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Modern game theory

Modern game theory began with the idea of mixed-
strategy equilibria in two-person zero-sum games and its
proof by John von Neumann. His paper was followed by
the 1944 book Theory of Games and Economic Behavior,
co-written with Oskar Morgenstern.
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Introduction, Definition of Game
Definition 1. [1] A finite game is a triple G = (N , S, C),

where
(i) N = {1, 2, · · · , n} is the set of players;

(ii) S = S1 × S2 × · · · × Sn, where each Si = {si
1, s

i
2, · · · , si

ki
}

is the strategy set of player i;

(iii) C = {c1, c2, · · · , cn} is the set of payoff functions, where
every ci : S → R is the payoff function of player i.
The finite game defined above is called a normal form
game in [2].
[1] Monderer D, Shapley LS (1996) Potential games. Games
and Economic Behavior, 14, 124-143.
[2] Sandholm WH, (2010) Decompositions and potentials
for normal form games. Games and Economic Behavior,
70, 446-456. 4 / 47



Introduction, Definition of Game
Let cµi1i2···in = cµ(s1

i1 , s
2
i2 , · · · , s

n
in) where 1 ≤ is ≤ ks and s =

1, 2, · · · , n. Then the finite game can be described by the
arrays

Cµ = {cµi1i2···in| 1 ≤ is ≤ ks, s = 1, 2, · · · , n} (1)

with µ = 1, 2, · · · , n.

Given n and k1, . . . , kn, the set of all finite games is a linear
space with dimension d = nk1k2 · · · kn.

Particularly, for a 2-player game, the k1 × k2 matrices C1 =
(c1

ij) and C2 = (c2
ij) are payoffs of players 1 and 2 respec-

tively. Therefore, a 2-player finite game is also called a
bi-matrix game, which is usually denoted by the simple no-
tation G = (C1,C2).
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Introduction, Examples of Game

The game of ’rock, paper, scissors’ with 2 players:

B
r p s

A
r (0, 0) (−1, 1) (1, −1)
p (1, −1) (0, 0) (−1, 1)
s (−1, 1) (1, −1) (0, 0)

C1 =

 0 −1 1
1 0 −1
−1 1 0

 , C2 =

 0 1 −1
−1 0 1
1 −1 0


Question
How can we describe a 3-player game in a matrix form?
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Introduction, Examples of Game
The game of ’palm up, palm down’ with 3 players:

A B C uuu uud udu udd duu dud ddu ddd
c1 0 1 1 −2 −2 1 1 0
c2 0 1 −2 1 1 −2 1 0
c3 0 −2 1 1 1 1 −2 0

Payoff matrix is defined as

P =

 0 1 1 −2 −2 1 1 0
0 1 −2 1 1 −2 1 0
0 −2 1 1 1 1 −2 0

 .
This description of finite games was proposed in [3].

[3] D. Cheng, On finite potential games, Automatica, 50,
1793-1801, 2014. 7 / 47
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matrix forms of payoff matrices
The game of ’palm up, palm down’ with 3 players:
A B C uuu uud udu udd duu dud ddu ddd

c1 0 1 1 −2 −2 1 1 0
c2 0 1 −2 1 1 −2 1 0
c3 0 −2 1 1 1 1 −2 0

Payoff matrix is defined as

P =

 0 1 1 −2 −2 1 1 0
0 1 −2 1 1 −2 1 0
0 −2 1 1 1 1 −2 0

 .
The matrix form of payoff function:

c1(x1, x2, x3) = [0 1 1 − 2 − 2 1 1 0]x1x2x3,

where

xi ∈
{[

1
0

]
,

[
0
1

]}
.
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matrix forms of payoff matrices

In general, each payoff function can be rewritten in the ma-
trix form based on STP as follows:

ci(x1, x2, · · · , xn) = Vc
i x1x2 · · · xn,

where xj ∈ ∆kj, i, j = 1, 2, . . . , n.
The payoff matrix is an n× k1k2 · · · kn matrix:

P =


Vc

1
Vc

2
...

