Potential Game Theory Based on STP

Lesson Two (第二讲)

Lecturer: Jiandong Zhu (朱建栋)

(School of Mathematical Sciences, Nanjing Normal University, Nanjing) 南京师范大学数学科学学院

> Center of STP Theory and Its Applications July 17-24, 2021

LiaoCheng University, LiaoCheng, Shandong, P.R. China

Outline

- Introduction of game theory
- Game Theory Based on STP
- Potential game
- Potential equations based on STP
- 5 Example: a congestion game
- Conclusions
- References

Modern game theory

Modern game theory began with the idea of mixedstrategy equilibria in two-person zero-sum games and its proof by John von Neumann. His paper was followed by the 1944 book Theory of Games and Economic Behavior, co-written with Oskar Morgenstern.

Introduction, Definition of Game

Definition 1. [1] A finite game is a triple $\mathcal{G}=(\mathcal{N},\ \mathcal{S},\ \mathcal{C}),$ where

- (i) $\mathcal{N} = \{1, 2, \dots, n\}$ is the set of players;
- (ii) $S = S_1 \times S_2 \times \cdots \times S_n$, where each $S_i = \{s_1^i, s_2^i, \cdots, s_{k_i}^i\}$ is the strategy set of player i;
- (iii) $C = \{c_1, c_2, \dots, c_n\}$ is the set of payoff functions, where every $c_i : S \to \mathbb{R}$ is the payoff function of player i.
- The finite game defined above is called a **normal form** game in [2].
- [1] Monderer D, Shapley LS (1996) Potential games. Games and Economic Behavior, 14, 124-143.
- [2] Sandholm WH, (2010) Decompositions and potentials for normal form games. Games and Economic Behavior, 70, 446-456.

Introduction, Definition of Game

Let $c_{i_1i_2\cdots i_n}^\mu=c_\mu(s_{i_1}^1,s_{i_2}^2,\cdots,s_{i_n}^n)$ where $1\leq i_s\leq k_s$ and $s=1,2,\cdots,n$. Then the finite game can be described by the arrays

$$C_{\mu} = \{c^{\mu}_{i_1 i_2 \cdots i_n} | 1 \le i_s \le k_s, \ s = 1, 2, \cdots, n\}$$
 (1)

with $\mu = 1, 2, \dots, n$.

Given n and k_1, \ldots, k_n , the set of all finite games is a linear space with dimension $d = nk_1k_2 \cdots k_n$.

Particularly, for a 2-player game, the $k_1 \times k_2$ matrices $C_1 = (c_{ij}^1)$ and $C_2 = (c_{ij}^2)$ are payoffs of players 1 and 2 respectively. Therefore, a 2-player finite game is also called a bi-matrix game, which is usually denoted by the simple notation $\mathcal{G} = (C_1, C_2)$.

The game of 'rock, paper, scissors' with 2 players:

		В					
		r	р	S			
	r	(<mark>0, 0</mark>)	(-1, 1)	(1, -1)			
Α	p	(1, -1)	(<mark>0, 0</mark>)	(-1, 1)			
	S	(-1, 1)	(1, -1)	(<mark>0, 0</mark>)			

$$C_1 = \left[egin{array}{ccc} 0 & -1 & 1 \ 1 & 0 & -1 \ -1 & 1 & 0 \end{array}
ight], \quad C_2 = \left[egin{array}{ccc} 0 & 1 & -1 \ -1 & 0 & 1 \ 1 & -1 & 0 \end{array}
ight]$$

Question

How can we describe a 3-player game in a matrix form?

The game of 'rock, paper, scissors' with 2 players:

			В		
		r p		S	
	r	(<mark>0, 0</mark>)	(-1, 1)	(1, -1)	
A	p	(1, -1)	(<mark>0, 0</mark>)	(-1, 1)	
	S	(-1, 1)	(1, -1)	(<mark>0, 0</mark>)	

$$C_1 = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

Question

How can we describe a 3-player game in a matrix form?

The game of 'rock, paper, scissors' with 2 players:

			В	
		r	р	S
	r	(<mark>0, 0</mark>)	(-1, 1)	(1, -1)
Α	p	(1, -1)	(<mark>0, 0</mark>)	(-1, 1)
	S	(-1, 1)	(1, -1)	(<mark>0, 0</mark>)

$$C_1 = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$$

Question

How can we describe a 3-player game in a matrix form?

The game of 'palm up, palm down' with 3 players:

ABC	uuu	uud	ud u	udd	duu	dud	dd u	ddd
c_1	0	1	1	-2	-2	1	1	0
c_2	0	1	-2	1	1	-2	1	0
<i>c</i> ₃	0	-2	1	1	1	1	-2	0

Payoff matrix is defined as

$$P = \begin{bmatrix} 0 & 1 & 1 & -2 & -2 & 1 & 1 & 0 \\ 0 & 1 & -2 & 1 & 1 & -2 & 1 & 0 \\ 0 & -2 & 1 & 1 & 1 & 1 & -2 & 0 \end{bmatrix}.$$

This description of finite games was proposed in [3].

[3] D. Cheng, On finite potential games, Automatica, 50 1793-1801, 2014.

The game of 'palm up, palm down' with 3 players:

ABC	uuu	uud	ud u	udd	duu	dud	dd u	ddd
c_1	0	1	1	-2	-2	1	1	0
c_2	0	1	-2	1	1	-2	1	0
c_3	0	-2	1	1	1	1	-2	0

Payoff matrix is defined as

This description of finite games was proposed in [3]

[3] D. Cheng, On finite potential games, Automatica, 50, 1793-1801, 2014.

The game of 'palm up, palm down' with 3 players:

ABC	uuu	uud	ud u	udd	duu	dud	dd u	ddd
c_1	0	1	1	-2	-2	1	1	0
c_2	0	1	-2	1	1	-2	1	0
c_3	0	-2	1	1	1	1	-2	0

Payoff matrix is defined as

This description of finite games was proposed in [3].

[3] D. Cheng, On finite potential games, Automatica, 50, 1793-1801, 2014.

7 / 47

matrix forms of payoff matrices

The game of 'palm up, palm down' with 3 players:

			1 / 1				,	
ABC	uuu	uud	ud u	udd	du u	dud	dd u	<mark>dd</mark> d
c_1	0	1	1	-2	-2	1	1	0
c_2	0	1	-2	1	1	-2	1	0
<i>C</i> ₃	0	-2	1	1	1	1	-2	0

Payoff matrix is defined as

$$P = \begin{bmatrix} 0 & 1 & 1 & -2 & -2 & 1 & 1 & 0 \\ 0 & 1 & -2 & 1 & 1 & -2 & 1 & 0 \\ 0 & -2 & 1 & 1 & 1 & 1 & -2 & 0 \end{bmatrix}.$$

The matrix form of payoff function:

$$c_1(x_1, x_2, x_3) = \begin{bmatrix} 0 & 1 & 1 & -2 & -2 & 1 & 1 & 0 \end{bmatrix} x_1 x_2 x_3,$$

where

$$x_i \in \left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}.$$

matrix forms of payoff matrices

In general, each payoff function can be rewritten in the matrix form based on STP as follows:

$$c_i(x_1,x_2,\cdots,x_n)=V_i^cx_1x_2\cdots x_n,$$

where $x_j \in \Delta_{k_j}$, $i, j = 1, 2, \ldots, n$.

