What is STP of Matrices in Hypermatrix Pearspective

从超矩阵的视角看矩阵半张量积

Daizhan Cheng

Research Center of STP Theory and Applications LiaoCheng University LiaoCheng, Shandong, China

> 2023 山东科学大讲堂 LiaoCheng, Shandong December 27, 2023

Outline of Presentation

- Hypermatrix
- STP Approach to Hypermatrix
- Matrix Expression of Hypermatrix
- $oldsymbol{\Phi}$ σ -transpose of Hypermatrices
- **5** STP of Hypermatrices
- 6 Conclusion

I. Hypermatrix(超矩阵)

Hypermatrix: Multi-indexed Data

Definition 1.1[1]

(i) A set of order d data

$$A := \{a_{i_1, i_2, \dots, i_d} \mid i_s \in [1, n_s], \ s \in [1, d]\} \in \mathbb{F}^{n_1 \times \dots \times n_d} \quad (1)$$

is called an order d hypermatrix (briefly, d-hypermatrix) with dimensions $n_1 \times n_2 \times \cdots \times n_d$. The set of d-hypermatrix with dimension $n_1 \times n_2 \times \cdots \times n_d$ is denoted by $\mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$, where $a_{i_1,i_2,\cdots,i_d} \in \mathbb{F}$ and \mathbb{F} can be \mathbb{R} , \mathbb{C} , or other fields.

Definition 1.1(cont'd)

- (ii) $A \in \mathbb{F}^{n \times n \times \dots \times n}$ is called a d-hypercubic (超立方阵).
- (iii) $A \in \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$ with $n_1 = n_d$ is called a d-hypersquare (超矩形阵).

[1] Lek-Heng Lim, Tensors and Hypermatrices, in L. Hogben (Ed.) Handbook of Linear Algebra (2nd ed.), Chapter 15, Chapman and Hall/CRC.https://doi.org/10.1201/b16113, 2013.

Special Cases

(i) d = 1 (Vector):

$$A = \{x_i \mid i \in [1, n]\} \in \mathbb{F}^n.$$

Express *A* into vector form:

$$A=(x_1,\cdots,x_n)$$

or

$$A=(x_1,\cdots,x_n)^T$$

(ii) d = 2 (Matrix):

$$A = \{x_{i,j} \mid i \in [1,m], j \in [1,n]\} \in \mathbb{F}^{m \times n}.$$

Express *A* into matrix form:

$$A = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,n} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,n} \\ \vdots & & \ddots & \\ x_{m,1} & x_{m,2} & \cdots & x_{m,n} \end{bmatrix};$$

or

 A^T :

or

$$V_r(A) = (x_{1,1}, x_{1,2}, \cdots, x_{1,n}, \cdots, x_{m,n})^T;$$

$$V_c(A) = (x_{1,1}, x_{2,1}, \cdots, x_{m,1}, \cdots, x_{m,n})^T.$$

(iii) d = 3 (Cubic Matrix):

$$A = \{d_{i,j,k} \mid i \in [1,p], j \in [1,m], k \in [1,n]\} \in \mathbb{F}^{m \times n}.$$

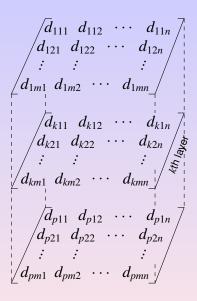


Figure 1: 一个立体阵

Definition 1.2

Let V be an n-dimensional vector space.

$$d = \{d_1, \cdots, d_n\}$$

a basis of V.

$$e = \{e_1, \cdots, e_n\}$$

a basis of V^* , which is dual to d. That is,

$$e_i(d_j) = \begin{cases} 1, & i = j, \\ 0, & i \neq j. \end{cases}$$

A multi-linear mapping $t: \underbrace{V \times \cdots \times V}_{} \times \underbrace{V^* \times \cdots \times V^*}_{} \to \mathbb{R}$

is called a tensor of covariant order r and contra-variant order s.

