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1. What is Learning Theory in Games?

“The theory of learning in games studies how, which and
what kind of equilibria might arise as a consequence of
a long-run non-equilibrium process of learning, adaptation
and/or imitation.”

@ Drew Fudenberg, David K. Levine, Learning and equilibrium, Annual Review of
Economics, vol. 1, no. 1, 385-420, 2009.

@ Drew Fudenberg, David K. Levine, The Theory of Learning in Games, MIT Press,
1998.
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= History

Richards, PI, On Game-learning Machines, Scientific Monthly,
1952.

Herbert A. Simon, A comparison of game theory and learning
theory, Journal Of The American Statistical Association, vol. 21,
267 - 272, 1956.

Feichtin. G, A Markov learning model for 2-person zero-sum games,
vol. 11, no. 7, 322-331, 1962.

Drew Fudenberg, David K. Levine, The Theory of Learning in
Games, MIT Press, 1998.

Drew Fudenberg, David K. Levine, Learning and equilibrium, An-
nual Review of Economics, vol. 1, no. 1, 385-420, 2009.

R. Gopalakrishnan, J. R. Marden, and A. Wierman, “An architec-
tural view of game theoretic control,” ACM SIGMETRICS Perfor-
mance Evaluation Review, vol. 38, no. 3, pp. 31-36, 2011.

Ting Liu, Jinhuan Wang, Xiao Zhang, Daizhan Cheng, Game The-
oretic Control of Multiagent Systems. SIAM J. Control. Optim.
57(3): 1691-1709, 2019.
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2. Basic Concepts

2w 2.1 Structure of Game Learning

Consider a repeated game G = {N,A,C}. A learning rule of games
consists of two parts: prediction and response.

@ Prediction: Consider a repeated one-shot game G = {N,A, C}.
Player i predicts opponents’ action according to available infor-
mation O;(z).

fi: 0i(t) = A, (1)

@ Response: Player i makes decisions according to prediction and
available information O;(z)

gi : 0i(t) x fi(Oi(1)) — A;. (2)

@ Nicolo Cesa-Bianchi and Gabor Lugosi, Prediction, Learning and Games, Cam-
bridge University Press, 2006.

@ J.S. Jordan, Three problems in learning mixed-strategy Nash equilibria, Games
and Economic Behavior, Vol. 5, No. 3, 368-386, 1993.
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Figure 1: Structure of Game Learning

7/76



ww 2.2 Factors in Game Learning
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Figure 2: Factors in Learning Rule
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= |nformation Structure

A learning rule is called

@ coupled, if the available information of agent i is the payoff struc-
ture of all players and history sequence of the play, i.e.,

0i(t) = { {a(7)}r=0,1,...;:—15 {ci(@)}ien}-

@ uncoupled, if the available information of agent i is the payoff
structure of himself and history sequence of the play, i.e.,

0:(1) = { {a(7) }r=o,1,..0—1; ci(a)}.

@ completely uncoupled, if the available information of agent i is his
own past realized payoffs and actions, i.e.,

0i(t) = { {ai(r), cia(7)) }r=0,1,...—1, }-

@ M.S. Talebi, “Uncoupled learning rules for seeking equilibria in repeated plays: An
overview,” Computer Science, 1-9, 2013.

@ Y. Babichenko, “Completely Uncoupled Dynamics and Nash Equilibria.” Games &
Economic Behavior, 76(1), 1-14, 2012.
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= Updating Orders

@ Synchronous updating rule (SUR): all players update actions syn-
chronously.

ai(t+ 1) =fi(a1(t),ax(1), -+ ,a,(t)), Vi €N.

@ Asynchronous updating rule (AUR): only one player is allowed to
update his action at each time .

{ ai(t+ 1) = ﬁ(al(t)a‘h(t)a"' 7an(t))' (3)
ait+1) = a1), j#i.
< Deterministic AUR: player updates his action according to given

orders.
o Stochastic AUR: player i updates his action with probability p; >
0, where ..y pi = 1.

@ Cascading updating rule (CUR): when player i updates his action,
he knows j’s action, j < i.

a(t+1) = filai(t),a(t), - ,an(t))
at+1) = fla(t+1),a(8), - ,a,(2))

a(t+1) = fal@(t+1), ani(t—1),an(0))
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1= Convergence Types

Consider the sequence of action profile a(z, ag),t = 1,2, 3... generated
by a learning rule.

@ Convergence: a(t) converges to NE a*, if 37 > 0
a(t,ap) = a*, Vi > T, Va.
@ With probability one: a(t) converges to NE a* with probability one

lim P(a(t,a0) =a*) =1, Vap.

t—00

@ Almost surely: a(t) converges to a* almost surely, if

P(lgrgo a(t,ap) = a*) =1, Va.