The payoff matrix is an $n \times k_1 k_2 \cdots k_n$ matrix:

$$P = \left[egin{array}{c} V_1^c \ V_2^c \ dots \ V_n^c \end{array}
ight].$$

Obviously, the **dimension** of the linear space composed of all $n \times k_1 k_2 \cdots k_n$ matrices is $nk_1 k_2 \cdots k_n$.

Introduction, Nash Equilibria

A strategy profile $s=(s_1,\ s_2,\ \cdots,\ s_n)\in S$ is a Nash equilibrium (NE) if

$$f_i(s_i, s^{-i}) \ge f_i(x_i, s^{-i}) \quad \forall i, x_i \in S_i.$$

Example: Prisoner's Dilemma

		E	3
		S	b
	S	(-1, -1)	(-10, 0)
Α	b	(0, -10)	(-8, -8)

s=silent; b=betray. Nash Equilibrium: (b,b).

$$C_1 = \begin{bmatrix} -1 & -10 \\ 0 & -8 \end{bmatrix}, \quad C_2 = \begin{bmatrix} -1 & 0 \\ -10 & -8 \end{bmatrix}$$

Introduction, Nash Equilibria

Nash's Existence Theorem

If we allow mixed strategies, then every game with a finite number of players in which each player can choose from finitely many pure strategies has at least one Nash equilibrium.

Introduction, Nash Equilibria

Nash's Existence Theorem

If we allow mixed strategies, then every game with a finite number of players in which each player can choose from finitely many pure strategies has at least one Nash equilibrium.

			В
		head	tail
	head	(3, -3)	(-2, 2)
Α	tail	(-2, 2)	(1, -1)

If we are allowed to take a mixed strategy, we can take $\frac{1}{3}$ head and $\frac{2}{3}$ tail.

Let
$$P(A = head) = x$$
 and $P(B = head) = y$. Then we have $c_1 = 3 \cdot xy + 1 \cdot (1-x)(1-y) - 2 \cdot (1-x)y - 2 \cdot x(1-y) = 8xy - 3x - 3y + 1$;

The payoff function of A is $c_1(x, y) = 8xy - 3x - 3y + 1$.

The Nash equilibrium is $(x^*, y^*) = (\frac{3}{8}, \frac{3}{8})$ and

$$c_1(x, \frac{3}{8}) = 8x\frac{3}{8} - 3x - 3\frac{3}{8} + 1 = -\frac{1}{8}, \quad c_2(x, y^*) = \frac{1}{8}, \quad \forall x.$$

$$c_1(x, y) = 8xy - 3x - 3y + 1.$$

Definition of Potential Game

Question

What kind of games have a Nash Equilibrium under pure strategies?

Definition.

(Monderer & Shapley, 1996) A finite game $\mathcal{G} = (\mathcal{N}, \mathcal{S}, \mathcal{C})$ is said to be potential if there exists a function $p: \mathcal{S} \to \mathbb{R}$ called the potential function, such that

$$c_i(x, s^{-i}) - c_i(y, s^{-i}) = p(x, s^{-i}) - p(y, s^{-i})$$

for all $x, y \in \mathcal{S}_i$, $s^{-i} \in \mathcal{S}^{-i}$ $i = 1, 2, \dots, n$, where $\mathcal{S}^{-i} = \mathcal{S}_1 \times \dots \times \mathcal{S}_{i-1} \times \mathcal{S}_{i+1} \times \dots \times \mathcal{S}_n$.

Definition of Potential Game

Question

What kind of games have a Nash Equilibrium under pure strategies?

Definition.

(Monderer & Shapley, 1996) A finite game $\mathcal{G}=(\mathcal{N},\ \mathcal{S},\ \mathcal{C})$ is said to be potential if there exists a function $p:\mathcal{S}\to\mathbb{R}$, called the potential function, such that

$$c_i(x, s^{-i}) - c_i(y, s^{-i}) = p(x, s^{-i}) - p(y, s^{-i})$$

for all $x, y \in \mathcal{S}_i$, $s^{-i} \in \mathcal{S}^{-i}$ $i = 1, 2, \dots, n$, where $\mathcal{S}^{-i} = \mathcal{S}_1 \times \dots \times \mathcal{S}_{i-1} \times \mathcal{S}_{i+1} \times \dots \times \mathcal{S}_n$.

Theorem

(Monderer & Shapley, 1996) Every finite potential game possesses a pure Nash equilibrium.

Question

(Monderer & Shapley, 1996) How can we test whether a finite game is potential?

In vector calculus, a **conservative vector field (potential field)** is a gradient field of a scalar function called a **potential function**.

A vector field is a **conservative field** if and only if the line integral is **path independent**.

Gradient Theorem

A conservative vector field $\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), \dots, c_n(\mathbf{x}))^T$ satisfies

$$\int_C \mathbf{c}(\mathbf{x}) \cdot d\mathbf{x} = p(B) - p(A),$$

where C is any path from point A to point B, and $p(\cdot)$ is the **potential function**.

Gradient Theorem

A conservative vector field $\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), c_2(\mathbf{x}))^T$ satisfies

$$\int_C c_1(\mathbf{x}) dx_1 + c_2(\mathbf{x}) dx_2 = p(B) - p(A),$$

where C is a path form point A to point B, and $p(\cdot)$ is the **potential function**.

The potential function p(x) is

$$p(x_1, x_2) = \int_{(a,b)}^{(x_1,x_2)} c_1(\mathbf{x}) dx_1 + c_2(\mathbf{x}) dx_2.$$

Let p_1 and p_2 be potentials for a conservative vector field. Then there exists a constant c such that

$$p_1(x_1, x_2) - p_2(x_1, x_2) = c$$
 for every (x_1, x_2) .

Vector field $\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), c_2(\mathbf{x}))^{\mathrm{T}}$ is a conservative field if and only if

$$\oint c_1(\mathbf{x}) \mathrm{d}x_1 + c_2(\mathbf{x}) \mathrm{d}x_2 = 0$$

for every closed-loop.

