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Background: Dimension-Varying Systems
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Outline of the course

@ Basic notions and examples in differential topology
@ Construction of dimension-free manifolds

@ Application: dimension-varying control systems
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Equivalence and Partitions

Definition 1.1

A binary relation ~ over a set X is called an equivalence relation, if
Va,y,z € X,

O (reflexive) z ~ z;

@ (symmetric) z~ y =y~ z;

© (transitive) z~y, y~z= 1z~ 2
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Quotient Sets

Definition 1.2

Consider a set X and an equivalence ~ on it. Va € X, call a subset
[a] :=={z € X |z~ a} C X an equivalence class with a
representative element a. The set of all equivalence classes in X is
called the quotient set of X with respect to equivalence ~, denoted
by X/ ~. The surjective map 7 : X — X/ ~, a > [qd] is called the
canonical map or quotient map.
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Examples

Some examples of quotient sets from equivalences:

© Let p be an integer. Vx, y € Z, define
z~y< =y (mod p), then it gives an equivalence on Z,
and the equivalence classes are the integers modulo p.

Q Let p € R”, define
U, :={U e R"|Uis an open set containing p}.

VU € U,, denote by C*°(U) all smooth functions over U, let
F = Upey, C(U), and define an equivalence on F by ~:
Vf,g € F, for any fe C(U), g C°(V),

frgedWel,st. WC UNV, flw=glw.

denote the quotient space by C3° := F/ ~, which is called
the germ of smooth functions at p.
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A Special Class of Quotient Sets

Definition 1.3

Consider a set X and its subset S, define the following equivalence
~Vr,ye X, z~ y< {z,y} C S. Denote the quotient set of X
with respect to this equivalence as X/ S, called the quotient set of
X with respect to S.

Example: consider a finite automaton with observation, denoted by
A= (X, Y, %, f, h,z9, X;,). Define an equivalence over X as

T ~ 22 < h(z1) = h(x2), then the quotient space follows.
Obviously, this is the quotient space with respect to h=(y), y € Y.
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Topological Spaces

Definition 1.4

A topology T on a set X is a collection of subsets of X satisfying
the following axioms:

(i) 2T, XeT.
(ii) YO1, O €T, O1N0OyeT.
(iii) V{ Oi}izl,z... cT, Uz 0,eT.
The sets in T are called open sets; the complement of an open set
is called a closed set.

<

Consider two topologies 71, 72 on X. If 71 C T, then we say 75 is
finer (or bigger) than 71, and 77 is coarser (or smaller) than 75.
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Euclidean Topology

Definition 1.5
Denote by d the Euclidean norm on R”, p € R", r > 0, define
B,(p) := {q € R"|d(p, ¢) < r}, and define the open sets as
arbitrary unions of B,.(p), Vp € R", Vr > 0, the topology derived is
called the Euclidean topology on R™.

Remark 1.1

A subset family B C T is called the topological base of (X, T), if
every open set can be represented as the union of some sets in B.

| \

V.
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Continuous Maps and Homeomorphisms

Definition 1.6

Consider a map f: (X1,71) — (X2, 72) between topological spaces.
If VO € T2, f1(0) € T1, Then fis called a continuous map. If fis
a bijection and its inverse is also continuous, it is called a
homeomorphism between X; and X5, and X, X, are called
homeomorphic.

An open set containing z is called a neighbourhood of x. The
above definition is equivalent to the following classical definition of
continuity in function theory:

Definition 1.7

If V2 € X, for any neighbourhood V of f(z) in X3, there exist a
neighbourhood U C Xj of z, such that f(U) C V, then fis called a

continuous map.
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Topology From Mappings

Proposition 1.1

Consider a map f: X — (Y, T), let T be the topology on Y.
define a collection of subsets over X consisting of the arbitrary
union and finite intersection of the preimages of sets in T as

Tp= {£{U)N---NF1(Un) | (U C TineN}
W Unea 77 (03) [{Thher € T}

then 7 is the coarsest topology on X making the map f
continuous, that is: for any topology Tx on X, if

f:(X,Tx) — (Y, T) is continuous, then 7; C Tx.

