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The Logic of Animal Conflict

J. MAYNARD SMITH

School of Biological Sclences, University of Sussex, Falmer, Sussex BNI 9QG

G. R. PRICE

Galton Laboratory, University College London, 4 Stephensan Way, Londoa NW1 2HE

Conflicts between animals of the same
species usually are of “limited war"
type, not causing serious injury. This
is often explained as due to group or
species selection for behaviour bene-
fiting the species rather than indi-
viduals. Game theory and computer
ow, h that
a “limited war” strategy benefits indi-
vidual animals as well as the species.

|~ 4 lypical combat between two male animals of the
same species, the winoer gains mates, dominance rights,
desirable territory, or other advantages that will tend toward
transmitting its genes 10 future generations i higher fre-
quencics than the loser’s pencs. Consequently, one might
expect that natoral selection would develop maximally
effective weapons and fighting styles for 3 “total war”
sirategy of batiles between males to the death. But instead,
intraspecific conflicts are usually of a “limited war™ type,
involving inefficient weapons or ritualized tactics that seldom
cause serious injury fo either contestant. For example, in
many snake species the males fight each other by wrestling
without using their fangs'”. In mule doer (Odocolleus
hemignus) the bucks fight furiously but harmlessly by
crashing or pushing anters against antlers, while they refrain
from atticking when am opponent turns away, exposing
the unprotected side of its body’. And in the Arabian
oryx (Oryx leucarys) the extremely long, backward pointing
borns are so incfficient for combat that in order for two
males to fight they are forced to kneel down with their
Is between their knees to direct their horns forward'
(For additional examples, sce Collins', Darwin®, Hingston',
Huxley er al’, Lorenz* and Wynne Edwards')

How can one explain such oddities s snakes that wrestle
with cach other, dcor that refuse Lo strike “foul blows™, and
antelope that kneel down 1o

The accepted explanation for the conventional nature of
cantesis is thai i no conventional methods existed, many
individuals would be injured, and this would militate against
the survival of the species (see, for example, Huxley). The

selection a4 an agent producing
adaptations, it is only likely to be eflective in rather special
circumstances™*. Consequently it seems 1o us that group
cannot by itself account for the complex anatomi-
cal and behavioural adaptations for limited conflict found
in $o many species, but there must also be individual selee.
ton for these, which means that a “limited war” strategy
must be differentially advantageous for individuals.
We consider simple formal models of conflict situations,

and ask what nmqy will be favoured under individusl
selection. We ¢ conflict in species possessing
offensive mw- :mbk of mn‘ﬂu serious injury on
other members of the species. Then we consider conflict
i §pecies where serious injury is impossible, so that victory

#oes to the contestant who fights longest. For each model,
ey strategy that will be stable under natural selee-

argument; it has been derived in part from the theory of
games, and in part from the work of MacArthur? and of
Hamilton™ on the evolution of the sex ratio. Roughly,
an ESS is n strategy such that. if most of the members
of a population adopt it, there is no “mutant”™ strategy that
would give higher reproductive fitness.

A Computer Model

A main resson for using computer simulation was to
test whether it is possible even in theory for individual
selection to account for “limited war* bm.mm

We consider n species that possesses offensive weapons
capable of inflicting serious injurics. We assume that there
are two calegories of conflict tactics: “conventional” tactics,
C. which sre unlikely to cause serious injury, and
“dangerous” tsctics, D, which are likely to injure the
opponent scriowsly if they are employed for long. (Thus
in the snake example, wrestling involves C tsetics and use
of fangs would be D tactics. In many species, C tactics
are limited to threat displays at a distance, without any
physical fighting. We comsider a conflict between two
individuals to consist of a series of alternate “moves”.
At each move, a contestant can employ C or D tactics,
or reireat, R. If a contestant employs D tactics, there is
& fived probability that his opponent will be seriously
injured: a contestant who is seriously injured always
retreais. If a conicsiant reircats, the comiest is at un end
and his opponent is the winner. A possible conflict besween
contestants 4 and B can be represented in this way

Asmove CCCCCCCCCCCPCCCCCCCD

Hsmove CCCCCCCCCCEDCCCCCCCR

If a contestant plays D on the first move of a contest,
or plays D in response 10 C by his opponent, this is called
a “probe” or a “prevocation”. A probe made after the
opeaing move is said to “escalate™ a contest from C to D
level. A contestant who plays D in reply to a probe is
said 1o “retaliate™. In the example shown sbove, A probes
on his twelfth and twentieth moves, & retaliates after the
first probe, but retreats after the second, leaving A l.he
winner. At the end of a contest there are “pay-offs”
each contestant. The pay-offs are taken as measures al
the contribution the contest has made to the reproductive
success of the individual. They take account of three
factors: the advantages of winning as compared with loting.
the dissdvantage of being seriously injured, and the dis-
advantage of wasting time and energy in the contest
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|ﬁ [1] J. M. Smith, G. R. Price, The logic of animal conflict, Nature, Vol. 10, No. 5427, 15-18, 1973.
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Motivation of EGs
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SINGLE Prisoners dilemma payoffs for ME

'REPEATED Prisoners dilemma payoffs for ME
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Figure 3: Strategic alternatives in social behaviour
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Development of EGs

1950s

Alchian (1950) ZINFELE S 7 # A B ARIEFRIH K
BHER KW S. Nash (1951) B “BHEIT R 2 1970
BEREEERUHEERENSERIERHR.

n Smith& %< {The logic of animal conflict) ,
\J Fae R IS HIIRE . Sm1thh‘ﬂPrlce?zE|':|:'uéE

1980s KB POERES “RUERE .
G FRITRALMINE I NS K2, BT 1978%F, HEASFEK TaylorflJonkerfeth TR LI
STHABEEE, FUEURRETHE, FIDEREAI RS RIS

FIRIX R B AR St T R RIS 2 1
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I@ [2] J. F. Nash, Non-cooperative games, Annals of Mathematics, No. 54, 286-295, 1951.
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1990s

EUETICHNARBFEN—IFEIMEL. Weibull (1995) tLER RS, TR L TELERIE, He
BE T —ERMAIEILMFTAR.

21142
SEUETNEREI T —EHNER, SSENEEERNAEELEENFRTURN, 22
142 T EREN E MR T IS, B2k, BN ETE S EEXETL, B

T KEMHR.
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[3] K. Basu K, J. Weibull, Strategy subsets closed under rational behavior, Economics Letters, Vol.
36, No. 2, 141-146, 1991.

[4] J. Bengtsson, J. Ahnstrm, A. Weibull, The effects of organic agriculture on biodiversity and
abundance: A meta-analysis, Journal of Applied Ecology, Vol. 42, No. 2, 261-269, 2010.

[5] B. Jin, H. Li, W. Yan and M. Cao, Distributed model predictive control and optimization for
linear systems with global constraints and time-varying communication, IEEE Transactions on
Automatic Control, Vol. 66, No. 7, 3393-3400, 2021. 8
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Replicator Rules

Figure 5: RUUETRABERAFANTIENRFER, ARG
HFEEN, ZRGREB=ADTEZERBY—ME, BENEFRINE.