In particular, consider the above closed loop. If vector field $\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), c_2(\mathbf{x}))^T$ is conservative, then

$$\int_{x_1}^{y_1} c_1(\mathbf{x}) dx_1 + \int_{x_2}^{y_2} c_2(\mathbf{x}) dx_2 + \int_{y_1}^{x_1} c_1(\mathbf{x}) dx_1 + \int_{y_2}^{x_2} c_2(\mathbf{x}) dx_2 = 0.$$

Vector field $\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), c_2(\mathbf{x}))^{\mathrm{T}}$ is a conservative field if and only if

$$\oint c_1(\mathbf{x}) \mathrm{d}x_1 + c_2(\mathbf{x}) \mathrm{d}x_2 = 0$$

for every closed-loop.

In particular, consider the above closed loop. If vector field $\mathbf{c}(\mathbf{x}) = (c_1(\mathbf{x}), c_2(\mathbf{x}))^T$ is conservative, then

$$\int_{x_1}^{y_1} c_1(\mathbf{x}) dx_1 + \int_{x_2}^{y_2} c_2(\mathbf{x}) dx_2 + \int_{y_1}^{x_1} c_1(\mathbf{x}) dx_1 + \int_{y_2}^{x_2} c_2(\mathbf{x}) dx_2 = 0.$$

Definition

(Monderer & Shapley, 1996) A **path** in \mathcal{S} is a sequence $\gamma = (\mathbf{y}_0, \mathbf{y}_1, \dots)$ such that for every $k \geq 1$ there exists a unique player, say Player i, such that $\mathbf{y}_k = (y_{k-1}^{-i}, x)$ for some $x \neq y_{k-1}^i$ in \mathcal{S} .

Definition (Monderer & Shapley, 1996)

For a finite path $\gamma=(\mathbf{y}_0,\mathbf{y}_1,\ldots\mathbf{y}_N)$ and for a vector $\mathbf{c}=(c_1,c_2,\ldots,c_n)$ of payoff functions $c_i(\mathbf{x})$, the **total payoff** along γ is defined as

$$I(\gamma, \mathbf{c}) = \sum_{k=1}^{N} [c_{i_k}(\mathbf{y}_k) - c_{i_k}(\mathbf{y}_{k-1})],$$

where i_k is the unique deviator at step k.

The total payoff is similar to the line integral along γ :

$$\int_{\gamma} \mathbf{c}(\mathbf{x}) \cdot d\mathbf{x} = \sum_{k=1}^{N} \int_{\mathbf{y}_{k-1}}^{\mathbf{y}_{k}} c_{i_{k}}(\mathbf{x}) dx_{i_{k}}.$$

For the finite path $\gamma = (\mathbf{y}_0, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$

the total payoff is

$$I(\gamma, \mathbf{c}) = [c_1(\mathbf{y}_1) - c_1(\mathbf{y}_0)] + [c_3(\mathbf{y}_2) - c_3(\mathbf{y}_1)] + [c_2(\mathbf{y}_3) - c_2(\mathbf{y}_2)],$$
 which is similar to the line integral

$$\int_{\mathcal{C}} \mathbf{c}(\mathbf{x}) \cdot d\mathbf{x} = \int_{\mathbf{y}_1}^{\mathbf{y}_1} c_1(\mathbf{x}) dx_1 + \int_{\mathbf{y}_2}^{\mathbf{y}_2} c_3(\mathbf{x}) dx_3 + \int_{\mathbf{y}_3}^{\mathbf{y}_3} c_2(\mathbf{x}) dx_2.$$

Theorem (Monderer & Shapley, 1996)

Let $\mathcal G$ be a finite game with payoff vector $\mathbf c$. The following claims are equivalent:

- (1) \mathcal{G} is a potential game;
- (2) $I(\gamma, \mathbf{c}) = 0$ for every finite closed path γ ;
- (3) $I(\gamma, \mathbf{c}) = 0$ for every simple closed path γ of length 4.

path4.pdf path4.pdf S-{1,2}

$$[c_2(B)-c_2(A)]+[c_1(C)-c_1(B)]+[c_2(D)-c_2(C)]+[c_1(A)-c_1(D)]=0.$$

Theorem (Monderer & Shapley, 1996)

 $\mathcal{G}=(\mathcal{N},~\mathcal{S},~\mathcal{C})$ is a potential game iff for every $i,j\in\mathcal{N}$, for every $a\in\mathcal{S}^{-\{i,j\}}$, and for every $x_i,y_i\in\mathcal{S}_i$ and $x_j,y_j\in\mathcal{S}_j$,

$$[c_j(B)-c_j(A)]+[c_i(C)-c_i(B)]+[c_j(D)-c_j(C)]+[c_i(A)-c_i(D)]=0.$$

It is called a **four-cycle equation** in (Sandholm 2010).

Question: How many equations are needed to check?

Question

How many equations are needed to check for a finite game with n players and k strategies for each player?

By (Monderer & Shapley, 1996), the number of equations corresponding to simple closed loops with length 4 is

$$C_n^2 k^{n-2} C_k^2 C_k^2 = \frac{n(n-1)k^n(k-1)^2}{6} = O(n^2 k^{n+2}).$$

The theoretical minimum value of the number of equations is

$$nk^{n} - (k^{n} + nk^{n-1} - 1) = (n-1)k^{n} - nk^{n-1} + 1 = O(nk^{n}).$$

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \quad \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N}.$$
 (2)

Proof. (\Leftarrow) If (2) holds, then

$$U_p(x, s^{-p}) = V(x, s^{-p}) + W_p(s^{-p})$$
(3)

and

$$U_p(y, s^{-p}) = V(y, s^{-p}) + W_p(s^{-p}).$$
(4)

25 / 47

From (3)-(4), it follows that

$$U_p(x, s^{-p}) - U_p(y, s^{-p}) = V(x, s^{-p}) - V(y, s^{-p}).$$

Therefore, U is a potential game with the potential function V(x).

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \quad \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N}.$$
 (2)

Proof. (\Leftarrow) If (2) holds, then

$$U_p(x, s^{-p}) = V(x, s^{-p}) + W_p(s^{-p})$$
(3)

and

$$U_p(y, s^{-p}) = V(y, s^{-p}) + W_p(s^{-p}).$$
 (4)

25 / 47

From (3)-(4), it follows that

$$U_p(x, s^{-p}) - U_p(y, s^{-p}) = V(x, s^{-p}) - V(y, s^{-p}).$$

Therefore, U is a potential game with the potential function V(x).

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \quad \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N}.$$
 (2)

Proof. (\Leftarrow) If (2) holds, then

$$U_p(x, s^{-p}) = V(x, s^{-p}) + W_p(s^{-p})$$
(3)

and

$$U_p(y, s^{-p}) = V(y, s^{-p}) + W_p(s^{-p}).$$
 (4)

From (3)-(4), it follows that

$$U_p(x, s^{-p}) - U_p(y, s^{-p}) = V(x, s^{-p}) - V(y, s^{-p}).$$

Therefore, U is a potential game with the potential function V(x).