Dually, for a map g: (Y, 7) — Z, define the subset collection of Z
as the arbitrary union and finite intersection of the images of sets
in T, denoted by 7, then 7, is the finest topology on Z making g
continuous.
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Quotient Topological Spaces

Definition 1.8

Consider a topological space (X, 7) and a quotient space X/ ~ of X.
The finest topology on X/ ~ making the quotient map continuous is
called the quotient topology on X/ ~, denoted by 7. (X/ ~,T) is called
the quotient topological space of X with respect to ~.

Proposition 1.2

If X, Y are topological spaces and X/ ~ is the quotient space of X, let
f: X/ ~— Y be any function, then fis continuous if and only if fo 7 is

continuous.
X

I

X/Nf*>y
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Examples of Quotient Spaces

© The two-dimensional torus is the set T? := R2/ ~, where ~ is
defined as: s~y rz—yeZ X Z.

© The Mobius band is constructed as follows: consider a set
B:[0,1] x (0,1) C R? endowed with Euclidean product,
define (0, a) ~ (1,—a), Ya € (0,1). The corresponding
quotient space B/ ~ is called the Mébius band.

© Denote by D" := {(z1,- -+ ,7p) ER™| 23 + -+ + 22 < 1} the
n-dimensional closed disk, let
Sli={(z1, -+ ,2,) ER"| 23 + - + 22 = 1} be the
n — 1-dimensional sphere, which is the boundary of D", then
DSt~ g,
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Smooth Manifolds

Definition 1.9
Let (M, T) be a Hausdorff space with countable topological basis.
If H{ Ustaer C T satisfying M = | J,c; Us and
@ Va € I, there exists open set V, C R™ and homeomorphism
Yo+ Uy = Vi
Q Va,p € I if UyN Ug # @, then
0809t Pa(Us N Ug) = ¢p(Us N Ug) and its inverse are
both smooth maps,

then M is called an n-dimensional smooth manifold, {( Uy, ©a) tacr
is called a set of coordinates of M.

v
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Tangent Vectors

Definition 1.10
Denote the germ of smooth functions at p € M as CZO, let
v: C3° — R be a real function over C7°, if V[f], [g] € CF, v
satisfies
Q (Linearity) Vo, 8 € R, v(a[f] + B[g]) = an([f]) + Bu([g]):
@ (Leibniz rule) o([f[g]) = Ap)v(lg]) + g(p)u([f),

then v is called a tangent vector at p. The set of all tangent vectors
at p is called the tangent space of M at p, denoted by T}, M.

v
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Structure of Tangent Spaces

Given a coordinate (U, {y'}?_,) of an n-dimensional manifold },

the tangent space T),M can be viewed as the real vector space

spanned by {a‘z iz, where 555 0 C)° = R, frs 5 of |p acts on a

function by solving its partlal derlvatlve at p W|th respect to the

#-th variable. Therefore, under this coordinate v can be represented
— 0 _ 0 ;

as vl— D im1 Vigg W) = 20 ”ianApv where ' € R,

1= sur n
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Tangent Maps

Definition 1.11

Let f: M — N be a smooth map between smooth manifolds. Let
p€ M, q= f(p) € N, there is a map f*: C° — C°, [g] = [go /.
Further, if v € T, M, then vo f* € TyM, and finduces a map

fe : TyM — TyM, v vo f*, called the tangent map of fat p.