@ With frequency: a(t) converges to a* with frequency 1 — e, if

1<7<t:a(t =a*
llm lnf |{ STS a( ,Cl()) a }‘

1—00 t

Z 1 — €, Va().
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= Types of equilibria:

NE, mixed NE, correlated equilibrium, coarse correlated equilibrium...

correlate
equilibrium

mixed

Nash equilibrium

Nash
equilibrium

Figure 3: Different Equilibria
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= Properties of games:

Potential games, zero-sum games, symmetric game...

gH
—_—
G=_ ¢ & G" & g, (5)
N—————

(o1

G6=§ ©®© K o© A (6)
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== |[mportant results:

Question: Are there simple dynamics that converge to NE for any
game?

@ There exist uncoupled dynamics converging to correlated equilib-
ria.
@ There are no “natural” dynamics that lead to NE in any game.

@ Natural: adaptive, simple, efficient, one memory (eg. fictitious
play, best response...)
@ Not natural: exhaustive search, mediator(h1 /%, {EH)...

@ S. Hart, A. Mas-Colell, Uncoupled dynamics do not lead to Nash equilibrium. Amer.
Econ. Rev., vol. 93, pp. 1830 - 1836, 2003.
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3. Three Typical Learning Rules

3.1 Myopic Best Response Adjustment

Myopic Best Response Adjustment (MBRA)

At time 7 + 1, player i is make decisions according to observed infor-
mation a_;(r). Let

BR;(t) := argmax g, ci(si, a—i(t)) = {j1,- - ,ji [j1 <+ <ji}.

BR; is called best response set of player i.
@ If a;(r) € BRi(¢), then a;(z + 1) = a;(¢).
@ If a;(¢) ¢ BR;(1), then
- MBRA-D: a;(t + 1) = ji;
- MBRA-P: Pr(ai(t + 1) = ju) = mayps d=1,-++ L.

V.

@ Fiat A, Koutsoupias E, Ligett K, et al. Beyond myopic best response in Cournot
competition. Games and Economic Behavior, 2012: 993-1005.
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Question 1: Will MBRA converge to NE in games?
Question 2: Will MBRA stay at an NE if it reaches one?

Consider a common interest game as follows

Table 1: Common Interest Game

Pi\Py a by
ai (10’ m) (07 0)
by 0,00 (5 5)

Observe cycles

(b1,a2) = (a1,b2) = (b1,a2) = (a1, b2) = - -

Question 3: What are some potential remedies?
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@ Remedy I: Only one agent updates at time. Asynchronous MIBRA
- Will converge to NE but requires a mechanism to coordinate who
updates.

@ Remedy 2: Introduce a probabilistic reluctance to change actions.
MBRA with inertia:

[ ai(r) with probability ¢;
Ao 1) = { BR;(t) with probability 1 — e. (7)
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Theorem

Consider a potential game G = {N, A, C}, if all players play the game
according to asynchronous MBRA or MBRA with inertia, then it will
converge to an NE.

y

@ According to the definition of potential game, G has at least one
pure NE (potential maximizer).

@ Using asynchronous MBRA, each updating leads to a higher po-
tential.

@ As there are finite action profiles, after finite steps, MBRA will

reach and stabilize at NE. )

@ D. Monderer, L.S. Shapley, Potential games, Games and Economic Behavior, Vol.
14, 124-143, 1996.
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Homework 1:

@ What will happen for the cycle in Example 1 using asynchronous
MBRA or MBRA with inertia?

@ Prove the convergence of MBRA with inertia in potential games.

@ Is the potential game condition necessary?
(Hint: acyclic games)
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Question 4: Will MBRA converge in any games with NE?

Table 2: S. Hart Game

Vi\a|111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332333
Vijo 4 2 0 4 3 2 3 0 4 0 3 4 0 2 3 2 01 1 0 1 1 00 0 6
V0O O 2 4 4 3 1 10 4 4 3 00211 02 3 032000
;{0 4 1 4 0 I 2 3 0 0 4 1 4 0 1 3 2 0 2 3 0 3 2 0 0 0

Figure 4: An Adjustment Cycle

@ S. Hart, Y. Mansour, Stochastic uncoupled dynamics and Nash equilibrium, Games

and Economic Behavior, Vol. 57, No. 2, 286-303, 2006.
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3.2 Log-Linear Learning

@ Recall the common interest game in Example 1
P\P, a by

aj (m, &) (07 O)
by 0,0 (55

@ Asynchronous MBRA will converge to pure NE (ay, ay) or (b1, by).
However (a1, a,) is clearly better choice.