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \ \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N}.$$
 (5)

Proof. (\Rightarrow) Assume that U is a potential game with the potential function V(x), i.e.,

$$U_p(x, s^{-p}) - U_p(y, s^{-p}) = V(x, s^{-p}) - V(y, s^{-p})$$

for any $x,y\in\mathcal{S}_i$ and $s^{-p}\in\mathcal{S}^{-p}$. So,

$$U_p(x, s^{-p}) - V(x, s^{-p}) = U_p(y, s^{-p}) - V(y, s^{-p}).$$
 (6)

Let $W_p(s) = U_p(s) - V(s)$. Then (6) implies that $W_p(s)$ is independent of s_p , which is rewritten as $W_p(s^{-p})$. Therefore,

$$U_p(s) = V(s) + W_p(s^{-p}).$$
 (7)

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \quad \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N}.$$
 (5)

Proof. (\Rightarrow) Assume that U is a potential game with the potential function V(x), i.e.,

$$U_p(x, s^{-p}) - U_p(y, s^{-p}) = V(x, s^{-p}) - V(y, s^{-p})$$

for any $x, y \in S_i$ and $s^{-p} \in S^{-p}$. So,

$$U_p(x, s^{-p}) - V(x, s^{-p}) = U_p(y, s^{-p}) - V(y, s^{-p}).$$
 (6)

Let $W_p(s) = U_p(s) - V(s)$. Then (6) implies that $W_p(s)$ is independent of s_p , which is rewritten as $W_p(s^{-p})$. Therefore,

$$U_p(s) = V(s) + W_p(s^{-p}).$$
 (7)

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \quad \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N}.$$
 (5)

Proof. (\Rightarrow) Assume that U is a potential game with the potential function V(x), i.e.,

$$U_p(x, s^{-p}) - U_p(y, s^{-p}) = V(x, s^{-p}) - V(y, s^{-p})$$

for any $x, y \in S_i$ and $s^{-p} \in S^{-p}$. So,

$$U_p(x, s^{-p}) - V(x, s^{-p}) = U_p(y, s^{-p}) - V(y, s^{-p}).$$
 (6)

Let $W_p(s) = U_p(s) - V(s)$. Then (6) implies that $W_p(s)$ is independent of s_p , which is rewritten as $W_p(s^{-p})$. Therefore,

$$U_p(s) = V(s) + W_p(s^{-p}).$$
 (7)

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \quad \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N}.$$
 (5)

Proof. (\Rightarrow) Assume that U is a potential game with the potential function V(x), i.e.,

$$U_p(x, s^{-p}) - U_p(y, s^{-p}) = V(x, s^{-p}) - V(y, s^{-p})$$

for any $x, y \in S_i$ and $s^{-p} \in S^{-p}$. So,

$$U_p(x, s^{-p}) - V(x, s^{-p}) = U_p(y, s^{-p}) - V(y, s^{-p}).$$
 (6)

Let $W_p(s) = U_p(s) - V(s)$. Then (6) implies that $W_p(s)$ is independent of s_p , which is rewritten as $W_p(s^{-p})$. Therefore,

$$U_p(s) = V(s) + W_p(s^{-p}).$$
 (7)

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \quad \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N}.$$
 (5)

Proof. (\Rightarrow) Assume that U is a potential game with the potential function V(x), i.e.,

$$U_p(x, s^{-p}) - U_p(y, s^{-p}) = V(x, s^{-p}) - V(y, s^{-p})$$

for any $x, y \in S_i$ and $s^{-p} \in S^{-p}$. So,

$$U_p(x, s^{-p}) - V(x, s^{-p}) = U_p(y, s^{-p}) - V(y, s^{-p}).$$
 (6)

Let $W_p(s) = U_p(s) - V(s)$. Then (6) implies that $W_p(s)$ is independent of s_p , which is rewritten as $W_p(s^{-p})$. Therefore,

$$U_p(s) = V(s) + W_p(s^{-p}).$$
 (7)

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \ \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N},$$

By using the matrix form based on STP, U is a potential game iff its payoff matrix U has the form

$$\begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_p \end{bmatrix} = \begin{bmatrix} V \\ V \\ \vdots \\ V \end{bmatrix} + \begin{bmatrix} ? \\ ? \\ \vdots \\ ? \end{bmatrix}.$$

Let $x \in \Delta_{n_1}$, $y \in \Delta_{n_2}$ and $z \in \Delta_{n_3}$. Then

$$xz = (I_{n_1} \otimes \mathbf{1}_{n_2}^{\mathrm{T}} \otimes I_{n_3})xyz.$$

Proof. $(I_{n_1} \otimes \mathbf{1}_{n_2}^T \otimes I_{n_3})(x \otimes y \otimes z) = x \otimes 1 \otimes z = xz$.

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \ \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N},$$

By using the matrix form based on STP, U is a potential game iff its payoff matrix U has the form

$$\begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_p \end{bmatrix} = \begin{bmatrix} V \\ V \\ \vdots \\ V \end{bmatrix} + \begin{bmatrix} ? \\ ? \\ \vdots \\ ? \end{bmatrix}.$$

Let $x \in \Delta_{n_1}$, $y \in \Delta_{n_2}$ and $z \in \Delta_{n_3}$. Then

$$xz = (I_{n_1} \otimes \mathbf{1}_{n_2}^{\mathrm{T}} \otimes I_{n_3})xyz.$$

Proof. $(I_{n_1} \otimes \mathbf{1}_{n_2}^{\mathrm{T}} \otimes I_{n_3})(x \otimes y \otimes z) = x \otimes 1 \otimes z = xz$.

U is a potential game if and only if there is a potential function V and auxiliary functions $W_p: \mathcal{S}^{-p} \to \mathbf{R}$ such that

$$U_p(s) = V(s) + W_p(s^{-p}) \ \forall \ s \in \mathcal{S}, \forall \ p \in \mathcal{N},$$

By using the matrix form based on STP, U is a potential game iff its payoff matrix U has the form

$$\begin{bmatrix} U_1 \\ U_2 \\ \vdots \\ U_p \end{bmatrix} = \begin{bmatrix} V \\ V \\ \vdots \\ V \end{bmatrix} + \begin{bmatrix} ? \\ ? \\ \vdots \\ ? \end{bmatrix}.$$

Let $x \in \Delta_{n_1}$, $y \in \Delta_{n_2}$ and $z \in \Delta_{n_3}$. Then

$$xz = (I_{n_1} \otimes \mathbf{1}_{n_2}^{\mathrm{T}} \otimes I_{n_3})xyz.$$

Proof. $(I_{n_1} \otimes \mathbf{1}_{n_2}^T \otimes I_{n_3})(x \otimes y \otimes z) = x \otimes 1 \otimes z = xz$.