Figure 2: Tangent maps
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Properties of Tangent Maps

Tangent maps can be viewed as infinitesimal characterization of
smooth maps. Consider a smooth curve v : [0, 1] — M on the
manifold M, its image under fis a smooth curve fo~y:[0,1] - N
on N, let a € [0,1], y(a) = p, ¥ = v e TpM, then

fo0) = S PO

Proposition 1.3
Let M, N, O be smooth manifolds, f,g: M — N, h: N— O be
smooth maps, id,; be the identity map.

o (ida)«lp = idr, i

@ (hog)x = hyo g

o (af+ Bg)« = afi + Bgs, Yo, B € R.
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Smooth Vector Fields

Definition 1.12

Let M be a manifold, assigning a tangent vector at each point

p € M yields a vector field over M, denoted by X; X|, € T, M
represents the value X takes at p. If Vfe C°(M), X(f) € C°(M),
then call X a smooth vector field over M. The set of all smooth
vector fields over M is denoted by X(M).

| A

Proposition 1.4

Let M be an n-dimensional manifold, then X € X(M) if and only if
for any coordinate (U, {y'}%,), Xluv = 1, fiaayi, where fiis a
smooth function over U, i=1,---  n.
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Integral Curves and Affine Control Systems

Definition 1.13

Let M be a manifold, U C M is an open set, X € X(U),
v : la, b — Uis a smooth map. If ¥(¢) := 7*((1%) = Xl ), then v
is called an integral curve of X.

Definition 1.14
Consider f, g1, - , gm € X(M), the integral curve corresponding to

Ful(®) = iy + D Wil
=1

is called an affine control system on M, where the bounded
functions v’ : [0, 7] — R are called controls.
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Pan-Dimensional State Space

We view all n-dimensional real Euclidean spaces as R™. Define the

topological sum
R®:= | | R
neNt

where each R™ possesses the n-dimensional Euclidean topology.
Denote this natural topology on R* as 7.

Our aim is to make R*> a (topological) vector space.
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Vector Addition

Definition 2.1

Vz € R™ C R*®, y € R® C R®. Denote 1;:=[1,---,1]T.
k

The vector addition (V-addition):

where ¢t = lem(m, n) is the least common multiple of m and n.
Correspondingly, the substraction is defined as z— v := =+ (—y).
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Inner Product

Definition 2.2

Ve R™ C R, y e R™ C R*®, define
@ Inner product (of z and y):

(7, y)y = % <($® Lym), (¥® 1t/n)> : (2)

@ Norm (of z): |||y := /(z, 7).

© Distance (of zand ): d(z,y) := ||lz—yl|v.

In the linear case, we shall construct projections from R™ to R™,
VYm,n € N.
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Topology on DFES

Denote the topology induced by the above metric on R* by 7.
The following result is crucial.

Proposition 2.1
The map id : (R*>,7,) — (R*°,74) is continuous.

In other words, 7q C Th.

Using d, we define the following equivalence relation on R*:
Ve,y e R®, z~y< dz,y) =0.

Define 2 := R/ ~, equip {2 with the quotient topology of 7g,
denoted by 7.
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Hence completes the algebraic and topological constructions on
R®°:

Theorem 2.1

VZ, 5 € Q, r € R, define the addition + and scalar product as

=

@: T+, TeTI=T-1%,

then (€2, 7) is a topological vector space under + and scalar
product.

Further, (Q,T) is a pathwise connected Hausdorff space, and
we have the following diagram of morphisms:

(R, Tp) = (R, Tq)

Ty

(€, 7)
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Structure of an Equivalence Class

One can see that the equivalence defined via the distance can also
be rewritten as follows.
Definition 2.3

Let x, y € V. call z, y as equivalent, denoted by z <> y, if there
exists 1,, 1 such that

z®1, = y®1g. (3)

define the dimension of an element z € Q) as the smallest Euclidean
dimension of the elements equivalent to .
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Covering Spaces

Definition 2.4

Let F, B be topological spaces, and Il : E — Bis a continuous
surjection. If for any open set U C B, we have 7= *(U) = ||, Va,
where V,, is open set in E, and Vo, V, ~ U, then (E, 7, B) is
called a covering space.

| A

Definition 2.5

Let (Ey1, 71, B1), (E2,m2, B2) be two covering spaces. If there
exists homeomorphisms v : £y — FE, ¢ : By — Bs, such that
my 0 1) = o 1, then these two covering spaces are called
homeomorphic.
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Dimension-Free Manifolds

We define the dimension-free manifolds via local isomorphism with
dimension-free Euclidean spaces.