@ Question:

- Are there any learning rule that can converge to (a1, a2)?
- Are there any learning rule that converge to NE that optimizes the
potential function of potential games?

@ Yes, but different notion of “convergence”.
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Log Linear Learning

@ One player, say i, is drawn randomly from N and allowed to alter
his action. All others must repeat previous action, i.e.,

a,,-(t =F 1) = a,,-(t).
@ Player i selects action according to the probability

eifi(fivﬂ—i(f))

- 3 excilaia—i(1)’
a; €S;

Pri(ai(t+ 1)) = sila(?))

where 7 is referred to as the temperature coefficient.
@ Repeat.
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@ Update rule also referred to as a noisy best response... Why?
@ Questions:

- As 7 — oo what happens to the log linear learning?

- As 7 — 0 what happens to the log linear learning?

- Will log-linear stay at a NE if it reaches one?

@ The log linear learning process induces an aperiodic and irre-
ducible Markov chain with state space X. State transition prob-
ability

PL, =Pri(a(t+1) =5|a(t) =s).

@ Letthe unique stationary distribution ™. A state s is called stochas-

tically stable if
lim 47 (s) > 0.
T—0

Homework 2: Recall the definition of aperiodic irreducible Markov chain.
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Theorem

Consider a potential game G = {N, A, C} with potential function p, if all
players play the game according to log-linear learning, then the unique
stationary distribution is

PEO)

S erpl)

s'eS

w(s) = (8)

@ It is sufficient to prove that n” satisfies the detailed balance con-
dition.

@ According to state transition probability, P7, > 0 if and only if there
only one element different for s and s'.

@ Without loss of generality, suppose s; # s}, s—; = s__;. Then

- - e—]rp(s) eio(s;’s i) -
124 (S) ss' Z E'r u) Z eTCl ana—i(1) = H (S )P‘v’s'
//ES S‘//ES

y

@ C. Alos-Ferrer, N. Netzer, The logit-response dynamics, Games & Economic Be-
havior, Vol. 68, No. 2, 413-427, 2010.
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@ Stationary distribution = Probability that process will be in each
action profile at large enough time.

@ lllustration: u™(a;,az) is the likelihood we will be at the action pro-
file (a1, ay) if we use log-linear learning on the above game and
wait long enough.

@ Implications:

- As 7 — oo what happens to the stationary distribution?
- As 7 — 0 what happens to the stationary distribution?
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Recall the common interest game in Example 1

Pi\P> a by
a (10, 10) (0, 0)
by (0, 0) (5, 5)

What is the asymptotic behavior under log-linear learning?
@ If 7 = 1000 the unique stationary distribution is

1'% =10.25,0.25,0.25,0.25].
@ If 7 = 10 the unique stationary distribution is
1'% =[0.42,0.16,0.16,0.26].
@ If 7 = 1 the unique stationary distribution is
p' = [0.993,0.0,0.0,0.07].
@ If 7 = 0.1 the unique stationary distribution is

p' =11,0.0,0.0,0.0].
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Theorem

Consider a potential game G with potential function p, if all players play
the game according to log-linear learning, then the set of stochastically
stable states is the potential maximizer.

<

For any given profile a € A

exP(s)

> PEYICH

s'eS
1

T eF @) —pW]°
s'eS

1im7—_>() ,U,T(S) = 1im.,—_>()

= liIn‘r—)()

According to the analysis, only when s* € argmaxcsp(s), we
have lim,_,o x" (s) > 0.

ot
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3.3 Fictitious Play

@ Consider a repeated finite game. Each player has subjective be-
liefs about other players’ future behavior. In each period each
player chooses actions according to his belief and updates his
belief according to the past observations. We call such a process
a belief-based learning process.

@ A nature idea is: can we forecast the opponent’s strategies using
statistical approach (history information)?

@ How to make a decision according to the prediction?

@ Above learning rule is called fictitious play, a basic belief-based
learning process.
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Fictitious Play

@ Empirical frequency of player i selecting a;, denoted by ¢/ (), is

u 1 —
g () = 5 >_Ha(r) = ai}.
=0
@ Empirical frequency vector of player i
qi(t) = [q?l (t)7 q;lz (t)7 U >q;lki (t)}T € Tki><1'

@ Expected utility for the action q; is

ui(ai, q-i(t)) :== Z ci(ai,a H g (

a_;€A_; aj€a_;
@ Select an optimal action a;(¢r + 1) € BRi(g—i(t)), where

BRi(q—i(1)) := arg mg& ui(ai, g—i(1))-

Remark: The action of player i at each time is based on the (maybe incor-
rect) presumption that other players are playing randomly and independently
according to their empirical frequencies.