I@ [6] J. M. Smith, Evolution and the theory of games, American Scientist, Vol. 64, °

No- 1, 4145, 1976, P
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Evolutionarily Stable Strategy (ESS)

J. M. Smith #1 G. R. Price {2l TEH R ERPIELRE S, ZHBESHR D FEEK
EIRIBIPE TR AL, AEH#A—SAREE 7 RLA9EAL.

To answer this question, we need a more precise definition
of an ESS. We define E,(I) as the expected pay-off to I
played against J. Then I is an ESS if, for all J, E (D>
E,(J); if for any strategy J, E/(I)=E;(J), then evolutionary
stability requires that E,()>E,;(J). The relevance of the
latter condition is as follows. If in a population adopting
strategy I a mutant J arises whose expectation against 7
is the same as I's expectation against itself, then J will
increase by genetic drift until meetings between two J’s
becomes a common event.

|@ [1] J. M. Smith, G. R. Price, The logic of animal conflict, Nature, Vol. 246, No. 5427,
15-18, 1973. 10
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Repeated Game

EBUEEPNABRAI ZHREARGTHIER , EEFKTaylor

FJonkerfE & HAE R U RITE IR LR UIE IR E RN Z
, XERWEFIERA RN —EEIZ.

|@ [7] R. Taylor, L. Jonker, Evolutionarily stable strategies and game dynamics, Mathematical

Biosciences, Vol. 40, No. 1-2, 145-156, 1978.
11
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Repeated Game

AEEZIERD, R—TEERBEEEZR, MAEEEE. IXFAEEES
BEPRSNESR, THEHFECHRE. Bift, TE-EHNENESEF
G = {N,{Si: €N}, {e;:ie N FEEAETEIS ¢, BMR | € MRIBUATNES K
B s:(t) € Si(t) . HtpTrRAREUAREEZEHHYE ™) = a(s0). gR—F
B ST SE 3 B CHYSRHER .

— MR FE IR AT

si(t+1) :Fé(ﬁsi(k);ﬁs_i(k);ci), (1)

Hep, Fi ATLAZHE M R B & RN R .

|m [8] P. H. Young, Strategic Learning and Its Limits, Oxford University Press, 2004. 12
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Repeated Game

FE LR ANZFINGS, EREIMMRXEARRVICIZE EBEEERNELE 81
MRRAEF—DICICIEE. ERXMERT, ERFIAMMSs:

s(t+1) =7 (Si(t); s-i(t); Ci)' (2)

RIFBEIN MR EHREHNF, AURREEBEESAELES. BEFEI . HFEIFBEHEF
FIFRE

o [A]252 2] (synchronous learning): TEREANITZI] ¢, B Bn AT XTI 22 ST R0, [5]RF BE S B 1 5 K.

o 5252 2] (asynchronous learning): TERF/ M %I ¢, R 2Bu R B 6 H 21 5KRS, HAhDTR RFFIHFE R
ISR AR, BN, AMEAIEE @ € N UAEE p; € (0,1) B3 B CRIKREE, I 1 — p; fREFE CERIIKE
s, R R T R

o JIii/7%% 2] (sequential learning): FLR KB T B FAHCE BT B CSRRS. B2 ¢, R — NI
H 5 B, FARBT o ORI S5 R SRR AR

o [HHLIN 7°%% 2] (random-timing learning): &M% ¢ 48— @R ¢; € (0,1) EFE—1IixK i € N B

H SRS, b Y ¢, = 1. 13
1EN
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Strategy Profile Dynamics (SPD)

E W a5 R AT AE M BRI R RIS R, Frl—n NEUEZER LSRR AN
T

(810t + 1) = fi(s(t), s(t— 1),---,5(0))
so(t+1) = fo(s(t),s(t —1),---,s(0))

L sn(t+1) = fuls(t),s(t —1),---,5(0)),
Hoft, s(0) = (s1(0), - -+, 50 (1)) FoRRNELRTE ¢ RGNS, VERE: £, 0 € N ARG — RIS, X Sk
Bigk i 0 O I .

|ﬁ [9] H. Q1, Y. Wang, T. Liu, D. Cheng, Vector space structure of finite evolutionary games and its
application to strategy profile convergence, Journal of Systems Science & Complexity, Vol. 29,
602-628, 2016. 14
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REFMIMRRABF—HILIZI8E, BIE T —RZIARER{NNKE TS TR (B/R
AIRARERE), BELHFEZA:

[ Sl(t + 1) — fl(Sl(t)a SZ(t)! T :Sn(t))
sa(t +1) = fa(s1(2), s2(t),- -+, sn(t)) (3)

| Sa(t+ 1) = fa(s1(2), 82(2), - -+ 5 sn(t)).

AL IR 1 5 2 ME— LR E Y !
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Strategy Updating Rule (SUR)

FE R & tm S Mypoic best response asjustment (MBRA)

Construct a set of optimal response set of strategies at ¢ as

Oi(t) = argmax, s, ci(si s (t)).
Then
(i) (Case 1) If 2;(t) € O4(t), then z;(t + 1) = zi(t);
(i) (Case 2) If 25(t) & Oi(t), then

— Deterministic Model (MBRA-D): Choose smallest j, such that s; € O;(t), and set

4 7 (t -+ 1) = 8.
— Stochastic Model (MBRA-S): Choose any j € O;, with equal probability p = 1/|0;|.
EWEIER B IRTE

16
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T &A1 Unconditional Imitation

II-I :Unconditional Imitation with Fixed Priority
The best strategy from strategies of play-

ers {j|j € N |} attime ¢ is selected as the strategy of

player i at time ¢ + 1, denoted by x;(z + 1). Precisely, if

J* = argmax;e v c;(x(1))

then
xi(t+1) = Xj*(t).

When the players with the best payoff are not unique,
say

argmax;. . ¢;(x@) :={j,...,J} 17
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T &4 1545 Unconditional Imitation

II-17 :Unconditional imitation with equal probability for
best strategies. When the best payoff player is unique, it
is the same as II-I. When the players with best payoff

are not unique, say, as in (16), then we randomly choose
one with equal probability. That is

. |
xi(t +1) = xj=(¢), with probability Py = -
fl = L, oo

This method leads to a probabilistic k-valued dynamics.

18
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“An ounce of algebra 1s worth a ton of
verbal argument”

——J.B.S. Haldane
(as quoted by John Maynard Smith)
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Semi-tensor Product (STP)

BIREUEEREB RN RBIEENERHIE, EMRBEER R
ATLUERE. BTl SEIEERUEBARAEEREHI 2R K E—RZIER)E, AR
BT IRETUR—NBREEZERZHITHIE.

FRERGIEN BRI A REE RAER , AR

I@ [10] D. Cheng, An Introduction to Semi-tensor Product of Matrices and Its Applications. World
Scientific, 2012.

20
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Semi-tensor Product (STP)

R & OB ¥ 5 m ¥
J. Sys. Sci. & Math. Scis.
32(10) (2012, 10), 1226-1238

LT 5B A R AR ISS]

ERE B X ®FF

(PEEERAES REREFRREEEEFRN, N 100190)

ME BITREMEYERDSRKARLEMMXER. ERAFQUE=1THE. 1)
ETFIEWEMHERDS (VW) REAERE, PNofdAREHSERLH S HERRHKY
B 2) FMERRREFHREAPURBEFAHSRRENHAEHRFTOHRE
YRR SNE: 3) NEAERHSEROREEW S EIIEMERANTEE.
OB ETRBEHRNEREDR, BATEREERDE REFHLNETERYNWE
2h3E R 5 g e Y SERERUR.

