautus-test for stochastic systems, which turns out to be
a necessary condition for stabilizability of the dual system.
Each of these properties may thus be taken as a starting point
to define detectability in the stochastic case. Several authors
(e.g. Da Prato & Ichikawa, 1985; Dragan et al., 1997; Fragoso,
Costa, & de Souza, 1998; Freiling & Hochhaus, 2004; Tessitore,
1997) have chosen the second, i.e. stabilizability of the dual
as a defining property. This choice, however, has some

0(1), |18
ed

their applications. Automatica,

7 This paper was not presented at any IFAC meeting. This paper was
recommended lor publication in revised form by Associate Editor René Boel

algebraic Lyapunov and Riccati equations only the generalized
Hautus-test is used. which is weaker than stabilizability of the

ElfrZER2iTH TR
EEZFET. Damm
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1. Damm / Automatica 43 (2007) 928933 929

Moreover, a cn that detectability in this
sense do s 1mply stabilizability of the dual system.

A similar approach has been taken by Zhang and Chen
(2004), who call a system exactly observable if all non-trivial
solutions (not only the unstable ones) cause some non-zero out-
put: they derive an equivalent Hautus-test, which again is an
analogue of the Hautus-test for observability of deterministic
systems. Our notion of detectability fits nicely into this frame-
work, since it is weaker than (exact) observability, as one would
expect. As an application we strengthen a result on generalized
algebraic Lyapunov equations given in Zhang and Chen (2004},

2. Definition of detectability

We consider stochastic linear systems of the form

‘\?

Z CJT-u duw;

o=

is stabilizable. This means (e.g. Tessitore, 1994; Willems &
Willems, 1976) that there exists a gain matrix K such that the
closed-loop system

N
de = (A + KC)'xdr + ) (A; + KCj)'x dw; (2)
i=1
is mean-square stable. An observer, based on this equation
would take the form of system (1) with additional input
Jv
d¢=A&dr + Y A;édw; + K(dyp—dy),
i=1

N

dy=Céde+ ) Ciéduw;.
i=1



T. Damm / Automatica 43 (2007) 928933 931

Since A0, at least one of the summands must not converge

to zero for 1 — oo, i.e. for some £ we have

Cix (535 >
wir, xé‘%)) ig constant and can be assumed to be zero (since we

can assume w.Lo.g that y(0, xgj“)j = 0). Therefore the system

is not detectable.

Let us now assume that the criterion of the theorem holds and
there exists a non-zero solution x(r, xp) with E| ¥(1, x5)(|> =0
for all #=0. It follows that C;x(t, xp) = O for all +=0 and
j=0,..., N. We need to show that

Elx(t, x0)||* = 0 ast— . (6)

The second-moment matrix P = Ex(t, xg)x(t, xo)' satisfies

System (7) is mean-square stable, if and only if
PLaskc +Hg) <0. (8)
d CX =0. Then

AX,

For a comparison we recall the definition of exact obsery-
ability. It was defined in Zhang and Chen (2004) for the case
without noise terms in the output equation, but it is straightfor-
ward fo restate the condition in our more general situation.

Definition 10. System (1) is exacily observable, if y(r) £ 0
for all £ =0 almost surely, implies xg 7= 0.

The corresponding version of the Hautus test is the following.
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Nevertheless, the given system is detectable. In fact, CX £ 0
for all eigenvectors of L 4v + I {i.e. the system is even exactly

of Lyr+Hi1CX =0

n, our notion of
olvent positive op-

Tt is inferesting that b
detectability can be exten
erators:

Definition 13, LetT : H
H. Then the pair (T, Y) is

all eigenvectors V of T* co

esolvent positive, and ¥ =
detectable AF (Y, V) £ O for

onding to an eigenvalue A 0.

As an application, we derive another condition equivalent to
the conditions (i), (ii), (i1} of Proposition 8. This result extends
Theorem 6 of Zhang and Chen (2004),

Proposition 14. Tei T : H — H be resolvent posifive and sef
By =max Rea(T'). Then #(T) <0 if and only if

(iv) dX. ¥ c Ho :T(X) =Y and (T, Y) is detectable.

criteria to a larger class of systeins, is the fact that by Theorem
3 we obtain a better understanding of these criteria.

(i) For stochastic systems, different concepts of detectability
can be thought of, which unlike in the deterministic case,
are not equivalent.

(ii) Detectability defined as the property that the system al-
ways produces some non-zero output if the state process
is unstable, is equivalent to a generalized Hautus eriterion;
the latter is an appropriate algebraic criterion to deal with
generalized Lyapunov and Riccati equations.