<
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Consider a potential game G, if all players play the game according
to fictitious play, then the empirical frequency ¢(t) converges to mixed
NE of G.

@ D. Monderer and L. S. Shapley, Potential games, Games & Economic Behavior,
Vol. 14, 124 - 143, 1996.

@ D. Monderer and L. S. Shapley, Fictitious Play Property for Games with Identical
Interests, Journal of Economic Theory, Vol. 68, 258-265, 1996.

@ X. Zhang, D. Cheng, Profile dynamic based fictitious play, Science China Informa-
tion Science, Vol. 64, 169202:1-3, 2021.
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4. Learning in State-Based Games

How to design a learning rule for games

in dynamic environment?
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4.1 State-Based Games

A finite state-based game is a tuple G = {N,{A;}ien, {ci}ien, X, P},
where

Q@ N ={1,2,--- ,n}: the set of agents;

Q A ={1,2,--- k}: the set of actions of agent i;

@ ¢ : AxX — R is the payoff function of agent i € N, where
A =T]i_, A; is the action profile set;

Q X =1{1,2,--- ,m}: the set of underlying finite state;

Q P: X xA — T(X): the Markovian state transition function. 7 (X)
denotes the set of probability distributions over the finite state
space X. P(a;x,y) is the probability of state x transiting to state
y under the action of a.

v

B H.P. Young, Strategic Learning and Its Limits. Oxford, U.K.: Oxford Univ. Press, 2004.
B J.R. Marden, “State-based potential games,” Automatica, vol. 48, no. 12, pp. 3075-3088, 2012.
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Reachable set

@ A state y is reachable from initial state x driven by an invariant action q, if
and only if, there exists a time #, > 0 such that

Prix(s) = y] > 0,

conditioned on the events x(0) = x and x(k + 1) € P(a,x(k),-) for all
ke {0,1,-- 5, —1}.
@ The transition process can be illustrated as

x5 x(1) % 26 Lx(ty — 1) -5 x(ty) = y.

@ Denote by X(a|x) C X the set of reachable states starting from initial state
x driven by an invariant action a.
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Definition

Consider a state-based game G = {N, {A;}ien,{ci}tien, X, P} . The ac-
tion state pair [a*, x*] is a recurrent state equilibrium (RSE) with respect
to the state transition process P(-) if the following two conditions are
satisfied:

Q X(a*|x*) is a recurrent state set of P(a*;-,);
© Foreach agenti € N and every state x € X(a*|x*),

ci(ai,a* ;,x) = ci(ai,a” ;,x), Ya; € A;.
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Consider a state-based game with N = {1,2}, A} = A, = {1,2}, X =
{1,2,3}. The followings are the payoff matrices.

Table 3: Coordination game of x = 1

P\P, 1 2

L@ (1,3
2 (3,1 (2.2

Table 4: Prisoner’s dilemma game of x = 2

P\P, 1 2
1 (2,2) (0,3)
2 (3,0) (1,1)

Table 5: Matching pennies game of x = 3

P1\P> 1 2
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Example (Contd)

(1) o
1/3 2/3 1
AR J
a) P(a=11,") b) P(a=12,)

¢) Pla=21,) d) P(a=22,)

Figure 6: State transition diagram of the example
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> State-Based Potential Games

Definition

A finite state-based game is called state-based potential game if there
is a function ¢ : A x X — R, such that for each [a,x] € A x X, the
following conditions satisfied

@ foreachi € N and a;, b; € A;,
ci(ai,a_i,x) — ci(bi,a_i, x) = ¢(ai,a_;, x) — ¢(b;,a_;, x);

© for the state y which belongs to the support of P(a; x, -)

d(a,y) > ¢(a,x).
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Each state-based potential game has at least one RSE. \

Homework: Prove above theorem.
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= | earning in state-based potential games

State-Based Better Reply with Inertia (SBR with inertia)

@ For each [a, x], denote the better reply set of player i as
Bi(a,x) :={b; € A; | ci(x,bi,a_;) > ci(x,a;,a_;)}.
@ If Bi(a(t — 1),x(¢)) = 0, then the action of i at # is
a;(t) = a;i(t —1).
® If Bi(a(t — 1),x(z)) # 0, then

Dy =€, a,-:a,-(t— 1)

i 1—¢
Pi = BlaG-1x()’ a; € Bi(a(f —1),x(2))
pi=0, Otherwise

40/76



Consider a state-based potential game, if all players update his action
according to state-based better reply with inertia, then [a(t),x(z)] will
converge to the set of RSE almost surely.

Homework: Prove above theorem.