U is a potential game iff its payoff matrix U has the form

$$U = \begin{bmatrix} V \\ V \\ \vdots \\ V \end{bmatrix} + \begin{bmatrix} W_1(\mathbf{1}_k^{\mathrm{T}} \otimes I_{k^{n-1}}) \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ W_2(I_k \otimes \mathbf{1}_k^{\mathrm{T}} \otimes I_{k^{n-2}}) \\ \vdots \\ 0 \end{bmatrix} + \cdots + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ W_n(I_{k^{n-1}} \otimes \mathbf{1}_k^{\mathrm{T}}) \end{bmatrix}.$$

Let $\mathcal X$ and $\mathcal Y$ be subspaces of a n-dimensional linear space. Then

$$\dim(\mathcal{X} + \mathcal{Y}) = \dim(\mathcal{X}) + \dim(\mathcal{Y}) - \dim(\mathcal{X} \cap \mathcal{Y}).$$

So the dimension of the linear space composed of potential games is $k^n + nk^{n-1} - 1$. (Sandholm, Games Econ Behav, 2010; Monderer D, Shapley, Games Econ Behav, 1996)

U is a potential game iff its payoff matrix U has the form

$$U = egin{bmatrix} ar{V} \ V \ dots \ V \ dots \ V \end{bmatrix} + egin{bmatrix} W_1(oldsymbol{1}_k^{\mathrm{T}} \otimes I_{k^{n-1}}) \ 0 \ dots \ 0 \ 0 \ 0 \ 0 \end{bmatrix} + egin{bmatrix} W_2(I_k \otimes oldsymbol{1}_k^{\mathrm{T}} \otimes I_{k^{n-2}}) \ dots \ 0 \ 0 \ dots \ W_n(I_{k^{n-1}} \otimes oldsymbol{1}_k^{\mathrm{T}}) \end{bmatrix} \ .$$

Let $\mathcal X$ and $\mathcal Y$ be subspaces of a n-dimensional linear space. Then

$$dim(\mathcal{X} + \mathcal{Y}) = dim(\mathcal{X}) + dim(\mathcal{Y}) - dim(\mathcal{X} \cap \mathcal{Y}).$$

So the dimension of the linear space composed of potential games is $k^n + nk^{n-1} - 1$. (Sandholm, Games Econ Behav, 2010; Monderer D, Shapley, Games Econ Behav, 1996)

Theorem (Hino, Int J Game Theory 2011)

 $\mathcal{G} = (\mathcal{N}, \ \mathcal{S}, \ \mathcal{C})$ is a potential game iff for every $i, j \in \mathcal{N}$, for every $a \in \mathcal{S}^{-\{i,j\}}$, and for every $x_i \in \mathcal{S}_i$ and $x_j \in \mathcal{S}_j$,

$$[c_j(B)-c_j(A)]+[c_i(C)-c_i(B)]+[c_j(D)-c_j(C)]+[c_i(A)-c_i(D)]=0,$$

where $A = (x_i, x_j, a)$, $B = (x_i + 1, x_j, a)$, $C = (x_i + 1, x_j + 1, a)$, and $D = (x_i, x_j + 1, a)$. The number of four-cycle equations is

$$C_n^2 k^{n-2} C_k^2 C_k^2 = O(n^2 k^{n+2}).$$

By (Hino, 2011), the number of equations is

$$C_n^2 k^{n-2} (k-1)^2 = O(n^2 k^n).$$

The minimum value is $(n-1)k^n - nk^{n-1} + 1 = O(nk^n)$. [4] Y. Hino, An improved algorithm for detecting potential games, Int J Game Theory (2011) 40:199-205.

29 / 47

A finite game U is a potential game iff there are exists row vectors V and W_i such that

$$egin{bmatrix} U_1 \ U_2 \ dots \ U_n \end{bmatrix} = egin{bmatrix} V \ V \ dots \ V \end{bmatrix} + egin{bmatrix} W_1 (oldsymbol{1}_k^{
m T} \otimes I_{k^{n-1}}) \ W_2 (I_k \otimes oldsymbol{1}_k^{
m T} \otimes I_{k^{n-2}}) \ dots \ W_n (I_{k^{n-1}} \otimes oldsymbol{1}_k^{
m T}) \end{bmatrix}.$$

or

$$egin{bmatrix} U_1 \ U_2 - U_1 \ dots \ U_n - U_1 \end{bmatrix} = egin{bmatrix} V \ 0 \ dots \ 0 \end{bmatrix} + egin{bmatrix} W_1(oldsymbol{I}_k^{\mathrm{T}} \otimes I_{k^{n-2}}) & W_1(oldsymbol{I}_k^{\mathrm{T}} \otimes I_{k^{n-1}}) \ dots \ U_n(oldsymbol{I}_k^{\mathrm{T}} \otimes I_{k^{n-1}}) & dots \ W_n(I_{k^{n-1}} \otimes oldsymbol{I}_k^{\mathrm{T}}) - W_1(oldsymbol{I}_k^{\mathrm{T}} \otimes I_{k^{n-1}}) \end{bmatrix}.$$

A finite game U is a potential game iff there are exists row vectors W_i such that

$$egin{bmatrix} U_2 - U_1 \ dots \ U_n - U_1 \end{bmatrix} = egin{bmatrix} W_2(I_k \otimes \mathbf{1}_k^{\mathrm{T}} \otimes I_{k^{n-2}}) - W_1(\mathbf{1}_k^{\mathrm{T}} \otimes I_{k^{n-1}}) \ dots \ W_n(I_{k^{n-1}} \otimes \mathbf{1}_k^{\mathrm{T}}) - W_1(\mathbf{1}_k^{\mathrm{T}} \otimes I_{k^{n-1}}) \end{bmatrix}.$$

or

$$\begin{bmatrix} -\mathbf{1}_k \otimes I_{k^{n-1}} & I_k \otimes \mathbf{1}_k \otimes I_{k^{n-2}} \\ -\mathbf{1}_k \otimes I_{k^{n-1}} & I_{k^2} \otimes \mathbf{1}_k \otimes I_{k^{n-3}} \\ \vdots & & \ddots & \\ -\mathbf{1}_k \otimes I_{k^{n-1}} & & I_{k^{n-1}} \otimes \mathbf{1}_k \end{bmatrix} \xi = \begin{bmatrix} (U_2 - U_1)^{\mathrm{T}} \\ \vdots \\ (U_n - U_1)^{\mathrm{T}} \end{bmatrix}.$$

The potential equation is dented by $\Psi \xi = b$, where Ψ is an $(n-1)k^n \times nk^{n-1}$ matrix.