XWiE Gk, ERAERE, RLEY, SH5E, ERRERE.

MR(2000) EEHXE 91A06

BEAVRESE R T 5 b Z[ER %R, FH

R LN , ZrAlgE T MR RETRAR T LA R
EXRLZREHRE,

|ﬁ [11] 2R, BE, R BUERESEZENTRENMLES, REMFES

M, Vol.32,No.10, 1226-1238, 2012.
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Semi-tensor Product (STP) STPﬁﬂ){%EBEﬁ1‘tﬁg¥ﬁ]ﬁ?‘-@$§%F*%E"Jig
ML, BT —MEFIREEREL:

Identify each strategy s; = j € S; by the vector form 5 ., ¢ € N. Then, S; ~ Ag,.

The strategy profile s = (s1, 2, -+, 5,,) is expressed as the vector form
— 4
The payoff function ¢; is expressed as ¢;(s1, 82, -+ ,8,) = VX", s5,i=1,---n,

where V¢ € R¥ is called the structure vector of ¢;. Collecting the structure vector

of each player, we obtain the structure vector of GG as

VE=[VEVE - VS eR™. (5)

22
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Semi-tensor Product (STP)

Based on STP, convert (3) into the algebraic form

Denote z;(t) € Ag,, i =1,--- ,n, we have

where z(t) = x_,x,(t), M; € Ly, «i is the structure matrix of f;, i =1,--- ,n.

Multiplying these equations together yields the following algebraic form:
z(t+1) = Mx(t), (7)

where M := M; *---x M, € Li«p.

23
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Example 1 We give a numerical example to illustrate the vector space of

finite games and how to use the SUR to determine the
strategy profile dynamics.

A game GG has 3 players. Player 1 and player 3 have 2 strategies, and player

2 has 3 strategies. Then we have N = {1,2,3}, §1 = {1,2}, S, = {1,2,3}, S3 = {1,2}. That
iS, n:3, k1 :k‘3:2, k‘2:3, and k=2-3-2=12. SOGGQ[3;2,3’2].

Example 1:

As a vector, V€ V9, which has dimension nk = 36. Next, assume Table 1 is the payoff
matrix of G.

Table 1 Payoff matrix of Example 3.8

S

‘ 111 112 121 122 131 132 211 212 221 222 231 232
c1 1 -1 2 1 0 4 3 -2 3 0 -3 -4
| 2 —3 —2 3 ) 3 3 -1 —1 2 -1
c3 0 ) —2 2 -1 4 2 4 -3 —2 3 2
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Then, we have
.‘/lc — :1:_112)1:0:4:31_2:310:_3:_4]1
.‘/26 — :_1:\2:_3:_233:'5:313:_1:_112a_1]a

Ve =0,5,~22 ~1,424.-3 —23,79],
e AT 52 P 45
VE = Ve, Vi, Vsl AT RIS

Sequential MBRA
Assume player 1 is chosen to update its strategy. Then we have

@)
(o)
z1(t +1) = fi(z1(t), z2(t), z3(t)) = 62[2,1,2,1,1,1,2,1,2,1,1,1](t),

zo(t+1) = 22(t) = 85[1,1,2,2,3,3,1,1,2,2,3,3]z(t),
z3(t+1) = 23(t) = 62[1,2,1,2,1,2,1,2,1,2,1,2]z(t),

where z(t) = x3_,z;(t).

25
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r(t +1) = Myz(t),

where
M = 615[7,2,9,4,5,6,7,2,9,4,5, 6].

Similarly, if player 2 is chosen to update its strategy, then we have
z(t + 1) = Max(t),

where
My = 612[5,6,5,6,5,6,7,8,7,8,7, 8].

If player 3 is chosen to update its strategy, then we have

z(t + 1) = Mzz(t),

where
M; = 615[2,2,4,4,6,6,8,8,10,10,11, 11].

26
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Then in periodic type we have

.

In random-timing type we have

z(t+1)= Mz(t), M

1
3

(z(t +1) = Myz(t), t=3k,
iB(t -+ 1) = MQLL‘(!Z),
k:13(?5 - l) = M3$(t),

(M1 4+ Mz + M3) =

I 1
C T T 0 0 e D e B8
[ B o T o T~ TR T U o I

t=3k+1,
t=3k+2,

2

00
00
00
1 2
10
1 )
00
00
10
00
00
00

000
000
000
000
200
130
00 2
i N
000
000
000
000

000
100
000
Ho i
000
000
0 10
20 1
0 10
g i
000
000

C e B D E O e e OO
L (]
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HFSTP A, BHEEABEERTRESLE T —BYPH4E R

NIRSCERWT U T EG R SRS S U 5 D0 422 i) S5 AH 5% 7] 7t

[12] =R, BE, R SBUIEFSZENSRAGNMHETR, RERZFESHEF, Vol
32, No.10, 1226-1238, 2012.

[13] G. Zhao, Y. Wang, H. Li, A matrix approach to modeling and optimization for
dynamic games with random entrance, Applied Mathematics and Computation, No. 290,
9-20, 2016.
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[12] FEACE, B, fRUrir s sE 52 S R e iz, Rapt# 55,
Vol. 32, No.10, 1226-1238, 2012.

X T h SR, A0 T8 P 2 R
1) T fe

Ji = 1111'1 EZC‘(II{IE $2(t)'.l Iﬂ.(t)): i=1,2,---,n.
2) (HIEBE T8 SR
Ji -ZA’ z(t),ut)), i=1,2,---,n,

XEO< <1 HERHTF M.

29
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i Il(t + 1) = fl(xl (t): Ig(t), e !‘Tﬂ(t): u) (t)vuﬂ(t): s 1u‘m(t))=
z2(t+1) = fa(z1(t), 22(t), - - - , Zn(t), ua(t), ua(t), -+ , um(t)),

(7)

\

L 'r'ﬂ-(t + 1) — fn{ml(t)ii"?(t)i R 1$ﬂ(t)rul(t)iu2(t): 4bay 1um(t))1
Jz% T; € pk.-: u;j € 'de.

EIE O BR ARG (7) 7 1) VW B 2) HWETLE T MKE, FHRGE
.

1) —HmIUAEE B VPR TR S — F i = 0) p ST A E BIEEREEEA
F A5 6).

2) AN (u (1) W2

w(t+1) = g(x(t), u(t)) = Lou(t)z(t),

XE, Lg € Lpxpg-
BT LARGR, FMEBERBOTH AR
1) Fik—: @ AHE SRR R,

2) IR = TENCRE A (W E TR RS
30




PR T A

SHANDONG NORMAL UNIVERSITY

Center of STP Theory and Its Applications

Convergence

TIANEIAR TEGHTR EMEFUZEE, AKX Nashts) = ZFio]f

[14] H. Qi, Y. Wang, T. Liu, D Cheng, Vector space structure of finite evolutionary games
and its application to strategy profile convergence, Journal of Systems Science &
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[14] H. Q1, Y. Wang, T. Liu, D Cheng, Vector space structure of finite evolutionary games and its
application to strategy profile convergence, Journal of Systems Science & Complexity, Vol. 29,
602-628, 2016.

The Lyapunov function of EGs is defined in [14] and its application to the convergence of EGs is
presented.