@ J.R. Marden, “State-based potential games,” Automatica, vol. 48, no. 12, pp. 3075-3088, 2012.
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4.2 Learning Design For State-Based Games

Question: Can we design a learning rule which can converge to RSE
for general state-based games (at least two memory)?

= [nformation Structure
@ Available information at time ¢
0i(t) := {a(t — 2),a(t — 1), x(t); ci(a, x) }.
@ Recall the better reply set of player i
Bi(a,x) := {b[ €A ci(bja_i,x) > c,-(apc)};

@ For simplicity, let
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The flow of the proposed learning rule

Bi(t) = 0,then a;(r) = ai(r — 1).

YES, P =6,0< 6 < 1
Bi(r) # 0, then
a(t—2) = a(t — 1) Pt = g, Vai € Bi(d).

PI() = T Va # it - 1).

e € (0,1) is the inertia of agent .
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pi(0)=

,Va, # a,(t-1)]

1
(0 =¢,

q 1__ﬁ
pi (@)=

[B0)]

Mt a,(0)

Figure 7: A two memory strategy learning rule
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Combined dynamics

@ Combine state dynamics and profile dynamics

x(t+ 1) = Mpx(t)a(t),
a(t+1) = Mpx(t + L)a(t)a(t — 1).

@ Letw(r) :=x(¢) x a(r) x a(t —1),¢ > 1, then
w(t+1) = Mw(z).

where M = {m;;} and m;; is the probability from i to ;.
@ A Markov Chain on Q := A x X x A. The initial distribution is
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= State-transition probability

Consider any wi,w, € Q, where w; = [a!,x!, d?|,w, = [b', 3%, b?].
(1) If a*> # b', then

Pri{w(t+1) = w|w(t) =wi} =0.
(2) If a®> =b', and x*> ¢ P(a*;x', ), then
Pr{w(t+1) = w|w(®) =w } = 0.
(3) Ifa> =b! #£a'and x* € P(a?;x!,-), then
Pr{w(t+1) = w|w(t) =w}
o HGL)] | I1 |A1,-\7—61’
iCH(b! ?)

where H(a,b) :={i € N : a,;éb}abeA
4) If a®> =b' =a', and x* € P(a?;x!, ), then

Pr{w(t+1) =wlw(t) = w}

_ o [HG |- ING ) _l-e
‘ N meray

i€H(b' ,b?)

where N(a,x) := {i € N : B;(a,x) = (}.
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Theorem

(IR R A 1 % 5] 1) Consider a state-based games with [a*, x*]

being the RSE. For initial state x(0) = x°, if there exists an integer K >

2, such that the sequence (a°,x'), (a',x*), --- ,(aX,xX*1) generated

by the designed learning rule satisfy that

(1) P(a®;x2,3)P(a’;23,x%) - - - P(a; 2K XK+ > 0;

(2) if d=' = d* holds for some integer k € [1,K), then a"*' ¢
BT (dk,x**1);

(3) [aX,xK+!] = [a*,x*] is the RSE,

then the designed learning rule will converge to RSE almost surely.
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Consider a state-based games with [a*,x*] being the RSE. If the fol-
lowing two conditions are satisfied

1) P:= ﬁ > uea Plas -, ) is irreducible;
(2) P(a;x,x) > 0,V[a,x] € A x X.

then the designed learning rule will converge to RSE almost surely for
any initial state x(0).

G
LR 5 Bk 26 4 (1) A0 (2) TN P Aol SRR AT 240 T4 R R
161 P F-JE LI A 20 75 A (R 5 ST U AR PR RA e 501 ) OB,

B Changxi Li, Yu Xing, Fenghua He, Daizhan Cheng, “A strategic learning algorithm for state-
based games,” Automatica, vol. 113, 108615, 2020.
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Consider the following state-based game with N = {1,2}, A| = A, =
{1,2}, X = {1,2,3,4}. The payoff matrices are shown as follows.

Table 6: Payoff Bi-Matrix for x = 1,2, 3,4

Player 1\Player 2 1 2 Player 1\Player 2 1 2
1 (5,4) (2,3) 1 (2,2) (3, 1)
2 4.2 3.1 2 0,3 21
Player 1\Player 2 1 2 Player 1\Player 2 1 2
1 (-1,1) (1,-1) 1 2,2 (2,3)
2 (1I,=1) (=1,1) 2 0,3) (3, 1)
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Example (Contd)

The Markov transition matrices under different actions have the follow-
ing form.

( ) P12(a)»
P D — 2 ((l), p22(9)7 9
(a’ ) 0) Oa P33(a)7
0 0,  pala),
where 0 < p;(a) < 1 is the probability that state i transfers to state j,
Va € {11,12,21,22}. RSE: [a=11,x=1o0rx =2] .