(iii} Detectability defined as the property that the dual system
is stabilizable, does not have a natural interpretation. In
particular, this property does not offer a method to recon-
struct the state from measurements.

(v} It is useful to view stability, stabilizability and detectability

as properties of certain resalvent positive operators.
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Technical Notes and Correspondence

On Eigenvalue Sets and Convergence Rate of 1o
Stochastic Systems With Markovian Switching

Zhao-Yan Li, Bin Zhon, Member, [EEE, Yong Wang, and
Guang-Ren Dusn, Serior Member, IEEE

Abstraer—This tec
bilization of I8 stoch
eigenvalue sets for
system under stmdy

cerned with stahbility analysis and sta-
Markovian switching. A couple of
1 associated with the stochastic
rize its stahility in the mean

termined by some eigenvahie set. Finally, a linear matrix inequality based

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 56, NO. 5, MAY 2011

past several decades, relatively little work is done for Itd stochastic
system with Markovian switching, Only recently, some resuolts for Tt
stochastic system and Markovian jump systems were extended to [16
stochastic system with Markovian swiiching. For example, stabiliza-
tion of a class of nonlinear stochastic differential equations (satisfying
Lipschitz condition) with Markovian switching was consideredin [17],
robust stability and controllability of a class of stochastic differential
delay eguations with Markovian switching was solved in [18], stabi-
lization of nonlinear and bilinear uncertain Itd stochastic systems with
Markovian switching and time-delay was respectively studied in [16]
and [19]. robust fillering problem associated with Itd stochastic systeim
was addressed in [8] and [9], sliding-mode
ed for [t0 stochastic aystem with Markovian
ni-to-state stability for this class of sysiems
d in [5]. For more related work on this

murmbaamn mas  TET FTTT F1AT mumd dlas snmnemd s memn casathas T 1TAAT
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inannialityr haoad

e

system, see [5] [1 11, [12] and the recent monograpm [22] [24]

In this technical note, motivated by the recent work [21], we consider
stability analysis and stabilization problems for It si/jchastic sysem
with Markovian switching. A series of eigenvalue for some op-

o e ey O

erator associated with the Markovian jumping 1td/ chastic system
are defined. Properties for these different eigenval Is are proposed
and, especially, it is shown that they are equiva characterizing,

1. Based on the
2 [t6 stochastic

the stability of the stochastic systern under consj
properties of some eigenvalue set, the converg

system with Markovian switching in the mea 1se s analyzed,
which reveals some extensions of the eigen results for de-
terministic linear systermns to stochastic line ‘e also propose
an effective linear matrix inequalities (L proach for de-

m has desired
ds to a couple
future.

signing feedback gains such that the ¢
convergence rate. Our research in this
of open problems that should be care

EXPMEAKRES, TRENTIERIIE.R, RIZEF
Mar kov IR EIBEH | to R G HIFR E M AT FNTEE [B)RE .

[21] W. Zhang, L. Xie. Interval

stability and
stochastic systems, |EEE

54(4), pp. 810-815, 2009.

stabilization of linear

Trans. Automatic Control,

terizing the stability of the Markovian jump [t& stochastic linear system
(4), Ouvr results also geperalize several aspects of those in [2 1]. For ex-
ample, the sets arsi L), oy (L), o (L) and ag were not
considered in that paper and Theorem 1 is totally new.
Remark 2: We notice that the resolts presented in this

Set X (0}

use the factthat t

18 aresolvent positive operatorin the sense
of Definition 1. Moreover, from the above discussion, we conclude that
the most convenient way for testing the stability of system (4} based on E {II‘
its eigenvalues is to compute the maximal real eigenvalue of S..
Remark 3: Aswe can see, the proofs for the results in this subsection
do not unitize explicitly the special structures of the operator £, In fact,
some results, say, Proposition 1 and Theorem 1, hold for any resolvent  where j = |

positive operator. The proofs can be carried out analogously. is definedas
On the other
B. Comvergence Rate Analysis
Assume that the initial condition for system (4) is 2(0) = wo.
Then according to Lemma 4, we have X(t) = L(X{#)}, Combing
Xi0) = (0,---.0.Xg,100.0.---.0), where X;(f) is defined in o (= jefeo

(5) and aceordingly Xy, (0) = woxd (here Xoy{0) is at the éo-th  follows thal:
column of X (0))). Moreover, it is easy to see that

E {ll(0)I*} = e (B {Jle(t?}) = o« (B {(r'rumn)})
(Z X; (t;) (23)