Definition 8.1 Let G € Gy kg, kn]s K = |

1=

1) A pseudo-logical function ¥ : A — R is called a Lyapunov function of G if
Plz(t+1)) —P(x(t)) 20, =0,

and Y (z(t + 1)) = ¥ (x(t)) implies z(t + 1) = z(t).
2) When the mixed strategies are allowed, in the above definition 1) should be replaced by
its expected value, i.e., EY : T, — R with

Ew(ﬂﬁ(t £ 1)) - Ew(x(t)) > 07 t > 0?

and EY(z(t + 1)) = EY(x(t)) implies Ex(t + 1) = Ex(t).
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Theorem 8.2 An EG will converge to an equilibrium if there is a Lyapunov function.

Theorem 8.4 Given a deterministic game G with its strateqy profile dynamics (61) with
T = 6kli1,i2, - ,ik]. G has a Lyapunov function if and only if
(i)
Qj ; 2%‘5 j:132?"':k

has solution aj, j =1,2,--- , k;

(ii) a;; = a; implies i; = j.

Moreover, in [14] the near potential function for an EG is defined, and it is proved that if the near
potential function of an EG is a Lyapunov function, the EG will converge to a pure Nash equilibrium.
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Problem Formulation
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Applications, No. 4, 95-163, 2015.
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Development of NEGs
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Motivation of Studying NEGs via STP
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NEGs Based on STP

We first give a rigorous definition of NEGs.

Network graph

Fundamental network game
(FNG)

Strategy updating rule
(SUR)

%3 [43] D. Cheng, F. He, H. Qi, T. Xu, Modeling, analysis and control of networked
evolutionary games, IEEE Transactions on Automatic Control, Vol. 60, No. 9,
2402-2415, 2015.
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Network Graph L2 2 5 & B

| ] T =3
6 3 :&U . '3 )

| & | 10 11 12

Givenaset N = {1,2,...,n}and EC N x N, (N,E) is : T
called a graph, where NN is the set of nodes and E is the set of ¥ °* W e
edges. If (2, 7) € E implies (j,7) € E, the graph is undirected, 1
otherwise, it is directed. Let N' C N, and ' = (N’ x N') N
E. Then (N', E") (briefly, N') is called a sub-graph of (N, E)
(briefly, V). ’ ’

4

3

(b) Rs. (d} Roc X Roo.
Figure 11: —L£ 5 LAY [E1REY

NRMEEESE RPN BMETSNAEMEELHHEE, sMEERXENEMBET RINE
#BHEE, MFERA (homogeneous network); FN|, E#EIRH

(heterogeneous network).

homogeneous networks: (a),(d) heterogeneous networks: (b),(c) 44
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Neighborhood of Node

Definition 1: Let N be the set of nodes in a network, F C
N x N the set of edges.

i) j € N is called a neighbor of 4, if either (i,j) € E or
(7,1) € E. Throughout this paper U (7) is used for the set
of neighbors of 7 union {i}, called the neighborhood of i.
i1) Ignoring the directions of edges, if there exists a path
from ¢ to j with length less than or equal to ¢, then j
is said to be an /-neighbor of ¢, the set of /-neighbors of ¢
is denoted by Up(¢). Hence, U(¢) = Uy (1), Up(2) = {i}.
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Fundamental Network Game (FNG)

A normal game consists of three factors:

i) nplayers N ={1,2,...,n};
ii) Player ¢ has the strategy set S; ={1,...,k;}, i =
l,...,n, S :=]];—, S; is the set of profiles;
i11) Payoff functions¢; : S - R,z =1,...,n.

|ﬂ [44] R. Gibbons, A Primer in Game Theory. Glasgow, U.K.: Bell and Bain Ltd., 1992.
46
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Definition 2:
1). A fundamental game with two players is called a FNG, if

SlzfﬁIZﬁ%ZZ{LQV.wk}.

11). An FNG 1s symmetric, if

Cl(xay) :CZ(yax)a \VISC,yESO.
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Strategy Updating Rule (SUR)

Definition 3: An SUR for an NEG, denoted by II, is a set
of mappings

zi(t+1)=gi(x;(t),c;(t); 7€U(3)), t>0, i€eN.

That is, the strategy of each player at time ¢ 4+ 1 depends on
its neighbors’ information at ¢, including their strategies and
payoffs.

Note that 1) g; could be a probabilistic mapping, which means
a mixed strategy is used by player 7; 11) when the network 1is
homogeneous and the SUR used by every player is unique, g;,

1 € N, are the same. 45




PR R T AR

/‘ SHANDONG NORMAL UNIVERSITY

Center of STP Theory and Its Applications

Payoff

Definition 4: Let c;;(t) be the payoff of i in the game with
7 at t. Then the overall payoff of player ¢ at ¢ 1s

1 .
¢ (t) = TO=T Z | cij(t), ie€N (8
JEU (0)\{i}

where |U (7)| is the cardinality of U ().
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7L s LM A Mypoic best response asjustment (MBRA)

Construct a set of optimal response set of strategies at ¢ as

At REE
TEishER
R

Oi(t) = argmax, .g. ¢i(si, s4(E)).

Then 0O O
(i) (Case 1) If z;(t) € O;(t), then z;(t + 1) = z;(t);
(ii)) (Case 2) If z;(t) € O;(t), then

— Deterministic Model (MBRA-D): Choose smallest j, such that s; € O;(¢), and set
T; (t + 1) — 8j.
— Stochastic Model (MBRA-S): Choose any j € O;, with equal probability p = 1/|0;|.

R TE IR




PR T A

QLAY  SHANDONG NORMAL UNIVERSITY
CL

Center of STP Theory and Its Applications

T &4 1545 Unconditional Imitation

II-7 :Unconditional Imitation with Fixed Priority

The best strategy from strategies of neighborhood play-
ers {j|j € U(i)} at time ¢ is selected as the strategy of
player i at time ¢t 4 1, denoted by x;(z + 1). Precisely, if

J© = argmax; gy ¢j(x(1))

then
xi(t+1) = Xj*(t).

When the players with the best payoff are not unique,
say

: : 51
argmax ;. ¢ (x @) == {ji’, ..., j;}
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T &4 1545 Unconditional Imitation

II-17 :Unconditional imitation with equal probability for
best strategies. When the best payoff player is unique, it
is the same as II-I. When the players with best payoff

are not unique, say, as in (16), then we randomly choose
one with equal probability. That is

. |
xi(t +1) = xj=(¢), with probability Py = -
fl = L, oo

This method leads to a probabilistic k-valued dynamics.
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Simplified Fermi Rule

Randomly choose a neighbor j € U(i), j # ¢. Compare c;(x(t)) with ¢;(z(t))

to determine z;(t + 1) as

Bt 4 1) = {Ij(t), ¢j(x(t)) > ci(t))

x;(t), otherwise.

This SUR leads to a probabilistic k-valued logical dynamics system.
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Definition 5 : An NEG, ((N, E), G,1I), consists of

i) anetwork graph (N, F);

ii) an FNG, G, such that if (i,j) € E, then 7 and j play
FNG repetitively with strategies z;(¢) and x;(t) respec-
tively. Particularly, if the FNG 1s not symmetric, then
the corresponding network must be directed to show that
(7,7) € E implies that in the game ¢ is player one and j
1s player two;

111) an SUR, based on local information and expressed as (2).