0, 0
0 0

7

p34(a)
paa(

v

Claim: If for all Markov chain P(a,-),Ya € A there exists a common
closed set, denoted by X¢ C X, s.t., for all x € X¢ there do not exist
a joint action a € A such that [a,x] is a RSE. Then there does not
exist learning rule that converges to a recurrent state equilibrium for
State-based games where such a equilibrium exists.
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Corollary

o R IHRMNAIRAFEAEEIRRT, HIRRE TR Y
gri%ﬁf. HOR SRR SRR LU T S 3R IR IB R i 2ligh 35
.

@ ARSTHE I AE ST 2 — A BAT PIAMCIZ I 2 5%, AR T 32k
HEA RS G, SREREE S T RA BRI ESIESE, K
MEREE G TR EOR . AU SR 7 Z R MR RE s L 3 B
ARG AE S EE TR dum BN, U 2 e A B4

@ J. R. Marden B3PI FAEER I 7 — M BRACIZ 22 ST, JF B
R TR Z B RE ORI L 6 SR S B RS 35 R 10 7 IR
W&, BATWE RN B R 75 F— BRI ZE, FEN
AL REPRAE T LF- e SRS BRI AL R SR IR W R AT
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Recall S. Hart game.

Table 7: S. Hart Game

Vi\a|111 112 113 121 122 123 131 132 133 211 212 213 221 222 223 231 232 233 311 312 313 321 322 323 331 332333
Vijo 4 2 0 4 3 2 3 0 4 0 3 4 0 2 3 2 01 1 01 1 00 0 6
V0 0 2 4 4 3 1 1 0 4 4 3 00 2 1102 3 03 200 0 6
V10 4 1 4 0 1 2 3 0 0 4 1 4 0 1 3 2 02 3 032000 6

Figure 8: An Adjustment Cycle

@ S. Hart, Y. Mansour, Stochastic uncoupled dynamics and Nash equilibrium, Games

and Economic Behavior, Vol. 57, No. 2, 286-303, 2006.
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Example (Contd)
M




Consider a networked game with N = {1,2,3}, and each agent has
two actions. Three states X = {x;,x2,x3}.

Figure 10: i 22 2 2 Ge A i) Jl {5 4544 P
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Example (Contd)
@ State evolution process:

Table 8: State evolution process

Pla,x)\a 111 112 121 122 211 212 221 222
1 /3 1/4 12 1 12 0 1/3 1/3
x 1/3 1/4 0 0 1/4 1 0 1/3
X3 1/3 1/2 1/2 0 1/4 0 2/3 1/3
Pla,xo)\a 111 112 121 122 211 212 221 222
B 1 0 23 0 o0 12 0 1/3
% 0 1 1/3 1/6 5/6 1/2 0 1/3
X3 o o0 0 56 1/6 0 1 1/3
Pla,xs)\a 111 112 121 122 211 212 221 222
7 /2 12 1 0 1/4 0 1 1/3
% 0 1/2 0 12 0 1 0 1/3
x3 1/2 0 0 1/2 3/4 0 0 1/3

= P(a = 222;-,-): aperiodic, irreducible.
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Example (Contd)
@ Utility design: ci(a,x) = ci(ay,,ai,x),Vi € N.

Table 9: Designed utility function

clax)\a 111 112 121 122 211 212 221 222
c I 0 0 -1 1 2 3
P 11 2 2 1 1 3 3
C3 -1 0 -1 0 1 3 1 3

cla,xm)\a 111 112 121 122 211 212 221 222
o 1 1 3 3 0 2 5 5
P 10 3 4 5 2 4 7
e 1 0 -1 2 1 0 -1 2

cla,xs)\a 111 112 121 122 211 212 221 222
o 1T 1 0 o0 -1 -1 4 4
o 2 2 3 3 1 1 5 5
e 2 3 2 3 2 3 2 3
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Example (Contd)

20 30 40 s 60 70 80 90 100
AR
A

10

20 30 40 50 60 70 80 90 100
AR EL

10

Figure 11: Dynamics of states and actions of agent 1
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Example (Contd)

M2

0 10 20 30 40 50 60 70 80 90

100
A
MR 3
2
=
=t ,
e ,
0 10 20 30 40 5 60 70 80 90 100

BRI

Figure 12: Dynamics of actions for agent 2 and 3
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5. Application in Game Theoretic Control

e e ~ (T T T T T T T T AT T T T T T T T o
[ | | :
[ | | :
: Utility Design : : |
| | | Utility Design |
[ | [ :
[ | | '
| . | | '
| Potential Games | | S baced |
tate-base |
| | |
| | | Potential |
| | | Games I
! , ' \ ! |
‘ (NEHEI0 (CETIE ‘ I Action Learning State Learning |
} Design } } Biesign Design |
\ J o 5,
Hourglass Architecture Trinity Architecture