Theorem (Cheng, Automatica, 2014)

The game $\mathcal{G}=(\mathcal{N},\ \mathcal{S},\ \mathcal{C})$ is potential if and only if the potential equation $\Psi \xi = b$ has a solution $\xi.$

Lemma (Cheng, Automatica, 2014)

$$\Psi \mathbf{1}_{nk^{n-1}} = 0; \quad \text{rank} \Psi = nk^{n-1} - 1.$$

We only need to prove that the dimension of $\Psi \xi = 0$ is 1. Assume that $\Psi \xi = 0$, prove that $\xi = a \mathbf{1}_{nk^{n-1}}$ for some a.

Theorem (Cheng, Automatica, 2014

The game $\mathcal{G} = (\mathcal{N},~\mathcal{S},~\mathcal{C})$ is potential if and only if

$$\operatorname{rank}[\Psi, b] = nk^{n-1} - 1.$$

Theorem (Cheng, Automatica, 2014)

The game $\mathcal{G}=(\mathcal{N},\ \mathcal{S},\ \mathcal{C})$ is potential if and only if the potential equation $\Psi \xi = b$ has a solution $\xi.$

Lemma (Cheng, Automatica, 2014)

$$\Psi \mathbf{1}_{nk^{n-1}} = 0; \quad \text{rank} \Psi = nk^{n-1} - 1.$$

We only need to prove that the dimension of $\Psi \xi = 0$ is 1. Assume that $\Psi \xi = 0$, prove that $\xi = a \mathbf{1}_{nk^{n-1}}$ for some a.

Theorem (Cheng, Automatica, 2014

The game $\mathcal{G} = (\mathcal{N},~\mathcal{S},~\mathcal{C})$ is potential if and only if

$$rank[\Psi, b] = nk^{n-1} - 1.$$

Theorem (Cheng, Automatica, 2014)

The game $\mathcal{G}=(\mathcal{N},\ \mathcal{S},\ \mathcal{C})$ is potential if and only if the potential equation $\Psi \xi = b$ has a solution $\xi.$

Lemma (Cheng, Automatica, 2014)

$$\Psi \mathbf{1}_{nk^{n-1}} = 0; \quad \text{rank} \Psi = nk^{n-1} - 1.$$

We only need to prove that the dimension of $\Psi \xi = 0$ is 1. Assume that $\Psi \xi = 0$, prove that $\xi = a \mathbf{1}_{nk^{n-1}}$ for some a.

Theorem (Cheng, Automatica, 2014)

The game $\mathcal{G} = (\mathcal{N}, \ \mathcal{S}, \ \mathcal{C})$ is potential if and only if

$$rank[\Psi, b] = nk^{n-1} - 1.$$

Question

What is the relationship between the four-cycle equation and the potential equation?

For the case of n = 2, the potential equation is

$$\left[-\mathbf{1}_{k_1}\otimes I_{k_2} \ I_{k_1}\otimes \mathbf{1}_{k_2}\right]\xi=b.$$

Theorem

The bi-matrix game $\mathcal{G}=(C_1,\ C_2)$ is a potential game if and only if

$$B_{k_1}(C_2 - C_1)B_{k_2}^{\mathrm{T}} = 0, (8)$$

where $B_k = [I_{k-1}, -1_{k-1}]$

[5] Xinyun Liu, Jiandong Zhu, On potential equations of finite games, Automatica, 68, 245-253, 2016.

Proof. Let $D_k := [I_{k-1}, \ 0] \in \mathbb{R}^{(k-1) \times k}$. Then it is easy to see that

$$B_k D_k^{\mathrm{T}} = I_{k-1}, \ D_k \delta_k^k = B_k \mathbf{1}_k = 0.$$
 (9)

Construct two matrices

$$\begin{split} E &= [-\delta_{k_1}^{k_1} \otimes I_{k_2}, \ B_{k_1}^{\mathsf{T}} \otimes \delta_{k_2}^{k_2}, \ B_{k_1}^{\mathsf{T}} \otimes B_{k_2}^{\mathsf{T}}]^{\mathsf{T}} \in \mathbb{R}^{k_1 k_2 \times k_1 k_2} \\ F &= [-\mathbf{1}_{k_1} \otimes I_{k_2}, \ D_{k_1}^{\mathsf{T}} \otimes \mathbf{1}_{k_2}, \ D_{k_1}^{\mathsf{T}} \otimes D_{k_2}^{\mathsf{T}}] \in \mathbb{R}^{k_1 k_2 \times k_1 k_2}. \end{split}$$

Then a straightforward calculation shows that

$$EF = \begin{bmatrix} -(\delta_{k_1}^{k_1})^{\mathrm{T}} \otimes I_{k_2} \\ B_{k_1} \otimes (\delta_{k_2}^{k_2})^{\mathrm{T}} \\ B_{k_1} \otimes B_{k_2} \end{bmatrix} \begin{bmatrix} -\mathbf{1}_{k_1} \otimes I_{k_2}, \ D_{k_1}^{\mathrm{T}} \otimes \mathbf{1}_{k_2}, \ D_{k_1}^{\mathrm{T}} \otimes D_{k_2}^{\mathrm{T}} \end{bmatrix}$$

$$= \begin{bmatrix} I_{k_2} & 0 & 0 \\ 0 & I_{k_1-1} & 0 \\ 0 & 0 & I_{(k_1-1)(k_2-1)} \end{bmatrix} = I_{k_1k_2}$$

$$lcl$$

So the potential equation is equivalent to $E\Psi\xi=Eb$. It is easy to check that

$$E[\Psi, b] = \begin{bmatrix} -(\delta_{k_1}^{k_1})^{\mathrm{T}} \otimes I_{k_2} \\ B_{k_1} \otimes (\delta_{k_2}^{k_2})^{\mathrm{T}} \\ B_{k_1} \otimes B_{k_2} \end{bmatrix} \begin{bmatrix} -\mathbf{1}_{k_1} \otimes I_{k_2}, & I_{k_1} \otimes \mathbf{1}_{k_2}, & b \end{bmatrix}$$

$$= \begin{bmatrix} I_{k_2} & -(\delta_{k_1}^{k_1})^{\mathrm{T}} \otimes \mathbf{1}_{k_2} & -((\delta_{k_1}^{k_1})^{\mathrm{T}} \otimes I_{k_2})b \\ 0 & B_{k_1} & (B_{k_1} \otimes (\delta_{k_2}^{k_2})^{\mathrm{T}})b \\ 0 & 0 & (B_{k_1} \otimes B_{k_2})b \end{bmatrix}$$

$$= \begin{bmatrix} I_{k_2} & 0 & -\mathbf{1}_{k_2} & -((\delta_{k_1}^{k_1})^{\mathrm{T}} \otimes I_{k_2})b \\ 0 & I_{k_1-1} & -\mathbf{1}_{k_1-1} & (B_{k_1} \otimes (\delta_{k_2}^{k_2})^{\mathrm{T}})b \\ 0 & 0 & (B_{k_1} \otimes B_{k_2})b \end{bmatrix}.(10)$$