If the graph is , the game is called
a




PR TR

SHANDONG NORMAL UNIVERSITY

Center of STP Theory and Its Applications

Mathematical Model of NEGs

Modeling of NEGs
Analysis of NEGs

Control of NEGs

%3 [45] D. Cheng, F. He, H. Qi, T. Xu, Modeling, analysis and control of networked
evolutionary games, IEEE Transactions on Automatic Control, Vol. 60, No. 9, 55

2402-2415, 2015.
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Modeling of NEGs

‘Theorem 1: The strategy dynamics of each node can be
expressed as

zi(t+1) = fi({z;(t);7 € U2(0) }), e N, )

(9) is called the fundamental evolutionary equation (FEE).
We can express (9) into its algebraic form as

xi(t+1)=M; Xjep,i)xj(t), t=0,ieN. (10)

Set £ = |Us(i)|, then in (10) the M; € L, when
pure strategies are used; and M; € 7}, when mixed
strategies are used.

For a homogeneous network all FEEs are the same. 56
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We give an algorithm of FEE as follows

Algorithm 1 : Consider a node (player) i.

1) Step 1: Foreach j € U(i) consider k € U(j). According
to x;(t) and xx(?), ¢ x(¢) can be calculated.

2) Step 2: Using formula (9) , cj(¢), j € U(i) can be
calculated.

3) Step 3: Using the c¢;(¢), j € U(i) and according to the
SUR, x;(t + 1) can be figured out.
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Example 7 We use example to show how to use the SUR to determine the
FEE. Note that since (10) 1s a k-valued logical dynamic system,

it can be expressed into a matrix form (refer to the Appendix).

Example 2: Assume the network is R3 and the FNG is the

game of Rock-Scissors-Paper. The payoff bi-matrix is shown in
Table II.

TABLE 11
PAYOFF BI-MATRIX (ROCK-SCISSORS-PAPER)

P\l R=1]5=2]C=3
R=1 (07 0) (17 _1) (_1: 1)
C=3 (]-a _1) (_17 1) (Oa 0)
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Example 2

i) Assume the strategy updating rule is TI-I: If x (%),
xo(t), x3(t) are known, then xz;(t+ 1) = f;(x1(t),

xa(t), :r:g(t)) can be calculated. For instance, assume
Ltl()_l, ()_‘2 xg(t):Sthen
C1 (t) = 1,
Cgl(t) = — 1, ng(t) = 1, - Cg(t) =0
C3 (t) = — ]_,
Hence

z1(t+1) = fi(z1(2), 22(t), z3(t))
Zxargmax{cl(t),CQ(t)}(t) = 41 (t) = 1.
’ 59
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Example 2

Similarly
ZL‘Q(t—I—l) :CL‘l(t) = 1, 533(?54—].) :$2(t) =

Using the same argument for each profile (x1, x2, x3), fi,
1 = 1,2, 3, can be figured out as in Table III.

TABLE 111
FRrROM PAYOFFS TO DYNAMICS

Profile | [11 [ 112 ] 113 [ 121 ] 122 [ 123 [ 131]--- | 333
¢t |0JO0O ][O0 [T 1| 1]-1]--]0
ca | 0 [ 12[-12] -1 [-172] 0 | 1 0
cs |0 1] 11 []0]-1]- 0
ol 11 | 1T [T 1]1]3 3
fo | T [T [ 3T 1113 3
fa | 113 [1 2] 2]3 3 60




PR T A

QLAY  SHANDONG NORMAL UNIVERSITY
CL

Center of STP Theory and Its Applications

Example 2

Identifying ¢ ~ 6,7 = 1,..., k, we can have the alge-
braic form of the evolutionary equations as (refer to the
Appendix)

ni(t+1) = Miz(t), =123 (D
where z;(t) € Az, z(t) = x3_,z;(¢), and
M; =63[111111333111222222333222333

My;=63113111323113122222333122323
Mz =63(113122323113122323113122323].
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Consider an NEG and assume Sy = {1,--- , k}. Identifying i ~ ¢, then for each i, there

exists matrix M; € M, 1, (in probabilistic case, M; € T« ), l; = |Ux(i)|, such that

$Z(t+1):Mz X xj(t), i €N,
j€U2(3)

where M, is the structure matrix of f;.
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Assume X € T, and Y € T,. Define two matrices DI* = I, ® 1], D?* = 1 ® I,

respectively. Then we have
DHAXY = X D?’QXY =3 ¢
Thus, we assume the strategy dynamics has its algebraic form

ri(t+1) = Ma(t), i=1,--- ,n.

63
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Multiplying all the equations together, we have the algebraic state
space form of strategy dynamics as follows:

z(t+ 1) = Mz(t),

where M = M; « My x -+ - x M,,.

For more details about Khatri-Rao product (¢k) , see Appendix
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Example 2

We can get the game transition matrix immediately as

MG :Ml * M2 * M3
=697[1,1,9,1,2,2,27,23,27,1,1,9, 10, 14, 14, 15, 14,
15,25, 25,29, 10, 14, 14, 27, 23, 21].

Since
(Mg)* = 627[1,1,27,1,1,1,27,14,27,1,1,27,1, 14, 14, 14,
14,14,27,27,27,1,14,14,27,14,27],  £>2
we can figure out
a) there are three fixed points: d3, ~ (1,1,1), 537

(2, 2,95 650 ~ (3, 3,3) o
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b) the corresponding basins (i.€., regions of attraction) of
these three attractions (fixed points) are, respectively.
B; =027{1,2,4,5,6,10,11,13, 22}
By =827{8,14, 15,16, 17,18, 23,24, 26}
Bs =827{3,7,9,12,19,20, 21, 25,27}

¢) there is no cycle.

So the network converges to one of three fixed points with equal
probability (as the initial strategy is uniformly distributed).

66
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In homogeneous case (with unique SUR) the NEG dynamics i1s
determined by the unique FEE.

First, we consider how to calculate the SPD using the unique FEE.

67
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Example 3

Example 3: Consider an NEG ((N, E),G,II), where
(N, E)=S5; G is the Prisoner’s Dilemma defined in Example 2
with parameters R = —1, $§ = —10, T =0, P = —5; and the
strategy updating rule 11—/ is chosen. (In fact, in this case 11-/
and 11-1/ lead to the same dynamics.)

We first calculate FEE (9) for an arbitrary node :. Note
that on S, the neighborhoods of ¢ are U (i) = {i — 1,4,7 + 1},
Us(i) =4{i—2,i—1,i,i+ 1,7+ 2}, hence (9) becomes

:173-(1'; + 1) - f(a?i_z(t), $i—1(t)a il?z‘(t)a $i+1(t)= Li+2 (t))a
1=1.2,
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Example 3

Using the swap matrix, it 1s easy to see that

21(t + 1) = Lsza(t) a5 ()21 (t)z2(t)23(¢) = LsWias 22)2(t)
rat +1) = Lsas(t)r1 (s ()2 (s (t) = LsWias ()
x3(t+ 1) = Lz (t)xa(t)xs(t)xs(t)xs(t) = Lsx(t)

T4(t + 1) = Lsza(t)z3(t)Ta(t)z5(t)21(2) = LsWig 2472(1)
T5(t + 1) = Lsz3(t)za(t)zs(t)z1(t)22(t) = LsWi22 2312 (%)

Finally, we have the evolutionary dynamic equation as

2(t + 1) = Msz(£)
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M5 = (L5W[23,22]) * (L5W[24,2]) * L5
k (L5W[2’24]) * (L5W[22,23])
=d832[1 2084 15327322932323213 323232 26 18
32 323232323226 32.32 32 32 3232 .32|.