Definition 3: Let 4 and o be two given scalars such that 7 < a.
The Markovian jump Itd stochastic system (4) is said (o have goar-
anteed convergence rate {4, o} if for any sufficiently small scalar
= > 0, there exist two finite constants c,, (=} and c.;(=) such that Since £ isa
calz)et? N lao|* < B{|le(£)[P} € cate)e 0 laall*,
B I} 2 .

iy

=0~

ps(L£) = pelL). the above e

ing relation:

Theorem 2: 33 >

ePEiEY

< psiL), 24)

The proof can be carried out by uvsing the idea found in the proof of Moreover, it

item 1 of Theorem 2.2 in [21]. The details are omitted for brevity. The

remaining of this proof is to show that ag = ps(L). I
We assume that g < ps(L). Then there exists a sufficiently small

scalar - > () such that
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Positioning-Tracking Controller Design of A
Linear Motion Control System Based on
Vectorization Technique

Li Qiu™, Member, IEEE, Yang Shi ", Fellow, IEEE, Jianfei Pan, Member, |IEEE,

Bo Zhang ', Me

Abstract—This paper addresses the positioning-tracking
control problem for a second-order direct-drive linear-
switched reluctance machine (LSRM) motion control sys-
tem based on the vectorization technique. In order to
overcome the system-matrix dimension oversize problem
caused by vectorization method, the H-representation tech-
nique is adopted to reduce the closed-loop system-matrix
dimension. The stability conditions with lower computa-
tional complexity for the LSRM motion control system
are obtained based on Lyapunov stability theory and the
vectorization technique. The positioning-tracking controller
design method is proposed according to the matrix eigen-
value numerical-analysis method. The proposed controller
design method theoretically explicitly specifies the range of
the designed controller gains, which can greatly reduce the
burden of setting and tuning the control parameters as com-
pared with proportion-integral-derivative parameters tuning
method. Several groups of experimental tests are presented
to verify the effectiveness of the proposed positioning-
tracking control method for LSRM motion control systems.

Index Terms—Linear-switched reluctance machine
(LSRM), positioning-tracking controller design, vectoriza-
tion technique, H-representation techniquel

IEEE, and Gang Xu

minimum-re[tre
dustrial applicatio:
board drilling, etc., since
high precision, fast response,
straight-line execution, etc. HowevV
high-precision positioning control beca
tain the accurate mathematical model paramete
sensitive and variations friction coefficients tractio
In the recent years, some results have been propo
linear-switched reluctance machines (LSRM) cont
for example, a flux feedback reluctance actuator li
scheme has been described based on cascaded anal
coil and digital hall probe feedback control [2]. Th £
trol problem is studied for the discrete-time direct-¢ - =
motion control system based on Lyapunov theory in BT /R{A tgk%ﬁ%ﬁi

tematic control design method is proposed for the ¢ , |[EEE Fellow

linear motor to provide high-speed and high-precis
mance by using fast nonsingular terminal-sliding mode in [4].
In [5], a new methodology is presented to determine the mag-
netically guided robot position in horizontal plane by using
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B. Stabilizability and Spectrum

The stabilization of the discrete-time closed-loop system in
(8) 1s described by the spectral-mapping technigue extended
from [24]. The system in (8) can be stabilized only if there
exists a constant matrix K € B™*" such that the spectrum of
the closed-loop operator Dy : £ € €" —— (A + BK )£ satis-
fies o(Dy ) C €.

Definition 1: The system in (6) is stabilizable, if there exists
a feedback control u(k) = Kx(k), such that for any =y € R",
the closed-loop system x(k + 1) = (A + BK )z (k). z(0) = =

is asymptotically stable, that is, we have

limy o |2(k) — Of| = limg o || A% 20| = 0,
xp #0,k=0,1,2...

(9

where K € R™*" is a constant matrix.

Definition 2: By extending Defimition 2 of [24], for any
given feedback gain matrix K. let the generalized opera-
tor ®, from &, to &, be defined as follows: D, : 7 £
&, — ATZA— Z € &,, where the spectrum of D 4 is the set
defined by 6(D4) ={Ace€:Dy(X)=D4X =2X X e
&n, X # 0}

Proposition 1: The system in (6) 1s stabilizable iff there exists
an K € R™”*", such that the spectrum of (D 4 ) belongs to €.