So the potential equation is solvable if and only if

$$(B_{k_1} \otimes B_{k_2})b = 0$$
, i.e., $B_{k_1}(C_2 - C_1)B_{k_2}^{\mathrm{T}} = 0$. (11)

Corollary

The bi-matrix game $\mathcal{G}=(C_1,\ C_2)$ is a potential game if and only if

$$r_{ij} - r_{ik_2} - r_{k_1j} + r_{k_1k_2} = 0 (12)$$

for every $i = 1, 2, \dots, k_1 - 1$ and $j = 1, 2, \dots, k_2 - 1$, where $(r_{ii}) = C_2 - C_1$.

$$r_{ij} - r_{ik_2} - r_{k_1j} + r_{k_1k_2}$$

$$= c_2(i,j) - c_1(i,j) - c_2(i,k_2) + c_1(i,k_2)$$

$$-c_2(k_1,j) + c_1(k_1,j) + c_2(k_1,k_2) - c_1(k_1,k_2)$$

$$= [c_1(k_1,j) - c_1(i,j)] + [c_2(k_1,k_2) - c_2(k_1,j)]$$

$$+ [c_1(i,k_2) - c_1(k_1,k_2)] + [c_2(i,j) - c_2(i,k_2)]$$
(13)

So the condition in the theorem is just a set of four-cycle equations.

Given the strategy set for bi-matrix games, the set of all the relative payoff matrices of potential bi-matrix games is a (k_1+k_2-1) -dimensional subspace, which is isomorphic to

$$\mathcal{P} = \{ b \in \mathbb{R}^{k_1 k_2} | (B_{k_1} \otimes B_{k_2}) b = 0 \}.$$
 (14)

Lemma

Consider a linear subspace of \mathbb{R}^n as follows:

$$\mathcal{X} = \{ v \in \mathbb{R}^n | Bv = 0 \}. \tag{15}$$

If *B* has a **full row rank**, then the orthogonal projection of u onto \mathcal{X} is

$$\text{Proj}_{\mathcal{X}}u = (I_n - B^{T}(BB^{T})^{-1}B)u.$$
 (16)

Now we consider the orthogonal projection onto the potential subspace.

Theorem

Consider a bi-matrix game $\mathcal{G}=(C_1,\ C_2)$, where $C_1,C_2\in\mathbb{R}^{k_1\times k_2}$. Denote the relative payoff matrix by $R=(r_{ij})=C_2-C_1$ and let $H_k=I_k-\frac{1}{k}\mathbf{1}_k\mathbf{1}_k^{\mathrm{T}}$. Then

$$Proj_{\mathcal{P}}V_{r}(R) = (I_{k_{1}k_{2}} - H_{k_{1}} \otimes H_{k_{2}})V_{r}(R). \tag{17}$$

Proof. Let $\tilde{B} = B_{k_1} \otimes B_{k_2}$. By Lemma, we have

$$\begin{aligned} & \text{Proj}_{\mathcal{P}} \mathbf{V}_{\mathbf{r}}(R) \\ &= & (I_{k_1 k_2} - \tilde{B}^{\mathsf{T}} (\tilde{B} \tilde{B}^{\mathsf{T}})^{-1} \tilde{B}) \mathbf{V}_{\mathbf{r}}(R) \\ &= & (I_{k_1 k_2} - B_{k_1}^{\mathsf{T}} (B_{k_1} B_{k_1}^{\mathsf{T}})^{-1} B_{k_1} \otimes B_{k_2}^{\mathsf{T}} (B_{k_2} B_{k_2}^{\mathsf{T}})^{-1} B_{k_2}) \mathbf{V}_{\mathbf{r}}(R). \end{aligned}$$

A straightforward computation shows that

$$B_{k}^{T}(B_{k}B_{k}^{T})^{-1}B_{k}$$

$$= \begin{bmatrix} I_{k-1} \\ -\mathbf{1}_{k-1}^{T} \end{bmatrix} (I_{k-1} + \mathbf{1}_{k-1}\mathbf{1}_{k-1}^{T})^{-1}[I_{k-1} - \mathbf{1}_{k-1}]$$

$$= \begin{bmatrix} I_{k-1} \\ -\mathbf{1}_{k-1}^{T} \end{bmatrix} (I_{k-1} - \frac{1}{k}\mathbf{1}_{k-1}\mathbf{1}_{k-1}^{T})[I_{k-1} - \mathbf{1}_{k-1}]$$

$$= \begin{bmatrix} I_{k-1} - \frac{1}{k}\mathbf{1}_{k-1}\mathbf{1}_{k-1}^{T} & -\frac{1}{k}\mathbf{1}_{k-1} \\ -\frac{1}{k}\mathbf{1}_{k-1}^{T} & \frac{k-1}{k} \end{bmatrix}$$

$$= I_{k} - \frac{1}{k}\mathbf{1}_{k}\mathbf{1}_{k}^{T} = H_{k}.$$
(18)

It follows that (17) holds. \square

Theorem

Consider a bi-matrix game $\mathcal{G}=(C_1,\ C_2)$, where $C_1,C_2\in\mathbb{R}^{k_1\times k_2}$. Let $R=(r_{ij})=C_2-C_1$. Then the following statements are equivalent:

- (i) G is a potential game;
- (ii) $H_{k_1}RH_{k_2}=0$, where $H_k=I_k-\frac{1}{k}\mathbf{1}_k\mathbf{1}_k^{\mathrm{T}};$
- (iii) $r_{ij}=r_{i-{\rm ave}}+r^{j-{\rm ave}}-r_{{\rm ave}}$ for all $i=1,2,\cdots,k_1$ and $j=1,2,\cdots,k_2,$ where

$$r_{i-\text{ave}} = \frac{1}{k_2} \sum_{\mu=1}^{k_2} r_{i\mu}, \quad r^{j-\text{ave}} = \frac{1}{k_1} \sum_{\lambda=1}^{k_1} r_{\lambda j},$$
 (19)

$$r_{\text{ave}} = \frac{1}{k_1 k_2} \sum_{\lambda=1}^{k_1} \sum_{\mu=1}^{k_2} r_{\lambda \mu}.$$
 (20)

Proof. Obviously, \mathcal{G} is a potential game if and only if $\operatorname{Proj}_{\mathcal{P}} V_r(R) = V_r(R)$, where \mathcal{P} is the potential subspace. Therefore, we have that \mathcal{G} is potential if and only if

$$(H_{k_1} \otimes H_{k_2}) V_r(R) = 0$$
, i.e. $H_k R H_k = 0$.