Figure 13: Architecture of Game Theoretic Control

@ R. Gopalakrishnan, J. R. Marden, and A. Wierman, “An architectural view of game theoretic
control,” ACM SIGMETRICS Performance Evaluation Review, vol. 38, no. 3, pp. 31-36, 2011.
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5.1 Game Theoretic Control of Multi-Agent
Systems

@ Consider the following optimization problem of an MAS

max olay,az, - ,ay)
s.t. a; € ALVieEN,xeX (9)
G =(N,é&).

where ¢ : A x X — R is a system level function that the system
wants to optimize.

@ How to update the strategy for each player to realize the optimiza-
tion?

@ Ting Liu, Jinhuan Wang, Xiao Zhang, Daizhan Cheng, Game Theoretic Control of Multiagent
Systems. SIAM J. Control. Optim. 57(3): 1691-1709, 2019.

@ C. Li, F. He, H. Qi, et. al., “Potential Games Design Using Local Information,” Proeedings of
57th IEEE Conference on Decision and Control, pp. 1911-1916, 2018.
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= Steps of game theoretic control

Utility Design as
State-based Potential Games

[ State Learning Design ]

v

[ Action Learning Design J

Figure 14: Steps of game theoretic control
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= Step 1: Utility Design

@ A finite game G is potential if and only if there exist functions d; :
A~ x X - R,i € N such that for every a € A

ci(a,x) = ¢(a,x) + di(a',x), Vi € N,Vx € X, (10)

where P(a) is the potential function, and a=' € A~".
@ If the utility function is local information-based, then

Ci(a,x) = Vl‘ Xjen; aj X X = ViFN,- D(],‘l:l a; X X.
Rewrite (10) into vector form yields

V(f’ D(;’:la[lxx = V; D(jeN,.aleX—Vld Xji dj X X,
= ViFN, [X;lzl aj X X — Vid].—‘,i D(;lzl a; X X,
where V, and V¢ are the structure vectors of ¢ and d;.
@ Since q; € Ay, i € N, x are arbitrary, we have
Vily, = Vy+ VI _;, VieN. (11)
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Theorem

Consider the optimization problem in (9) with the following global ob-
jective function ¢
P(a) = Vy Xi_ aj X x,

where V, is the structure vector of ¢. The optimization problem can
be modeled as a local information based state-based potential game
with the global objective function ¢ as its potential function, if and only
if, all the following equations have a solution &;, Vi

Ti-§i’:V¢T(x:r), VreX (12)

where T, = T'y ,TT,, & = [(& )7, (€)"" &, € R, &, € RE, ky, =
HjGN,' kj, k_;= Hj;éi kj, andNi = U(l) U {l}, Vi e N.

Moreover if the solution &/,Vi € N exists, the local information based
utility function of agent i is

ci(a,x=r) = (&) Tn, X} aj x x,Vi € N. (13)
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Subset drawing matrix

@ Consider a subset player U C N. SetI'y := ®_,v;, where

o Ik,-ai el
= 1;, Otherwise.

@ T'y can “draw” the strategies of players in U from the profile, that
is

n
Xjcyaj = FU Xi—1 4.

Homework: Try to prove above equation.
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= Step 2: State evolutionary process (SEP) design
x(t+ 1) = Mpx(t)a(z).

@ SEP-1 (Remaining Priority): Construct

B (x(t)|a(t)) == {x; | ¢(x;,a(t)) > ¢(x(1),a(r))}.
Then

0,

{x(t+l)=x(t, if By (x(t)|a(1)) =
ja(r)).

Px(t+1)=x)) = W if x; € Bi(x(1)
@ SEP-2 (Equal Probability): Construct
By(x(1)|a(r)) := {x; | ¢(x;,a(r)) = ¢(x(2),a(r))}-
Then

P(x(t+1) =x)) = if x; € B(x(t)|a(t)).

b
B2 (x(1) la(0))”
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iz Step 3. Action Learning: SBR with inertia
a(t+ 1) = Mx(t + 1)a(z).

@ For each [a, x|, denote the better reply set of player i as
Bi(a,x) :={bi € A; | ci(x, bi,a—;) > ci(x,a;,a—;)}.
@ If Bi(a(t — 1), x(z)) = 0, then the action of i at 7 is
a;(t) = a;i(t—1).
@ If Bi(a(t — 1),x(t)) # 0, then

pf/ =, a;=a;(t—1)

P! = ga-namy % € Bila(t = 1),x(1))

i =0, Otherwise
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Both the SEP-1 and the SEP-2 assure the conditions of state-based
potential games’ definition.