Proaf: It can be extended according to Theorem | for a
continuous-time stochastic system in [24]. By Definitions 1
and 2, it suffices to prove that there exists a matrix K such
that lim;._. ||.§krg|| =0, xp # Oisequivalentto (D4 ) < ¢,
where A = A + BK and x(k) 1s the trajectory of (8). |

Let X (k) = |la(k)|| = [|4*o]., by Lyapunov equation

AX =ATXA - X =D4(X)
X(0) = Xq = || A%zl (10)

X{(-) i1s real symmetric, and the system in (10} is a linear
system with n(n + 1)/2 different variables. We define a map ©
from Dy, to Dy, (, 4 1)/2 as follows: Forany Z = (Zij)nn € Dy,
set
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E = fﬁ{Z} - (le-,- . *?ern' . *?Zﬂ—l,n—lszﬂ—l,n:vznn}'r

then, there exists a unique matrix L(K') Rulnt1)/2n(nt1)/2
such that (10) is equivalent to

AX =D(D4(X)) = LIK)X, X(0)=X, (1)

where X € R™("*1)/2 due to that X = || A*zg|| is real positive
semidefinite. By stability theory on difference equations, we
have

Jim [\ A% 20| = 0,20 # 0 = Tim [[X(K)]| =0

& lim X(k) =0« o(L(K)) Cc €. (12)

According to Definition 2, for any eigenvalue A and
its corresponding eigenvector Z = (Z;j)nwn € D, of Dy,
from D, (Z) = 1Z, we have L(K)Z = 1Z, which yields
o(L(K))=0c(D,). The above completes the proof of
Proposition 1.

C. 'H-Representation Matrixes

Definition 3: [25] Consider a p— dimensional complex (real)
matrix subspace ¥ C C™*" (X — R"*") over the fields C (|R).
Assume that €|, €3, . .. ¢, form the basis of X, and define H =

|81 & --- & |.ForeachX € X,if weexpressvec (X) =
X in the form of

vee(X) =X = HX

with a p % 1 vector X . the HX is called an H-representation of
vec(z), and H is called an H-representation matrix of vec(X ).

Lemma 1: [25] H has full column rank, namely, [HTH] is
invertible.
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Delay-Dependent Algebraic Riccati Equation to
Stabilization of Networked Control Systems:
Continuous-Time Case

Cheng Tan, Huanshui Zhang, Senior Member, IEEE, and Wing Shing Wong, Fellow, IEEE

Abstract—In this paper, a delay-dependent algebraic Riccati
equation (DARE) approach is developed to study the mean-
square stabilization problem for continuous-time networked
control systems. Different from most previous studies that infor-
mation transmission can be performed with zero delay and
infinite precision, this paper presents a basic constraint that the
designed control signal is transmitted over a delayed communi-
cation channel, where signal attenuation and transmission delay
occur simultaneously. The innovative contributions of this paper
are threefold. First, we propose a necessary and sufficient stabi-
lizing condition in terms of a unique positive definite solution to
a DARE with @ > 0 and R > 0. In accordance with this result,
we derive the Lyapunov/spectrum stabilizing criterion. Second,
we apply the operator spectrum theory to study the stabilizing
solution to a more general DARE with Q@ = 0 and R > 0. By
defining a delay-dependent Lyapunov operator, we propose the
existence theorem of the unique stabilizing solution. It is shown
that the stabilizing solution, if it exists, is unique and coincides
with a maximal solution. Third, as an application, we derive
the explicit maximal allowable delay bound for a scalar system.

tems, NCSs
tages, suc ~
ease of installatiOis
NCSs have attracted increas
references therein).

Due to the insertion of digital con
with finite capacity and resource, many
cannot be satisfied. Some examples
separation of estimation and control,
and synchroneity among multiple a
transmission delay often occurs while ey ;TS KT
from different devices connected to a sl

Moreover, control signal often suffers signal attenuation over
fading channels [8], [9]. These uncertainties may degrade
the quality of network service and even destabilize some
time-sensitive system. As a consequence, it is of significance
to study the stabilization problem for NCSs over delayed
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In the rest of this section, we propose the spectrum stabiliz-
ing criterion. Define the following delay-dependent Lyapunov
operator Lg(-) from S" to S™:

Lx(X) = (A+ uBK)X + X(A + uBK)
+ o2eMBKXK'B' e, VX € S". (29)

Definition 1: The spectrum set of operator Lg(-) is
defined as

(L) 2 (heC: LX) =2X,XeS", X#£0} (30)

where X is said to be an eigenvector associated with the
eigenvalue A.