Definition 2.6
Let B be a Hausdorff space with countable topological basis. A covering

P . . . . . .
space E — B is called a dimension-free smooth Euclidean manifold, if it
satisfies the following:

@ There exists a collection of open subsets { U, }ner C B, such that
Uae] U, = B, and Ya € I, there exists an open set V, C Q2 and
homeomorphism ¢, : Uy — Vi, 1 : 71 (Uy) — P~1(V,,), such
that 7=1(U,) — U, and P~Y(V,) L5 v, are homeomorphisms
of covering spaces.

Q Va,p € 1 if UyN Ug # @, then
wgopat t 0a(Us N Ug) — 05(Us N Ug) and
Yot i ha o (Us N Ug) = g ot (Uy N Up) are
diffeomorphisms.
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Construction of DFEMs

The compatibility of coordinate charts implies that the following
diagram commutes:

P (Va N Vp) < - (U 1 Up) —22= PV (1 V)

O &

Vo N Vg~ U Us —2 > Vo Vs
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Projections Between Euclidean Spaces

Definition 2.7

The projection from R" to R™, denoted by II]}, is defined as

M7 (€) = argmin d(¢,1), V€€ R" (4)
zeR™

where the distance is defined as in Definition 1.1.

Proposition 2.2

Vm,n € N, assume lem(n, m) = t, a :=t/n, 5 :=t/m.
II7) : R™ — R™ is a linear operator, with a matrix representation as

M= 3 (I8 1f) (e 1), (5)

Moreover, (117,(€),€ — 117,(§))y = 0.
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Functions Over Dimension-Free Manifolds

Definition 2.8

Let f: € — R be a real function on Q. Define F:R® 5 R, 2 f@). If
fe C®(R>) (with respect to the Euclidean coordinates), then fis called
a smooth function on €.

| \

Proposition 2.3

Let f€ C"(R™). Define f: Q — R as follows: Let Z € Q and dim(z) = m.
Then

f@) = [l (m)), zeq, (6)

is smooth on €2, where z; € 7 is the smallest element in Z.

N
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Tangent Space of Dimension-Free Manifolds

Definition 2.9
Let M = (E, P, B) be a smooth dimension-free Euclidean manifold.
Denote the germ of smooth functions at p € B as C;°(B).
Consider a map v: C°(B) — R, if V[f], [¢g] € C°(B),

@ (Linearity) Ve, 5 € R, v(alf] + Blg]) = av([f}) + Bu((g);

@ (Leibniz rule) v([fllg]) = fp)u(lg]) + g(p)u([A).

then v is called a tangent vector over M. The set of all tangent
vectors are called the tangent space of (£, P, B) at p.
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Properties of Tangent Space

Proposition 2.4

Vv € Ty(E, P, B), 3v: P.(C;°(B)) — R, such that v= 10 P,
where P, : CX(B) — CX(E), frr fo P.

Proposition 2.5

The tangent space T),(E, P, B) is a linear space homomorphic to
Rdim(p)
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Vector Fields Over Dimension-Free Manifolds

Definition 2.10

X is called a smooth vector field on €, denoted by X € X(Q), if it
satisfies the following conditions:

(i) At each point z € (2, there exists p = pdim(z), called the
dimension of the vector field X at Z and denoted by dim(X3),
such that X assigns a p sub-lattice to the bundle of coordinate
neighborhood at 7, V[Op"] ={0P, 0? ...}, then at each leaf
of this sub-lattice the vector field assigns a vector
X € Ty, (07), j=1,2,---.

(i) {X7]j=1,2,---} satisfy consistence condition, that is,
Xgyey = X' ®1;, gje OF, j=1,2,---.