Vc
n

 .
Obviously, the dimension of the linear space composed
of all n× k1k2 · · · kn matrices is nk1k2 · · · kn.
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Introduction, Nash Equilibria
A strategy profile s = (s1, s2, · · · , sn) ∈ S is a Nash equi-
librium (NE) if

fi(si, s−i) ≥ fi(xi, s−i) ∀i, xi ∈ Si.

Example: Prisoner’s Dilemma

B
s b

A
s (−1, −1) (−10, 0)
b (0, −10) (−8, −8)

s=silent; b=betray. Nash Equilibrium: (b,b).

C1 =

[
−1 −10
0 −8

]
, C2 =

[
−1 0
−10 −8

]
10 / 47



Introduction, Nash Equilibria

Nash’s Existence Theorem
If we allow mixed strategies, then every game with a finite
number of players in which each player can choose from
finitely many pure strategies has at least one Nash equilib-
rium.
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Introduction, Nash Equilibria
Nash’s Existence Theorem
If we allow mixed strategies, then every game with a finite
number of players in which each player can choose from
finitely many pure strategies has at least one Nash equilib-
rium.

B
head tail

A
head (3, −3) (−2, 2)
tail (−2, 2) (1, −1)

If we are allowed to take a mixed strategy, we can take 1
3

head and 2
3 tail.

Let P(A = head) = x and P(B = head) = y. Then we have

c1 = 3·xy+1·(1−x)(1−y)−2·(1−x)y−2·x(1−y) = 8xy− 3x− 3y + 1;

c2 = −c1 = −8xy + 3x + 3y− 1.
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The payoff function of A is c1(x, y) = 8xy− 3x− 3y + 1.

The Nash equilibrium is (x∗, y∗) = ( 3
8 ,

3
8) and

c1(x,
3
8

) = 8x
3
8
− 3x− 3

3
8

+ 1 = −1
8
, c2(x, y∗) =

1
8
, ∀ x.

0

0.5

1 0 0.2 0.4 0.6 0.8 1

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

c1(x, y) = 8xy− 3x− 3y + 1.
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Definition of Potential Game

Question
What kind of games have a Nash Equilibrium under pure
strategies?

Definition.
(Monderer & Shapley, 1996) A finite game G = (N , S, C)
is said to be potential if there exists a function p : S → R,
called the potential function, such that

ci(x, s−i)− ci(y, s−i) = p(x, s−i)− p(y, , s−i)

for all x, y ∈ Si, s−i ∈ S−i i = 1, 2, · · · , n, where S−i =
S1 × · · · × Si−1 × Si+1 × · · · × Sn.
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potential games

Theorem
(Monderer & Shapley, 1996) Every finite potential game
possesses a pure Nash equilibrium.

Question
(Monderer & Shapley, 1996) How can we test whether a
finite game is potential?
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Conservative vector field
In vector calculus, a conservative vector field (potential
field) is a gradient field of a scalar function called a poten-
tial function.

A vector field is a conservative field if and only if the line
integral is path independent.

Gradient Theorem
A conservative vector field c(x) = (c1(x), . . . , cn(x))T satis-
fies ∫

C
c(x) · dx = p(B)− p(A),

where C is any path from point A to point B, and p(·) is the
potential function.
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Conservative vector field
Gradient Theorem
A conservative vector field c(x) = (c1(x), c2(x))T satisfies∫

C
c1(x)dx1 + c2(x)dx2 = p(B)− p(A),

where C is a path form point A to point B, and p(·) is the
potential function.

The potential function p(x) is

p(x1, x2) =

∫ (x1,x2)

(a,b)
c1(x)dx1 + c2(x)dx2.

Let p1 and p2 be potentials for a conservative vector field.
Then there exists a constant c such that

p1(x1, x2)− p2(x1, x2) = c for every (x1, x2).
17 / 47



Conservative vector field

Vector field c(x) =
(c1(x), c2(x))T is a con-
servative field if and only
if ∮

c1(x)dx1 + c2(x)dx2 = 0

for every closed-loop.