Definition 1.2(cont'd)

$$\mu_{j_1,\cdots,j_s}^{i_1,\cdots,i_r}:=t(d_{i_1},\cdots,d_{i_r};e_{j_1},\cdots,e_{j_s}),$$

$$i_{\alpha},j_{\beta}\in[1,n],\alpha\in[1,r],\beta\in[1,s].$$

 $D_t := \left\{ \mu_{j_1, \cdots, j_s}^{i_1, \cdots, i_r} \mid i_{\alpha}, j_{\beta} \in [1, n], \alpha \in [1, r], \beta \in [1, s] \right\}$ is the set of structure constants.

$$order(D_t) = r + s$$
.

II. STP Approach to Hypermatrix

Application of STP

Definition 2.1

Let $A \in \mathcal{M}_{m \times n}$ $B \in \mathcal{M}_{p \times q}$, t = lcm(n, p). The semi-tensor product (STP) of A and B is

$$A \ltimes B := (A \otimes I_{t/n}) (B \otimes I_{t/p}).$$
 (2)

Example 2.2

Consider multi-linear mappings.

(i) Let $\pi_1: \mathbb{R}^n \to \mathbb{R}$. Say,

$$\pi_1(\delta_n^i) = a_i, \quad i \in [1, n].$$

Example 2.2(cont'd)

Set

$$V_A=(a_1,\cdots,a_n).$$

Then

$$\pi(x) = V_A x.$$

(ii) Let $\pi_2: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$. Say,

$$\pi_2(\delta_m^i, \delta_n^j) = a_{i,j}, \quad i \in [1, m], j \in [1, n].$$

Set

$$M_A = (a_{i,j}) \in \mathcal{M}_{m \times n}$$
.

Let $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$. Then

$$\pi_2(x,y) = x^T M_A y.$$

Example 2.2(cont'd)

(iii) Let $\pi_3: \mathbb{R}^p \times \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$. Say,

$$\pi_{3}(\delta_{p}^{k},\delta_{m}^{i},\delta_{n}^{j})=d_{k,i,j}, \quad k \in [1,p], i \in [1,m], j \in [1,n].$$

Set

$$V_A = [d_{1,1,1}, \cdots, d_{1,1,n}, \cdots, d_{1,m,1}, \cdots, d_{1,m,n}, \cdots, d_{p,1,1}, \cdots, d_{p,m,n}] \in \mathbb{R}^{pmn}.$$

Let $x \in \mathbb{R}^p$, $y \in \mathbb{R}^m$, $z \in \mathbb{R}^n$. Then

$$\pi_3(x, y, z) = V_A \ltimes x \ltimes y \ltimes z.$$

Example 2.3

Let $V = \mathbb{R}^n$. Consider a tensor $t \in \mathcal{T}_s^r$ with

$$\mu_{j_1,\cdots,j_s}^{i_1,\cdots,i_r} := t(\delta_n^{i_1},\cdots,\delta_n^{i_r};(\delta_n^{j_1})^T,\cdots,(\delta_n^{j_s})^T),$$

$$i_{\alpha},j_{\beta} \in [1,n], \alpha \in [1,r], \beta \in [1,s].$$

Construct the structure matrix of t as

$$M_{t} = \begin{bmatrix} \mu_{1,1,\cdots,1}^{1,1,\cdots,1} & \mu_{1,1,\cdots,2}^{1,1,\cdots,2} & \cdots & \mu_{1,1,\cdots,n}^{1,1,\cdots,n} \\ \mu_{1,1,\cdots,1}^{1,1,\cdots,1} & \mu_{1,1,\cdots,2}^{1,1,\cdots,2} & \cdots & \mu_{1,1,\cdots,n}^{1,1,\cdots,n} \\ & & & & & & \\ \mu_{n,1,\cdots,1}^{1,1,\cdots,1} & \mu_{n,n,\cdots,2}^{1,2,\cdots,1} & \cdots & \mu_{n,n,\cdots,n}^{n,n,\cdots,n} \end{bmatrix}$$

Let
$$x_i \in \mathbb{R}^n$$
, $i \in [1, r]$, $\omega_j \in (\mathbb{R}^n)^*$, $j \in [1, s]$. Then

$$t(x_1,\cdots,x_r;\omega_1,\cdots,\omega_s)=\omega_s\ltimes\cdots\ltimes\omega_1\ltimes M_t\ltimes x_1\ltimes\cdots\ltimes x_r.$$