(iii) At each leaf Q%P C Rivdim(@)

Xlow € X(OP). (7)

v
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Construction of Vector Fields

Algorithm 2.1

@ Step 1: Assume there exists a smallest dimension m > 0, such
that X is defined over whole R™. That is,

Xlgn := X € X(R™). (8)

From the constructing point of view: A vector field
X € X(R™) is firstly given, such that the value of X at leaf
R™ is uniquely determined by (8).

o Step 2: Extend X to T7. Assume dim(y) = s, denote
mV s=t Then dim(Ty) = t. Let y € g R®], and
dim(y) = kt, k=1,2,---. Define
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An Example

Let X = (21 + 22, 73) T € X(R?). Assume X € X(1) is generated by X.
Consider y € Q, dim(y) = 3, Denote y; = (£1,&2,&3)T € R3. Since
2V 3 =06, Xat y\R* = {y, 94,56, -- } is well defined.

Now consider 5.

X(yo) = IRX(II§ (1)) = (L ®13)X (3(L®1])(y ® 1))
2614+ &+ &)

3 &1+ 6 +E83)

(6 +&+8&)

(& + 253)2

(&2 + 2&3)?

5 (& + 263)?

Consider y4, similar calculation shows that
X(ya) = O3 X(I3%(ys)) = X(y2) ® 1a.

[ o9y
—~

(O | O | =

In fact, we have

X(yor) = X(y2) @ 1, k=1,2,---.
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An Example (Cont'd)

Consider X|gs:
Assume z = (21, 2, 23, 21, %5, %) | € RS, Then

(21+22+Z3+Z4+Z5+26)_

(21+22+23+Z4+Z5+26)

X = X, = I2X(IS) = (21+122+Z3+Z4+225+Z6)
47(24 + z5 + 26)

4'(24 + 25 + 26)2

5(z+ 2 + 2)? _

QO Q| =0l =

X6 € X(R") is a standard vector field.
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Generalizing DFES to Manifolds

We begin with constructing dimension-free manifolds as quotient
spaces.

Definition 2.11

Given a Riemannian manifold M and an isometry ¢ : M — M over it,
denote by M"™ := M x --- x M the n-fold Cartesian product of M,
—_——

endowed with the product topology.
The dimension-free manifold generated by (M, ¢) is defined as

M:=M>°/ ~ (11)

where M = |_|;l"°:1 M™, and the equivalence relation over M is defined
as

Vs> 0, Vk>0, Y(z1,--- ,z5) € M?,

(xlv T vxs) ~ (xla ce oy Tsy 90(1'1)7 T ,4,0(935), e a@k(xl)v T 790k(x5))'

<
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Vector Fields Over Dimension-Free Manifolds

Proposition 2.6

A vector field f € X(M?) can be extended to M in the following
way: assume y ~ (xzp,--- , xs), without loss of generality, let

Yy= (xh c oy Ty 80(371), T 7@('7;5)7 e 790]6(%1)7 o 790]6(%8))1 then
the value of extended vector field f at y can be defined as:

ﬂy = (f1|117"' 7f8|$5790*(f1|x1)"" 7@*(}%’%)7"' 5
Sof(flll’l)?"' 7()05:(][8‘%))'

One can easily see that if we take the manifold M in Definition 12
as R and let ¢ := id, then the above definition coincides with our
general form. Similarly, in the linear case, flig1, = flz ® 1.

39/51



Application: dimension-varying control systems
©00000000000

Dimension-Varying Linear Systems

Consider a linear system over R" as
(t) = Ax(t) + Bu(t) (12)

where u € R™. Using the projection we can construct a least
square approximate system of (12) on R™, Vm € N.

Em §(1) = Ap&(t) + I}, Bu(1)

where

[T (ana) T nzm

= _ 13
n {U;gA ((Tm)Tin) ™ ()T n< m. (13)
Hence we have defined a family of linear systems on R*®
corresponding to the system 3.
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Projection Systems

Definition 3.1

Let

T=FI), 7€ (14)
be a system on ). A dynamic system
= Flz), ze€R"CR®, (15)

is called a realization (or a lifting) of (14), if for each Z there exists
T € 7, such that the corresponding vector field F(z) € F(7).
Meanwhile, system (14) is called the projection system of (15).