In particular, consider the above closed loop. If vector field
c(x) = (c1(x), c2(x))T is conservative, then∫ y1

x1

c1(x)dx1 +

∫ y2

x2

c2(x)dx2 +

∫ x1

y1

c1(x)dx1 +

∫ x2

y2

c2(x)dx2 = 0.
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potential games

Definition
(Monderer & Shapley, 1996) A path in S is a sequence
γ = (y0, y1, . . . ) such that for every k ≥ 1 there exists a
unique player, say Player i, such that yk = (y−i

k−1, x) for some
x 6= yi

k−1 in S.
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potential games

Definition (Monderer & Shapley, 1996)
For a finite path γ = (y0, y1, . . . yN) and for a vector c =
(c1, c2, . . . , cn) of payoff functions ci(x), the total payoff
along γ is defined as

I(γ, c) =
N∑

k=1

[cik(yk)− cik(yk−1)],

where ik is the unique deviator at step k.

The total payoff is similar to the line integral along γ:∫
γ

c(x) · dx =
N∑

k=1

∫ yk

yk−1

cik(x)dxik .
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potential games
For the finite path γ = (y0, y1, y2, y3)

the total payoff is

I(γ, c) = [c1(y1)−c1(y0)]+[c3(y2)−c3(y1)]+[c2(y3)−c2(y2)],

which is similar to the line integral∫
γ

c(x) · dx =

∫ y1

y0

c1(x)dx1 +

∫ y2

y1

c3(x)dx3 +

∫ y3

y2

c2(x)dx2.
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potential games
Theorem (Monderer & Shapley, 1996)
Let G be a finite game with payoff vector c. The following
claims are equivalent:
(1) G is a potential game;
(2) I(γ, c) = 0 for every finite closed path γ;
(3) I(γ, c)=0 for every simple closed path γ of length 4.

path4.pdf path4.pdf

[c2(B)−c2(A)]+[c1(C)−c1(B)]+[c2(D)−c2(C)]+[c1(A)−c1(D)]=0.
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potential games
Theorem (Monderer & Shapley, 1996)
G = (N , S, C) is a potential game iff for every i, j ∈ N , for
every a ∈ S−{i,j}, and for every xi, yi ∈ Si and xj, yj ∈ Sj,

[cj(B)−cj(A)]+[ci(C)−ci(B)]+[cj(D)−cj(C)]+[ci(A)−ci(D)]=0.

It is called a four-cycle equation in (Sandholm 2010).

Question: How many equations are needed to check?
23 / 47



potential games

Question
How many equations are needed to check for a finite

game with n players and k strategies for each player?

By (Monderer & Shapley, 1996), the number of equations
corresponding to simple closed loops with length 4 is

C2
nkn−2C2

kC2
k =

n(n− 1)kn(k − 1)2

6
= O(n2kn+2).

The theoretical minimum value of the number of equations
is

nkn − (kn + nkn−1 − 1) = (n− 1)kn − nkn−1 + 1 = O(nkn).
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potential games

U is a potential game if and only if there is a potential
function V and auxiliary functions Wp : S−p → R such that

Up(s) = V(s) + Wp(s−p) ∀ s ∈ S,∀ p ∈ N . (2)

Proof. (⇐) If (2) holds, then

Up(x, s−p) = V(x, s−p) + Wp(s−p) (3)

and
Up(y, s−p) = V(y, s−p) + Wp(s−p). (4)

From (3)−(4), it follows that

Up(x, s−p)− Up(y, s−p) = V(x, s−p)− V(y, s−p).

Therefore, U is a potential game with the potential function
V(x). 25 / 47
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potential games

U is a potential game if and only if there is a potential
function V and auxiliary functions Wp : S−p → R such that

Up(s) = V(s) + Wp(s−p) ∀ s ∈ S,∀ p ∈ N . (5)

Proof. (⇒) Assume that U is a potential game with the
potential function V(x), i.e.,

Up(x, s−p)− Up(y, s−p) = V(x, s−p)− V(y, s−p)

for any x, y ∈ Si and s−p ∈ S−p. So,

Up(x, s−p)− V(x, s−p) = Up(y, s−p)− V(y, s−p). (6)

Let Wp(s) = Up(s) − V(s). Then (6) implies that Wp(s) is
independent of sp, which is rewritten as Wp(s−p). Therefore,

Up(s) = V(s) + Wp(s−p). (7)
26 / 47



potential games

U is a potential game if and only if there is a potential
function V and auxiliary functions Wp : S−p → R such that