The FEE can be used to calculate not only the strategy evolutionary
equation forS; , but also for anyS,,,n > 2 .

Then the evolutionary dynamic properties can be found via the
corresponding transition matrix. We are more interested in the case of
large n.
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For x;, we have

z1(t+1) = Lszp_1(t)x,(t)x1(t)x2(t)235(2)
2" 1 (D) (D z1 (D) T2(t) - - Tra(t)

= L5D35’2n_5 W[Qn—2,22]3:1 (t) R ﬂ:n(t)

= Ly D%

= Hyxlf),

where Ly is the structure matrix of f.
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Similarly, we obtain a general expression as follows:
zi(t+1) = Ha(t), i=1,---,n,

95 gn—>5 . : Z o 3’ i 2 3;
where H; = LsD; " Wiyat) gn-at], ¢ = 1,--- ,n and ai) =
1 —3+n,1<3.

Finally, the profile transition matrix can be calculated by

M, = H;% Hy#%--«%H,_.
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Now, we give an algorithm to describe how to calculate the SPDs
using FEE.

Algorithm 2
1) Step 1: From the FEE (9) to calculate its algebraic form

xi(t+1)=M; X j el (i) xj(t), = L. .sss R

where M; € L, 50 -
2) Step 2:

Xf(l+1) = W; M?__J Xj, S

W; 1s derived by adding some dummy factors which make the

product in step 1 can be a product of all factors.
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3) Step 3: Denote by x := x"_,x;. The SPDs can be
constructed as

x(t+1)=Lx(t)
where L € Ljn i is determined by

L=Wi1sWo*x...xW,.

The the SPDs is the
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Evolutionarily Stable Strategy (ESS)

J. M. Smith 1 G. R. Price {2t} T /B2 IR ERIGAIE ARBE 2, 1298 BE2 /0B E
FEEHIEFIBICHER TIRME AR, MHEKEFEHNHE—SPAREE TR
SCRYEA .

To answer this question, we need a more precise definition
of an ESS. We define E,(I) as the expected pay-off to /
played against J. Then 7 is an ESS if, for all J, E;(I)>
E,(J); if for any strategy J, E/(I)=E,;(J), then evolutionary
stability requires that E;(I)>E;(J). The relevance of the
latter condition is as follows. If in a population adopting
strategy I a mutant J arises whose expectation against [
is the same as I's expectation against itself, then J will
increase by genetic drift until meetings between two J's
becomes a common event.

|@ [1] J. M. Smith, G. R. Price, The logic of animal conflict, Nature, Vol. 246, No. 5427,
15-18, 1973. 75
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ESS of NEGs

The ESS 1s a fundamental concept for evolutionary games. It 1s

natural to extend it to the NEGs. Hence, we need a new precise
definition of the ESS for NEGs.

Definition 6 :

1) For a given NEG a strategy ¢ € § is called an ESS,
if there exists a ¢ > 1, such that as long as the 1nitial
strategy profile yq satisfies

lvo — xoll < u
we have
lim y(z, yo) = xo
I— 00

where xo = ¢". Moreover, ¢ is called the ESS of level u. 76
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ESS of NEGs

» When the population n is finite, there exists a 7" > 0 such that

y(t.y)=x0, t=T.

» Itis clear that the 4 can be used to measure the robustness of the stability. So the
higher the level the more robust the ESS.
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Example 4

Consider a NEG with following SPD:
x(t+1)= Lx(t)

where x(1) = M;":lxg (1), and

L = 0128
[1 68 8 72 15 830 16 80 29 96 32 96
31 96 32 96 57 124 64 128 63 128 64 128
61 12864 12863 12864 128 113 116 120 120
127 128 128 128 125 128 128 128 127 128 128 128
121 124 128 128 127 128 128 128 125 128 128 128
127 128 128 128 98 100 104 104 112 112 112 112
126 128 128 128 128 128 128 128 122 124 128 128
128 128 128 128 126 128 128 128 128 128 128 128
114 116 120 120 128 128 128 128 126 128 128 128
128 128 128 128 122 124 128 128 128 128 128 128

126 128 128 128 128 128 128 128]. -8
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It is easy to calculate that

L¥ =128

[1 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128 128 128 128 128
128 128 128 128 128 128 128 128]

where k > 3.

It is clear that unless x(0) = &1123, which leads to x(o0) =
A = 61133 ~ (1,1,1,1,1,1,1), any other initial states
converge (o &11:,%3 me 22, 2,22, 2,2).

We conclude that & = é‘% ~ 2 (i.e., strategy 2) is an ESS.
In addition, it is so strong that we can choose y¢ = 6, and as
long as |yp — xo| < u, (where xo = (;‘7], and setting T = 3, 79
(36) holds. Hence, the ESS is of level 6.
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Control of NEGs

Definition 7. Let (N, E),G,II) be an NEG, {X,U } be a
partition of NV, i.e.,, X NU = and N = X UU. Then ((X U
U, E),G, 1) is called a control NEG, if the strategies for nodes
in U, denoted by u; € U, 7 =1,...,|U|, can be assigned at
each moment ¢ > (. Moreover, x € X 1s called a state and « €
U 1s called a control.

80




PR T A

QLAY  SHANDONG NORMAL UNIVERSITY
CL

Center of STP Theory and Its Applications

Definition 8:

1) A state z4 is said to be T(> 0) step reachable from
x(0) = xy, if there exists a sequence of controls ug, . . .,
up—1 such that 2(7T") = x4. The set of T' step reachable
states is denoted as Ry (xq);

2) The reachable set from x 1s defined as

R(Sb'o) = U%OleT(.GCo).

3) A state x. 1s said to be stabilizable from x, if there exists
a control sequence ug,u1,... and a T (> 0), such that
the trajectory from x( converges to x., precisely, xz(t) =
Te, t > T. x. 1s stabilizable, if it 1s stabilizable from
any xo € Dy, 81
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Next, we consider the dynamics of a control NEG

For each © € A=, we can have a control-dependent profile
transition matrix, defined as

M (u = 0m) = M;, i=1,2, ..., k™.

Define the set of control-dependent strategy transition
matrices by

MU — {Mla C )Mk’m}-
82




PR T A

/‘ SHANDONG NORMAL UNIVERSITY

Center of STP Theory and Its Applications

. Proposition 1: Consider a control NEG (X UU, E), G,
IT), with | X| = n, |U| =m, |So| = k.

1) x4 is reachable from :1:0, if and only if there exists a se-

quence { M;, M; } C My, T <k™, such that

o 7 i ET 1

:Ed—M M,

tT—1 tr—2 "¢

Mil Min.’ﬂ

2) x4 1s stabilizable from x, if and only if 1) 24 is reachable
from ¢ and there exists at least one M™* € Mis, such that
x4 1s a fixed point of M*.
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Next, we consider the consensus of control NEGs.

Definition 9. Let{ € Ay. An NEG with |[N| = n is said to
reach a consensus at £ if it is stabilizable to x, = £".

Proposition? :

1) An NEG cannot reach a consensus, if there are more than
one common fixed point for all M € M.

2) An NEG can reach a consensus &, the NEG is stabilizable
s =&,
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Example 4

1) Consider the Prisoner’s Dilemma Game over Sg with
strategy updating rule IT = II-1, where {x1, 3, z3, 24,
x5} are normal players, called the states, and xg = u is
the control, connected to x; and x5.