41/51
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Lift and Projection of Control Systems

Definition 3.2

Consider control system
2 i=Fxu), zeR’, uekR" (16)

u=uy, - ,u- can be considered as controlled parameters. Then
its projection to RY is
Pz : z=F(z,u), zeRY ueR, (17)

where

Fz,u) = Y F(IT(2), u). (18)

v
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Integral Curves

Definition 3.3

Let X € X(Q). 2(t, %) is called the integral curve of X with initial
value 7y, denoted by z(t, 7p) = @f((io) if for each initial value

7y € To[)R™, and each generator of X, denoted by X = X|g», the
following condition holds:

@7 (30)lrn = ¥ (20), t>0. (19)

v
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Integral Curves of Linear Vector Fields

Proposition 3.1

Let X € X(Q2) be a linear vector field, and dim(X) = m.
X := X|gm = Az. Assume 7V € Q, dim(z°) = s.

(i) If s= m, then the integral curve of X|g= is @X( 1) = eXtmO Hence,
the integral curve of X|gm becomes & (1) = = [eX'2)] ® 1,. The

integral curve of X with initial value 2° is @X(xo) c Q.

(ii) If s = km, then the integral curve of X|gin is &;*(2)) = eXta0,
where

X o= X(y) = O7 (X (T (y))) = O AITE™y = Agy, y € RF™

. Hence the integral curve of X with initial value 2 is ;*(29) C Q.

(iii) If mV s=p = km = rs, then the integral curve of X|gs is
& (20) = eX4(2) @ I,). Hence, the integral curve of X with initial

-0 : X
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Definition 3.4

Consider an affine nonlinear control system on €2, described by

{ i(t) = flo) ¥ 7 @),
( ) B]( ( ))7 ] € [Lp]a

where dim(f) = ng, dim(g;) = ny, i € [1, m], dim(hy) = 7},
jel,pl Let n= (V") V (\/;”:1 rj), then

(20)

{i(t) = fM(@)+ X8, ¢(z)w, (21)

yi(t) = hi(2(1), jel,p],

where fn = ﬁRn, g? = gﬂRn, 1€ [1, m], hjn = gj’Rn, jE [l,p]. (21)
is called the minimum realization of (20).
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An Example

Consider a linear control system ¥ over €, which has its dynamic
equation as Eq. (21), where f has its smallest generator

fz) = 2[m + 20, 12)T € X(R?), m = 2, the smallest generator of g
is g1 = [1,0,0,1]7 € X(R*), the smallest generator of gs is

g2 =1[0,1,0,0]T € X(R*). p=1, h|gze = 2 — 7. Then, ¢=4.
We try to analyse the control properties concerning this system.
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An Example (Cont'd)

fles = T3£ (113[21, 29, 23, 2] )
A+ mtmt+a
21+ 29+ 23+ 24

= Az,
23+ 2
23+ 24
where,

1111
1 1 1 1

A= 0011
0 011

E‘R4 = h(H%z) =Wz +2mm+tu) =un+n—2n—2xn=C0C,
Where O: [L 1a _17 _1]'
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An Example (Cont'd)

Then the smallest generator of system ¥, denoted by ¥ := X|g4, is

2= Az+ Bu,
y= Cz

Then it is easy to calculate that the controllability matrix of X is

102 16 2 16 4
C— 01 216 2 16 4
{001 020 4 0
101020 4 0

Since rank(C) = 4, ¥ is completely controllable. By definition, %
is completely controllable.
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Conclusions and Outlook

Possible applications for DFEMs:
@ Dimension-varying systems;
@ Projection of high-dimensional systems;

@ Synchronous multi-agent systems.
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