Up(s) = V(s) + Wp(s−p) ∀ s ∈ S,∀ p ∈ N . (5)

Proof. (⇒) Assume that U is a potential game with the
potential function V(x), i.e.,

Up(x, s−p)− Up(y, s−p) = V(x, s−p)− V(y, s−p)

for any x, y ∈ Si and s−p ∈ S−p. So,

Up(x, s−p)− V(x, s−p) = Up(y, s−p)− V(y, s−p). (6)

Let Wp(s) = Up(s) − V(s). Then (6) implies that Wp(s) is
independent of sp, which is rewritten as Wp(s−p). Therefore,

Up(s) = V(s) + Wp(s−p). (7)
26 / 47



potential games

U is a potential game if and only if there is a potential
function V and auxiliary functions Wp : S−p → R such that

Up(s) = V(s) + Wp(s−p) ∀ s ∈ S,∀ p ∈ N . (5)

Proof. (⇒) Assume that U is a potential game with the
potential function V(x), i.e.,

Up(x, s−p)− Up(y, s−p) = V(x, s−p)− V(y, s−p)

for any x, y ∈ Si and s−p ∈ S−p. So,

Up(x, s−p)− V(x, s−p) = Up(y, s−p)− V(y, s−p). (6)

Let Wp(s) = Up(s) − V(s). Then (6) implies that Wp(s) is
independent of sp, which is rewritten as Wp(s−p). Therefore,

Up(s) = V(s) + Wp(s−p). (7)
26 / 47



potential games

U is a potential game if and only if there is a potential
function V and auxiliary functions Wp : S−p → R such that

Up(s) = V(s) + Wp(s−p) ∀ s ∈ S,∀ p ∈ N . (5)

Proof. (⇒) Assume that U is a potential game with the
potential function V(x), i.e.,

Up(x, s−p)− Up(y, s−p) = V(x, s−p)− V(y, s−p)

for any x, y ∈ Si and s−p ∈ S−p. So,

Up(x, s−p)− V(x, s−p) = Up(y, s−p)− V(y, s−p). (6)

Let Wp(s) = Up(s) − V(s). Then (6) implies that Wp(s) is
independent of sp, which is rewritten as Wp(s−p). Therefore,

Up(s) = V(s) + Wp(s−p). (7)
26 / 47



potential games

U is a potential game if and only if there is a potential
function V and auxiliary functions Wp : S−p → R such that

Up(s) = V(s) + Wp(s−p) ∀ s ∈ S,∀ p ∈ N . (5)

Proof. (⇒) Assume that U is a potential game with the
potential function V(x), i.e.,

Up(x, s−p)− Up(y, s−p) = V(x, s−p)− V(y, s−p)

for any x, y ∈ Si and s−p ∈ S−p. So,

Up(x, s−p)− V(x, s−p) = Up(y, s−p)− V(y, s−p). (6)

Let Wp(s) = Up(s) − V(s). Then (6) implies that Wp(s) is
independent of sp, which is rewritten as Wp(s−p). Therefore,

Up(s) = V(s) + Wp(s−p). (7)
26 / 47



potential games

U is a potential game if and only if there is a potential
function V and auxiliary functions Wp : S−p → R such that

Up(s) = V(s) + Wp(s−p) ∀ s ∈ S,∀ p ∈ N ,

By using the matrix form based on STP, U is a potential
game iff its payoff matrix U has the form

U1

U2
...

Up

=


V
V
...
V

+


?
?
...
?

 .
Let x ∈ ∆n1, y ∈ ∆n2 and z ∈ ∆n3. Then

xz = (In1 ⊗ 1T
n2
⊗ In3)xyz.

Proof. (In1 ⊗ 1T
n2
⊗ In3)(x⊗ y⊗ z) = x⊗ 1⊗ z = xz.

27 / 47
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potential games
U is a potential game iff its payoff matrix U has the form

U =


V
V
...
V

+

W1(1T

k⊗Ikn−1)
0
...
0

+


0
W2(Ik⊗1T

k⊗Ikn−2)
...
0

+· · ·+


0
0
...

Wn(Ikn−1⊗1T
k )

 .