The control-dependent strategy transition matrices are

M(u=63) = M,

=4832[17,2,24,4,31,32,32.32. 29 32 32, 32 31,32, 32,32,
17.18.52,32.82.30.89.30. 95,80 39.39. 59.39.59. 39

M(u = 63) = My

=d8a3[1,4,8,4,15,16,7, 8,29, 32, 32,32, 13,32, 15,32, 26,98,
39.39.59 30 50 30 9% 39 59 39 90,39 52 39]. .51

We can see that there are two common fixed points:
rl =03, and x? = §35. Hence the NEG cannot reach g5

consensus.
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i1) Next, we add another control, so that, x1, x2, 23, T4, T5,
u1, us form an S;. Then the control-dependent strategy
transition matrices become

M(uy = 83, up = 63) = M

=d35[1,1, 8,4, 16, 16, 8, 8,29, 29, 32, 32, 13, 16, 16, 16, 28, 25,
32 39 35 59 39 35 98 3> 55 55 55 55 5 49

M(up = 63,us = 85) = My

—da2[1,1,8,4, 16,16, 16, 16, 29, 29, 32, 32,29, 32, 32, 32, 20,
17,82,92.82,82,89,80,98. 42,82 80 .87,130 .39 3]

M(us = 62,us = 63) = M3

=d35[17,17, 24, 20, 32, 32, 24, 24, 29, 29, 32, 32, 29, 32, 32, 32,
28, 95, 32, 32, 32, 32, 32, 32, 28, 42, 32, 32, 32, 32, 32, 39]
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M(ul = 6%,’052 — 63) = M4
=d353[1, 1,8, 4, 32, 32, 32, 32, 29, 29, 32, 32, 29, 32, 32, 32, 20,
17.39.39.30.32.32.32 98,39 .89.82.32. 82,82 87].

It is ready to check that there is a common fixed point:
T, = 035, where x, = £° with £ = §3. Moreover, . is
reachable from any x(0). Therefore, the NEG can reach
consensus at z, = £°, where § = §3.

87




PR T Y

i SHANDONG NORMAL UNIVERSITY

Center of STP Theory and Its Applications

NEGs based on STP
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(1). Limitation on SUR

Unfortunately, some useful SURs can not be included in this class. For instance, the FP
(fictitious play), which needs all the historic knowledge to update its strategy; the SAP
(spatial adaptive player) which has time-varying topology .

Roughly speaking, most learning SURs cannot be formulated by (9) directly, which are left
for further study.

(2). Computational Intractability

If we want to distinct NEGs with different network topologies precisely but not
statistically, the complexity is intrinsic.

It was pointed out in [67]: “The main challenge that faced in studying strategic
interaction in social settings is the inherent complexity of networks. Without focusing
in on specific structures in terms of the games, it is hard to draw any conclusions.”

|@ [67] M. O. Jackson, Y. Zenou, Games on Networks, Handbook of Game Theory with

Economic Applications, No. 4, 95-163, 2015. 92
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Based on the STP method, many efficient techniques have been
introduced to solve the control problems of large-scale logical
control networks, including approximation method [©8],

, logical matrix factorization
technique 721, and pinning control design method (73],

[68] D. Cheng, Y. Zhao, J. Kim, Y. Zhao, Approximation of Boolean networks, Proceedings of the 10th World
Congress on Intelligent Control and Automation, 2012, pp. 2280-2285.

[72] H. Li and Y. Wang, Logical matrix factorization with application to topological structure analysis of Boolean
network, IEEE Transactions on Automatic Control, Vol. 60, No. 5, 1380-1385, 2015.

[73]J. Zhong, D. W. C. Ho, J. Lu, A new approach to pinning control of Boolean networks, arXiv:1912.01411.
[Online]. Available:http://arxiv.org/abs/1912.01411, 2019.

[74] Y. Yu, J.-E. Feng, J. Pan, D. Cheng, Block decoupling of Boolean control networks, IEEE Transactions on
Automatic Control, Vol. 64, No. 8, 3129-3140, 2019. 95
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The approximation of logical networks was proposed by Cheng and
Zhaol%8] to obtain a simplified network of large-scale logical
networks.

A. Approximation method

[70] firstly introduced the network aggregation approach for the
attractors analysis of large-scale logical networks.

B. Network aggregation method

96




PR T A

QLAY  SHANDONG NORMAL UNIVERSITY
CL

Center of STP Theory and Its Applications
Network aggregation method

Consider the following Boolean network:

.’El(t 4 1) = fl[.’I}l(t), LL‘Q(t), e o ey L"Un(t)]
:Eg(t -1 1) = fz[;’l?l(t), .’L‘z(t), .. .,:L‘n(t)]
Bl # 1) = folmi(t)sms(B); se v s Brlt)]

where x;(¢) fore = 1, 2, ..., n denotes the state of node z; at
time t that can be either O for inactive or 1 for active. The nodes
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The nodes can be partitioned into s-number of blocks as follows:

X =dx1, 355t = X1 U A Wis: U &

where & 1s a proper subset of X', &; N X, 1s empty for ¢ # 7,
Xi = {3}@'1, Li2y « -y Tin, }, 1, 1S the number of nodes in the 7th
block, and z;,, the jth node in the 7th block, 1s equal to x, for a
ke{l,2,...,n}.

We call this partition an of Boolean network!
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Each block X’; has incoming edges from outside of the block and
some to the outside. The source nodes of these
edges can be interpreted as inputs and for each block.
Denote the set of inputs and outputs of the block X; as

U, = {‘uﬂ; U2, - .- 7uimi} and )V, = {y'ilz- Yi2y - - yip?;}:

The set of all source nodes, whose edges cut by the partition, as

C = A B s 53 505 B B
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Then, the subnetwork 32;, with nodes in X; and inputs in I/;,
1s a Boolean control network given by

wir(t), wiz(t), - -y Wim, (t)]

fori=1; B, iss; andJ = 1,2, sc55 B
» 1) Attractors analysis of large-scale logical networks!7"]
» 2) Controllability analysis of large-scale logical networksl"!]

» 3) Observability analysis of large-scale logical networks(¢°]

> 4) Stabilization of large-scale logical networks!’!] 100
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Example 5

Consider a Boolean network example in Figure 13. Assume its
dynamics is described as

= x2(t)

Figure 13: Example of aggregation of a
network comprising nine nodes into

three Boolean control networks.
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)

where <, —, and V denote “EQUIVALENCE,” “IMPLICATION,’
and “EXCLUSIVE-OR” operations respectively. Consider the ag-
gregation into 3 blocks

{z1,22,23} € X1, {24,725} € Ao, {76, 27,28, 79} € A3.
Now the inputs and outputs of each subsystem are

U ={u1r = x7}, Us = {uoy = T1,u00 = x7}, U3 =
V1 ={y11 =z1}, Yo =0, Y5 = {ys1 = z7}

&= d@y = BisTe; =27}
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Hence, there are three subnetworks:

ZL‘l(t + 1) = .’L‘g(t)
El II;'Q(t + 1) == mg(t) N ull(t)
z3(t+ 1) = x1(t) < z2(t);
$4(t + 1) = (’LLQl(t) V .’L‘5(t)) — ’U,Qg(t)
- {35'5(’5 + 1) = ~a4(1);
.’L‘G(t -+ 1) = Q'Jﬁ(t)\_/il’}g(t)
Y, - .’L’7(t + 1) — IL’ﬁ(t)
g .’L’g(t + 1) = $7(t) V :Eg(t)
a':g(t -+ 1) = —I.’Bﬁ(t).