Why?
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Consider a consensus problem of a MAS with network graph Fig. 18.
N ={1,2,3,4} with a common action set S; = {1,2},i € N. Assume all
players can only communicate with their neighbors. Additionally, there
is a switch, denoted by x, which can link agent 1 with 2, or agent 1 with
3, or neither of them. The system objective function is

1000
$ax) =23 1oy + S %

ieN (ij)EE(x)

B

Figure 15: Network Graph

4
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Example (Contd)

Define the state set X = {x;,x,x3}, where x; means the switch x is
open; x, means the switch x is connected with node 3; x3; means the
switch x is connected with node 2. Then there are 3 states shown in
Fig. 16.

Figure 16: network graph

Then
(i, a) = VP ax,

where

Vo) = §6[11,7,7,5,8,4,6,4,8,6,4,4,5,3,3,3],
voter) = §6[12,8,7,5,9,5,6,4,8,6,5,5,5,3,4,4],
Volsr) = §6[12,8,8,6,8,4,6,4,8,6,4,4,6,4,4,4].

4
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Example (Contd)

Design state evolutionary process using SEP-2:

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|en

—|en—|cn—|cn

—|en—|cn—|cn

P(x1) _

Vv

T 1
O —la—I

S —la—=IN
—len—|en—en
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S — O
S — O
—leh—len—en
—leh—len—en
—leh—len—en
—leh—len—en
S — O
S — O
—len—len—en
—len—len—en
S —la—=IN

O —Ia—I
L 1

© 1_21_7_.
O —la—=Ie
S O O
oS O O
—len—len—lcn
—len—len—lcn
—len—len—lcn
—lea—len—lcn
—len—len—len
—len—len—len
—len—len—len
—len—len—len
S O —
S O —
O —la—=I

O —~la—=IN
1

VP (xz )

yP®)
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Example (Contd)

State-depending utility design:
Construct

Ly,
|: g&g) :|a r = X1,X2,X3.

l

where

FUI(I) = F;fz(2) =1 (Tg 14{ ® Iy, .
Ty =1, 0Le1,, Tye =Tye = 1T2 ® L,
Ty =Tu,0) =Tu,w) =Tu,wy =L &1, &1L,

T,y = hes Tosy =L ® 13 @b, Tyy0) = ®13.

It is easy to verify that
! r
vew=r) e (NS an[ ) ] ,i=1,2,3.
(Vseen] "
Local-information based utilities:

c(xa) =2 141+ Y Vomg, i=1,2,3,4
jeU. (i)
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Example (Contd)
@ State evolutionary dynamics:

x(t+ 1) = Mpx(t)a(t),

where
MP — [VP(XI), ‘/P(ch)7 VP(X_;)].

@ Profile dynamics under SBR with inertia e = 0.1

a(t+ 1) = Mpx(t + 1)a(z),

where
[1 09 09 0.81 0 O]
0 0.1 0 0.09 0O O
0O 0 01 009 --- 0 O
Mg =
0 O 0 0 0.09 0
0O 0 O 0 0 0
0O 0 O 0 0.01 O
0 0 0 0 0 1]

€ Misxas,

v
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States

- au=(1 ,2,2,2), X=X

—+ —an=(2,1 ,2,1), Xo=X,

10 15 20 25
Time

(a) REHIZHE

35

(b) KM a*

Figure 17: Dynamics of state and profile

T
/1,
[l
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: 0.6 IR o1
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g 1
ER
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02t
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|
0tk
5 10 15 20 25 30 35
Time

= (1,1, 1,1) BB i £
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6. Future Directions

@ Bring the connection between learning and STP.

@ Design learning rule for mixed NE, correlated equilibrium...

@ Combine utility design (using STP) with learning design...

@ Distributed learning rule design (for networked evolutionary game)...

@ Design learning rule for incomplete games...

@ Daizhan Cheng, Changxi Li, “Matrix expression of Bayesian games,” submitted to Applied
Mathematics and Computation, under review, arxiv:2106.12161, 2021.

@ Balcan, MF, Procaccia, AD and Zick, Y, “Learning Cooperative Games,” Proceedings Of The
Twenty-fourth International Joint Conference On Atrtificial Intelligence, 2015.
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Figure 18: From complete information game to incomplete information game
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AlphaGo becomes the first program to master Go using
neural networks and tree search
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AlphaGo Zero learns to play completely on its own,
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Thanks for your attention!
Q&A
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