Let X and Y be subspaces of a n-dimensional linear
space. Then

dim(X + Y) = dim(X ) + dim(Y)− dim(X ∩ Y).

So the dimension of the linear space composed of poten-
tial games is kn + nkn−1 − 1. (Sandholm, Games Econ
Behav, 2010; Monderer D, Shapley, Games Econ Behav,
1996)
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potential games
Theorem (Hino, Int J Game Theory 2011)
G = (N , S, C) is a potential game iff for every i, j ∈ N , for
every a ∈ S−{i,j}, and for every xi ∈ Si and xj ∈ Sj,

[cj(B)−cj(A)]+[ci(C)−ci(B)]+[cj(D)−cj(C)]+[ci(A)−ci(D)]=0,

where A = (xi, xj, a), B = (xi + 1, xj, a), C = (xi + 1, xj + 1, a),
and D = (xi, xj + 1, a). The number of four-cycle equations
is

C2
nkn−2C2

kC2
k = O(n2kn+2).

By (Hino, 2011), the number of equations is

C2
nkn−2(k − 1)2 = O(n2kn).

The minimum value is (n− 1)kn − nkn−1 + 1 = O(nkn).
[4] Y. Hino, An improved algorithm for detecting potential
games, Int J Game Theory (2011) 40:199-205. 29 / 47



Potential equation

A finite game U is a potential game iff there are exists row
vectors V and Wi such that

U1

U2
...

Un

=


V
V
...
V

+


W1(1T

k⊗Ikn−1)
W2(Ik⊗1T

k⊗Ikn−2)
...

Wn(Ikn−1⊗1T
k )

 .
or

U1

U2 − U1
...

Un − U1

=


V
0
...
0

+


W1(1T

k⊗Ikn−1)
W2(Ik⊗1T

k⊗Ikn−2)−W1(1T
k⊗Ikn−1)

...
Wn(Ikn−1⊗1T

k )−W1(1T
k⊗Ikn−1)

 .
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Potential equation
A finite game U is a potential game iff there are exists row
vectors Wi such thatU2 − U1

...
Un − U1

=

W2(Ik⊗1T
k⊗Ikn−2)−W1(1T

k⊗Ikn−1)
...

Wn(Ikn−1⊗1T
k )−W1(1T

k⊗Ikn−1)

 .
or
−1k⊗Ikn−1 Ik⊗1k⊗Ikn−2

−1k⊗Ikn−1 Ik2⊗1k⊗Ikn−3

... . . .
−1k⊗Ikn−1 Ikn−1⊗1k

ξ=
(U2−U1)

T

...
(Un−U1)

T

 .
The potential equation is dented by Ψξ = b, where Ψ is an
(n−1)kn × nkn−1 matrix.
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Potential equation
Theorem (Cheng, Automatica, 2014)
The game G = (N , S, C) is potential if and only if the
potential equation
Ψξ = b has a solution ξ.

Lemma (Cheng, Automatica, 2014)

Ψ1nkn−1 = 0; rankΨ = nkn−1 − 1.

We only need to prove that the dimension of Ψξ = 0 is 1.
Assume that Ψξ = 0, prove that ξ = a1nkn−1 for some a.

Theorem (Cheng, Automatica, 2014)
The game G = (N , S, C) is potential if and only if

rank[Ψ, b] = nkn−1 − 1.
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Potential equation
Question
What is the relationship between the four-cycle equation
and the potential equation?

For the case of n = 2, the potential equation is[
−1k1⊗Ik2 Ik1⊗1k2

]
ξ = b.

Theorem
The bi-matrix game G = (C1, C2) is a potential game if
and only if

Bk1(C2 − C1)BT
k2

= 0, (8)

where Bk = [Ik−1, −1k−1]

[5] Xinyun Liu, Jiandong Zhu, On potential equations of
finite games, Automatica, 68, 245-253, 2016.
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Proof. Let Dk := [Ik−1, 0] ∈ R(k−1)×k. Then it is easy to see
that

BkDT
k = Ik−1, Dkδ

k
k = Bk1k = 0. (9)

Construct two matrices

E = [−δk1
k1
⊗ Ik2 , BT

k1
⊗ δk2

k2
, BT

k1
⊗ BT

k2
]T ∈ Rk1k2×k1k2

F = [−1k1 ⊗ Ik2 , DT
k1
⊗ 1k2 , DT

k1
⊗ DT

k2
] ∈ Rk1k2×k1k2 .