Note that the aggregation shown in Example 5 1s not
unique but there are many other different configurations. 103
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Aggregation Method It is a meaningful attempt to investigate the strategy
to Large-Size NEMGs consensus analysis and synthesis of large-size
networked evolutionary matrix game (NEMGs)
with arbitrary network structure by virtue of
aggregation method.

104

Figure 14: Network graph of the NEMG




PR T A

N4 SHANDONG NORMAL UNIVERSITY
L]

Center of STP Theory and Its Applications

Ilustrative example

Consider the NEMG of international trade between sev-
eral countries, where the network graph is given in Fig.
4. The nodes 1,2, --- , 15, denote some countries includ-
ing China, Japan, Russia, USA, etc. According to [12],
the trade between two countries is generally depicted
by the dominant strategic equilibrium of “Cooperation-
Cooperation”. Denote the strategies “Cooperation” and
“Defection” by “1” and “2”, respectively. For the ease
of computation, we consider the payoff matrix with

8 7

- - 126
o = gl = [ ] , (i,7) € E.

In addition, the SUR considered in this example is Un-
conditional Imitation with Fixed Priority [4], where the P il St emetmneslimed unekmis
payoff of each player is given in (1).

pi) = ), T uwwo,

JEND\{i} H0
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To sum up, by Theorem 4, under the control strategy
u;(t) =1, j = 1, 2, the considered control NEMG reach-
es a strategy consensus at strategy “Cooperation” (see
Fig. 5).

R
B E

Fig. 5: Evolution of strategy for each country in partial
international trade network, where the solid dot represents 106
“Cooperation”.
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ESS of General NEGs

Now, we considers the general case, where the network 1s, 1n
general, heterogeneous. We need the following assumption.

Al: There exist two numbers p and ¢ satisfying 1 < p <
q < 00, such that

p < degree(i) <gq, VieN.

When the network size is small, the ESS can be verified via its
SPDs. To deal with the networks of large size, now, we propose
a method called the decomposition approach.

107
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Consider a general NEG and assume Al. Let
O € N be any node. If there exist two integers 4 > 1 and
r > 1, such that any x;(tp), j € Uz-(O), which is the initial
¢| < u, satistying
xb (1o +€) = x3,(to + €)
Vi,jeUO\O}¥=1,...,r-1

xplo+r)=xp(0+7)=¢
Yi, J € U0}

then ¢ 1s an ESS of level u/[2r].

If in every branch O converges to ¢ , then in the overall NEG 108

converges to ¢ t0o.
A
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Stationary Stable Profiles of NEGs

Definition 10: Consider an NEG. Assume there exists a
T > 0 such that the profile is eventually constant as

ZCZ(t) = Pi, tZT; Zzl,,’n

Then {p; |i = 1,...,n}, orequivalently, p = x*_,p;, is called
the stationary stable profile, and the smallest T(> 0) is the
reaching time.

The concept of stationary stable profiles is presented !

109
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We consider how to find the stationary stable profiles for large-scale
homogeneous NEGs.

Theorem 2: An NEG has a stationary stable profile, if and
only if there exists an £ > 0 such that

14
[MU2(£+1>] — [MU2(€+1)] :

Moreover, let 7' be the smallest such /, called the reaching time.
Then the stationary stable profile at 6 1s

Po — 9(00) = Tp3 [MUQT]T XicUar 3_32(0)

|ﬁ [75] D. Cheng, F. He, H. Q1, T. Xu, Modeling, analysis and control of networked evolutionany g
games, IEEE Transactions on Automatic Control, Vol. 60, No. 9, 2402-2415, 2015.
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Exercise 1

ER—NEREFEG=(NV,S,C), X8EN=1{1,2,3},8 ={1,2,3}, S, = {1,2}, S5 = {1,2,3}, 3f¢
FPERAE L.

(D). BHHZEIRR R,
(2). RGBS RNy parallel MBRA, SKiZ SIS SE TR T B g i s S5 AL T RE.

C\P | 111 | 112 | 113 | 121 | 122 | 123 | 211 | 212 | 213 | 221 | 222 | 223 | 311 | 312 | 313 | 321 | 322 | 323
G5 1 2 -1 -2 0 1 -2 1 1 1 0 2 3 2 1 -1 2 -2
C2 2 3 + 3 2 1 3 2 2 2 3 1 3 2 4 3 3 1
c3 -2 -1 0 -4 -2 -3 -3 -2 0 -1 -1 0 0 -3 -3 -2 -1 -1

#1: ZIT5ERE

112
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Exercise 2

20 — TR ISE, M2 B Figure 11 fs, FEARS RSN RS T, S HFFINER 2 k.

0 o P\ P H D
' H (1,1) | 4,0)

o o D | ©4 |22

Figure 14: 4&[E] R 2: [ESIEESfT3ERE
(1). SRS THZE ) ) =454

(2). 7 SRS R RN D LS R T2 AT, HBU 1 Judil], il S i W 48 A 8 2R XA 7 422 1 o 2 A
it

113
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Exercise 2

(3). WRTHIRAE R, 515 (2) FFE LA /R I G EHE B 2, = g, T Mz M 2 14
(2) HIZRAF T By SRms—E.

4). EHMENAFER 1| EEK 2 Z 6P HFEC R EER A2 DL — @ MR BT, B0y 0.2, 7E5RIE 58T
MM AR SRR TR, HEuSK 1 Dol IR0, L2 W 485 L 1 2R (VR AT R ] R 2 A5
Al

114
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Definition A.1: Let A € My, x, and B € M. Denote by

t := lem(n, p) the least common multiple of n and p. Then we
define the semi-tensor product (STP) of A and B as

Ax B = (A®Iyn) (B®Liyp) € Mmt/myx(at/p)- (54

Remark A.2:

* When n =p, A x B = AB. So the STP is a generaliza-
tion of conventional matrix product.

« When n = rp, denote it by A >, B; when rn = p, de-
note it by A <, B. These two cases are called the
multi-dimensional case, which 1s particularly important in
applications.

e The STP keeps almost all the major properties of the
conventional matrix product unchanged. 117
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Appendix
1) (Associative Law)

Ax (Bx(C)=(Ax B)x C.

Proposition A.3:

2) (Distributive Law)
(A+ By x C=Ax(C+BxC

Ax(B+(C)=Ax B+ AxC.

3)
(Ax B)l' = BT x AT,

4) Assume A and B are invertible, then
(A X B)_l — B_l X A_l. 118
A
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Proposition A.4: Let X € R? be a column vector. Then for a
matrix M

XXxM=(L®M)x X. (59)
Definition A.5:
Winm] =0mn(l,m+1,2m+1,...,(n—1)m+1,
2m+22m+2,...,(n —1)m + 2,

Sn.m4+n2m+n,...,mn|

which 1s called a swap matrix.

119
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Proposition A.6: Let X € R™ and Y € R" be two column
vectors. Then

Wipn X X XY =Y X X. (61)
Proposition A.7:

The Khatri-Rao product of M and N, denoted by M x N €
M pgxn, is defined column by column as follows:

Col;(M x N) = Col; (M) x Col;(N), i=1,...,n. (28)

120
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