Moreover, a straightforward calculation shows that

$$H_{k}RH_{k}$$

$$= (I_{k_{1}} - \frac{1}{k_{1}} \mathbf{1}_{k_{1}} \mathbf{1}_{k_{1}}^{T}) R(I_{k_{2}} - \frac{1}{k_{2}} \mathbf{1}_{k_{2}} \mathbf{1}_{k_{2}}^{T})$$

$$= R - \frac{1}{k_{1}} \mathbf{1}_{k_{1}} \mathbf{1}_{k_{1}}^{T} R - \frac{1}{k_{2}} R \mathbf{1}_{k_{2}} \mathbf{1}_{k_{2}}^{T} + \frac{\mathbf{1}_{k_{1}}^{T} R \mathbf{1}_{k_{2}}}{k_{1} k_{2}} \mathbf{1}_{k_{1}} \mathbf{1}_{k_{2}}^{T}.$$
 (21)

From (19)-(21), the equivalence between (ii) and (iii) follows. \Box

weighted network congestion games

Consider an example of weighted network congestion games (WNCG) addressed in Lemma 1 of Fotakis, Kontogiannis, and Spirakis (2005).

A weighted congestion game

With simple calculations, we get the relative payoff matrix $R = w_2P_2 - w_1P_1$, where P_1 and P_2 are given as follows:

$$P_{1} = \begin{bmatrix} c_{31} + c_{32} + c_{33} & c_{11} + c_{12} + c_{33} & c_{11} + c_{12} + c_{13} & c_{11} + c_{12} + c_{13} \\ c_{33} + c_{14} + c_{15} & c_{33} + c_{34} + c_{35} & c_{13} + c_{34} + c_{15} & c_{13} + c_{14} + c_{15} \\ c_{14} + c_{16} + c_{17} & c_{34} + c_{16} + c_{17} & c_{34} + c_{36} + c_{37} & c_{14} + c_{16} + c_{17} \\ c_{18} + c_{19} + c_{1,10} & c_{18} + c_{19} + c_{1,10} & c_{18} + c_{19} + c_{1,10} & c_{38} + c_{39} + c_{3,10} \end{bmatrix}$$

$$P_2 = \begin{bmatrix} c_{31} + c_{32} + c_{33} & c_{33} + c_{24} + c_{25} & c_{24} + c_{26} + c_{27} & c_{28} + c_{29} + c_{2,10} \\ c_{21} + c_{22} + c_{33} & c_{33} + c_{34} + c_{35} & c_{34} + c_{26} + c_{27} & c_{28} + c_{29} + c_{2,10} \\ c_{21} + c_{22} + c_{23} & c_{23} + c_{34} + c_{25} & c_{34} + c_{36} + c_{37} & c_{28} + c_{29} + c_{2,10} \\ c_{21} + c_{22} + c_{23} & c_{23} + c_{24} + c_{25} & c_{24} + c_{26} + c_{27} & c_{38} + c_{39} + c_{3,10} \end{bmatrix}.$$

A weighted congestion game

By the concept of weighted congestion game, the relative payoff matrix is $R = w_2P_2 - w_1P_1$. So, the game is a potential game if and only if

$$B_4RB_4^{\mathrm{T}}=0,$$

which is simplified as the following equations:

$$\begin{split} w_2(c_{31}+c_{32}-c_{21}-c_{22}) - w_1(c_{31}+c_{32}-c_{11}-c_{12}) &= 0, \\ w_2(c_{33}-c_{23}) - w_1(c_{33}-c_{13}) &= 0, \\ w_2(c_{34}-c_{24}) - w_1(c_{34}-c_{14}) &= 0, \\ w_2(c_{35}-c_{25}) - w_1(c_{35}-c_{15}) &= 0, \\ w_2(c_{36}+c_{37}-c_{26}-c_{27}) - w_1(c_{36}+c_{37}-c_{16}-c_{17}) &= 0, \\ w_2(c_{38}+c_{39}+c_{3,10}-c_{28}-c_{29}-c_{2,10}) \\ -w_1(c_{38}+c_{39}+c_{3,10}-c_{18}-c_{19}-c_{1,10}) &= 0. \end{split}$$

- 1. Based on the STP, a finite game can be expressed as a **payoff matrix**.
- 2. A finite potential game is just like a potential vector field (conservative field).
- 3. A finite game is a potential game if and only if its **potential equation** has a solution.
- 4. The **minimum number** of linear equations for verifying potential games can be obtained.
- 5. Based on STP, linear spaces of games and congestion games can be considered.

- 1. Based on the STP, a finite game can be expressed as a **payoff matrix**.
- 2. A finite potential game is just like a **potential vector** field (conservative field).
- 3. A finite game is a potential game if and only if its **potential equation** has a solution.
- 4. The **minimum number** of linear equations for verifying potential games can be obtained.
- 5. Based on STP, linear spaces of games and congestion games can be considered.

- 1. Based on the STP, a finite game can be expressed as a **payoff matrix**.
- 2. A finite potential game is just like a **potential vector** field (conservative field).
- 3. A finite game is a potential game if and only if its **potential equation** has a solution.
- 4. The **minimum number** of linear equations for verifying potential games can be obtained.
- 5. Based on STP, linear spaces of games and congestion games can be considered.

- 1. Based on the STP, a finite game can be expressed as a **payoff matrix**.
- 2. A finite potential game is just like a **potential vector** field (conservative field).
- 3. A finite game is a potential game if and only if its **potential equation** has a solution.
- 4. The **minimum number** of linear equations for verifying potential games can be obtained.
- 5. Based on STP, linear spaces of games and congestion games can be considered.

- 1. Based on the STP, a finite game can be expressed as a **payoff matrix**.
- 2. A finite potential game is just like a **potential vector field** (**conservative field**).
- 3. A finite game is a potential game if and only if its **potential equation** has a solution.
- 4. The **minimum number** of linear equations for verifying potential games can be obtained.
- 5. Based on STP, **linear spaces of games** and **congestion games** can be considered.

References

- [1] Monderer D, Shapley LS, (1996) Potential games.
 Games and Economic Behavior, 14, 124-143.
- [2] Sandholm WH, (2010) Decompositions and potentials for normal form games. Games and Economic Behavior, 70, 446-456.
- [3] Y. Hino, (2011) An improved algorithm for detecting potential games, Int J Game Theory, 40, 199-205.
- [4] D. Cheng, (2014) On finite potential games, Automatica, 50, 1793-1801.
- [5] X. Liu, J. Zhu, (2016) On potential equations of finite games, Automatica, 68, 245-253.

Many Thanks for Your Attention!