Then a straightforward calculation shows that

EF =

 −(δk1
k1

)T ⊗ Ik2

Bk1 ⊗ (δk2
k2

)T

Bk1 ⊗ Bk2

 [−1k1 ⊗ Ik2 , DT
k1
⊗ 1k2 , DT

k1
⊗ DT

k2
]

=

 Ik2 0 0
0 Ik1−1 0
0 0 I(k1−1)(k2−1)

 = Ik1k2

lcl

34 / 47



Potential equation
So the potential equation is equivalent to EΨξ = Eb. It is
easy to check that

E[Ψ, b] =

 −(δk1
k1

)T ⊗ Ik2

Bk1 ⊗ (δk2
k2

)T

Bk1 ⊗ Bk2

 [−1k1 ⊗ Ik2 , Ik1 ⊗ 1k2 , b]

=

 Ik2 −(δk1
k1

)T ⊗ 1k2 −((δk1
k1

)T ⊗ Ik2)b
0 Bk1 (Bk1 ⊗ (δk2

k2
)T)b

0 0 (Bk1 ⊗ Bk2)b


=

 Ik2 0 −1k2 −((δk1
k1

)T ⊗ Ik2)b
0 Ik1−1 −1k1−1 (Bk1 ⊗ (δk2

k2
)T)b

0 0 0 (Bk1 ⊗ Bk2)b

 .(10)

So the potential equation is solvable if and only if

(Bk1 ⊗ Bk2)b = 0, i.e., Bk1(C2 − C1)BT
k2

= 0. (11)
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Potential equation
Corollary
The bi-matrix game G = (C1, C2) is a potential game if
and only if

rij − rik2 − rk1j + rk1k2 = 0 (12)

for every i = 1, 2, · · · , k1 − 1 and j = 1, 2, · · · , k2 − 1, where
(rij) = C2 − C1.

rij − rik2 − rk1j + rk1k2

= c2(i, j)− c1(i, j)− c2(i, k2) + c1(i, k2)

−c2(k1, j) + c1(k1, j) + c2(k1, k2)− c1(k1, k2)

= [c1(k1, j)− c1(i, j)] + [c2(k1, k2)− c2(k1, j)]
+[c1(i, k2)− c1(k1, k2)] + [c2(i, j)− c2(i, k2)] (13)

So the condition in the theorem is just a set of four-cycle
equations. 36 / 47



potential games
Given the strategy set for bi-matrix games, the set of all
the relative payoff matrices of potential bi-matrix games is
a (k1 + k2 − 1)-dimensional subspace, which is isomorphic
to

P = {b ∈ Rk1k2| (Bk1⊗Bk2)b = 0}. (14)

Lemma
Consider a linear subspace of Rn as follows:

X = {v ∈ Rn| Bv = 0}. (15)

If B has a full row rank, then the orthogonal projection of
u onto X is

ProjXu = (In − BT(BBT)−1B)u. (16)
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potential games

Now we consider the orthogonal projection onto the poten-
tial subspace.
Theorem
Consider a bi-matrix game G = (C1, C2), where C1,C2 ∈
Rk1×k2. Denote the relative payoff matrix by R=(rij)=C2−C1

and let Hk = Ik− 1
k 1k1T

k . Then

ProjPVr(R) = (Ik1k2 − Hk1 ⊗ Hk2)Vr(R). (17)

Proof. Let B̃ = Bk1 ⊗ Bk2. By Lemma, we have

ProjPVr(R)

= (Ik1k2−B̃T(B̃B̃T)−1B̃)Vr(R)

= (Ik1k2−BT
k1

(Bk1B
T
k1

)−1Bk1 ⊗ BT
k2

(Bk2B
T
k2

)−1Bk2)Vr(R).
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potential games

A straightforward computation shows that

BT
k (BkBT

k )−1Bk

=

[
Ik−1

−1T
k−1

]
(Ik−1 + 1k−11T

k−1)
−1[Ik−1 − 1k−1]