With the inner product, defined by (U, V) = Tr(UV) for
any U,V € §", the adjoint Lyapunov operator Ly (-) from §"
to S" is given as

LE(X) = (A+ uBK)'X + X(A + uBK)
+ o2 K'BeMIXeMBK, VX eS". (31)
Then, for any X, ¥ € §", we have
Tr(XLg(Y)) = Tr(LgX)Y). (32)

It follows from [23] that ~(Lx) = o (L¥). Now, we are in a

position to derive a spectral s *~ecrintion for the
NCS, [A, Bld, £].
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equivalent to the feasibility of a certain LMI. Moreover, by
introducing a delay-dependent Lyapunov operator, we demon-
strate that the NCS is stabilizable in the mean-square sense if
and only if the operator spectrum set belongs to the open left-
hand side of the complex plane. Note that these stabilizing
criteria are first obtained in the framework of continuous-
time stochastic system with both input delay and multiplicative
noises, which run in parallel to the classical stochastic results
in [15] and [23]. Second, we investigate the solvability of a

Corollary 1: The NCS. [A, B|d, &]. is stabilizable in the
mean-square sense if and only if there exists a feedback gain
matrix K such that the spectrum of Lg(-) satisfying

o(Lxk) SC 2 {zeC: Re(z) <O} (33)

Proof: The proof can be derived directly by apply-
ing [23, Th. 1] and Theorem 2. [ |

[21] W. Zhang, B.S.Chen. Automatica, 40(1), 87-94,2004 , 2004.




Necessary and Sufficient Stabilizing Conditions for Networked Control
Systems With Simultaneous Transmission Delay and Packet Dropout

Cheng Tan and Huanshui Zhang

Abstract—This paper investigates the mean-square stabilization
problem for discrete-time networked control systems (NCSs). Dif-
ferent from most previous studies, we assume transmission delay
and data packet dropout may occur simultaneously. The stabiliza-
tion for such NCSs remains challenging because of the fundamen-
tal difficulty in stochastic control. The contributions of this paper
are threefold. First, we present two different necessary and suf-
ficient stabilizing conditions in terms of the unique positive solu-
tion to delay-dependent algebraic Riccati equation (DARE) or delay-
dependent Lyapunov equation (DLE). Second, the maximum packet
dropout rate can be calculated with a proposed optimization algo-
rithm. Third, the stabilizing solution to developed DARE is inves-
tigated for its existence and uniqueness. We show the existence
condition in terms of the Lyapunov operator and the unobserv-
able mean-square eigenvalue, under which the general DARE has
a unique stabilizing solution.

Index Terms—DARE, networked control system (NCS), packet
dropout, stabilization, stabilizing solution.

Recently, some studies have concentrated on the simultaneous oc-
currence of these two uncertainties [7]-[9]. The most popular methods,
including the switched approach and Lyapunov-Krasivskii functional
approach, are mainly on LMIs, and only sufficient stabilizing condi-
tions are available. Besides, except for some special cases investigated
in [10], how to derive the explicit value of the maximum packet dropout
rate of the general system is to be resolved. As said in [7], [8], the stabi-
lization problems for the NCSs with simultaneous transmission delay
and packet dropout are challenging, difficult and unsolved. This can
be ascribed to the fundamental difficulty of stochastic control, i.e., the
separation principle fails for a stochastic system with input delay and
multiplicative noises.

In this paper, we focus on the mean-square stabilization problem for
discrete-time NCSs with simultaneous transmission delay and packet
dropout. First, motivated by the coupled Riccati-ZXL. equation in our
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2) For system (A; Q7). the mean-square eigenvalue A € ogn (L4)
is said to be an observable mean-square eigenvalue, if its corre-
sponding nonzero eigenvector X € S" " satisfying £4 (X ) = A X and
Q’IIX # 0; 1 € ogns (L4 ) is said to be an unobservable mean-square
eigenvalue, if its corresponding nonzero eigenvector X € S™* satis-
fying £4(X) = 2X and Q¥ X = 0.

Lemma 2: (PBH Criterion)

1) System (A: Q%) is observable iff there does not exist any unob-
servable mean-square eigenvalue.

2) System (A; Q ‘II) is detectable iff any unstable mean-square eigen-
value A € oga+ (L4 ) is observable.

Proof: This proof follows from Theorem 3.1 in [16] and Theorem
4in [17] and thus omitted. [ |
Proposition 1: Assume P > 0 is a positive-semidefinite solution
to the DARE (14) with @ >0 and R > 0. Then, any unstable
mean-square eigenvalue A € ogn (L, ) of system [A. B, d|p] with
Kp = —Y ' M is the unobservable mean-square eigenvalue of system

| \\\\\\\N\\\\““NN;

(A:Q2).

max

0.4

03[

0.2

0.1F

4

B
Time Delay d=0

[21] W. Zhang, B.S.Chen. Automatica, 40(1), 87-94,2004 , 2004.
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