=

[
Ik−1

−1T
k−1

]
(Ik−1 −

1
k

1k−11T
k−1)[Ik−1 − 1k−1]

=

[
Ik−1 − 1

k 1k−11T
k−1 −1

k 1k−1

−1
k 1T

k−1
k−1

k

]
= Ik −

1
k

1k1T
k = Hk. (18)

It follows that (17) holds. 2
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potential games

Theorem
Consider a bi-matrix game G = (C1, C2), where
C1,C2 ∈ Rk1×k2. Let R = (rij) = C2−C1. Then the fol-
lowing statements are equivalent:

(i) G is a potential game;

(ii) Hk1RHk2 = 0, where Hk = Ik − 1
k 1k1T

k ;

(iii) rij = ri−ave + rj−ave − rave for all i = 1, 2, · · · , k1 and
j = 1, 2, · · · , k2, where

ri−ave = 1
k2

∑k2
µ=1 riµ, rj−ave = 1

k1

∑k1
λ=1 rλj, (19)

rave = 1
k1k2

∑k1
λ=1

∑k2
µ=1 rλµ. (20)
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potential games
Proof. Obviously, G is a potential game if and only if ProjPVr(R) =
Vr(R), where P is the potential subspace. Therefore, we
have that G is potential if and only if

(Hk1 ⊗ Hk2)Vr(R) = 0, i.e. HkRHk = 0.

Moreover, a straightforward calculation shows that

HkRHk

= (Ik1 −
1
k1

1k11
T
k1

)R(Ik2 −
1
k2

1k21
T
k2

)

= R− 1
k1

1k11
T
k1

R− 1
k2

R1k21
T
k2

+
1T

k1
R1k2

k1k2
1k11

T
k2
. (21)

From (19)-(21), the equivalence between (ii) and (iii) fol-
lows. 2
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weighted network congestion games
Consider an example of weighted network congestion games
(WNCG) addressed in Lemma 1 of Fotakis, Kontogiannis,
and Spirakis (2005).
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A weighted congestion game

With simple calculations, we get the relative payoff matrix
R = w2P2 − w1P1, where P1 and P2 are given as follows:

P1=


c31+c32+c33 c11+c12+c33 c11+c12+c13 c11+c12+c13

c33+c14+c15 c33+c34+c35 c13+c34+c15 c13+c14+c15

c14+c16+c17 c34+c16+c17 c34+c36+c37 c14+c16+c17

c18+c19+c1,10 c18+c19+c1,10 c18+c19+c1,10 c38+c39+c3,10

 ,

P2=


c31+c32+c33 c33+c24+c25 c24+c26+c27 c28+c29+c2,10

c21+c22+c33 c33+c34+c35 c34+c26+c27 c28+c29+c2,10

c21+c22+c23 c23+c34+c25 c34+c36+c37 c28+c29+c2,10

c21+c22+c23 c23+c24+c25 c24+c26+c27 c38+c39+c3,10

 .
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A weighted congestion game
By the concept of weighted congestion game, the relative
payoff matrix is R = w2P2 − w1P1. So, the game is a poten-
tial game if and only if

B4RBT
4 = 0,

which is simplified as the following equations:

w2(c31 + c32 − c21 − c22)− w1(c31 + c32 − c11 − c12) = 0,
w2(c33 − c23)− w1(c33 − c13) = 0,
w2(c34 − c24)− w1(c34 − c14) = 0,
w2(c35 − c25)− w1(c35 − c15) = 0,
w2(c36 + c37 − c26 − c27)− w1(c36 + c37 − c16 − c17) = 0,
w2(c38 + c39 + c3,10 − c28 − c29 − c2,10)

−w1(c38 + c39 + c3,10 − c18 − c19 − c1,10) = 0.
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Conclusions

1. Based on the STP, a finite game can be expressed as a
payoff matrix.

2. A finite potential game is just like a potential vector
field (conservative field).

3. A finite game is a potential game if and only if its poten-
tial equation has a solution.

4. The minimum number of linear equations for verifying
potential games can be obtained.

5. Based on STP, linear spaces of games and conges-
tion games can be considered. 45 / 47
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