Summary

- (i) Classical Matrix Theory is used for Matrices and Vectors.
- (ii) STP Theory can be used for Hypermatrices.
- (iii) The multi-linear mapping over Hypermatrices can be realized by STP as:

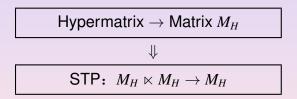


Figure 2: Using STP For Hypermatrices

III. Matrix Expression of Hypermatrix

Set Point of View for Hypermatrix

A hypermatrix consists of two ingredients:

(i) a set of data

$$D_A := \{a_{i_1, \dots, i_d} \mid i_s \in [1, n_s], \ s \in [1, d]\}; \tag{3}$$

(ii) an ordered set of indexes.

$$\mathbf{r} := \{r_1, r_2, \cdots, r_d\}.$$

Definition 3.1

Given a hypermatrix $A = [a_{r_1, r_2, \dots, r_d}]$. For each partition

$$\mathbf{r} = \{r_1, r_2, \cdots, r_d\} = (r_{i_1}, r_{i_2}, \cdots, r_{i_p}) \\ \cup \{r_{i_1}, r_{i_2}, \cdots, r_{i_q}\} := \mathbf{r}_1 \cup \mathbf{r}_2,$$
 (4)

there is a matrix expression of A, denoted by

Definition 3.1(cont'd)

$$M_A^{\mathbf{r}_1 \times \mathbf{r}_2} := M_A^{\mathbf{r}_1} \in \mathbb{F}^{s \times t},\tag{5}$$

where $s=\prod_{k=1}^p n_{i_k}$, $t=\prod_{k=1}^q n_{j_k}$. Moreover, the elements in $M_A^{\mathbf{r}_1 \times \mathbf{r}_2}$ are $\{a_{r_1,r_2,\cdots,r_d}\}$, which are arranged by $ID(\mathbf{r}_1;n_{r_{i_1}},n_{r_{i_2}},\cdots,n_{r_{i_p}})$ for rows, and by $ID(\mathbf{r}_2;n_{r_{i_1}},n_{r_{i_2}},\cdots,n_{r_{i_p}})$ for columns.

Example 3.2

Given
$$A = [a_{i_1,i_2,i_3}] \in \mathbb{F}^{2 \times 3 \times 2}$$
. Then

$$M_A^{\emptyset} = [a_{111}, a_{112}, a_{121}, a_{122}, a_{131}, a_{132}, a_{211}, a_{212}, a_{221}, a_{222}, a_{231}, a_{232}].$$

$$M_A^{(1)} = \begin{bmatrix} a_{111} & a_{112} & a_{121} & a_{122} & a_{131} & a_{132} \ a_{211} & a_{212} & a_{221} & a_{222} & a_{231} & a_{232} \end{bmatrix};$$

$$M_A^{(2)} = egin{bmatrix} a_{111} & a_{112} & a_{211} & a_{212} \ a_{121} & a_{122} & a_{221} & a_{222} \ a_{131} & a_{132} & a_{231} & a_{232} \end{bmatrix}; \quad ext{etc.}$$

Example 3.2(cont'd)

(iii)

$$M_A^{(1,2)} = egin{bmatrix} a_{111} & a_{112} \ a_{121} & a_{122} \ a_{131} & a_{132} \ a_{211} & a_{212} \ a_{221} & a_{222} \ a_{231} & a_{232} \end{bmatrix}; \quad ext{etc.}$$

$$M_A^{(1,3)} = egin{bmatrix} a_{111} & a_{121} & a_{131} \ a_{112} & a_{122} & a_{132} \ a_{211} & a_{221} & a_{231} \ a_{212} & a_{222} & a_{232} \end{bmatrix}; \quad ext{etc.}$$

(iv)

$$M_A^{(1,2,3)} = (M_A^{\emptyset})^{\mathrm{T}}.$$

Definition 3.3

(i)

$$V_A := M_A^{\emptyset \times \mathbf{r}}$$

is called the (row) vector expression of hypermatrix A.

(ii)

$$M_A := M_A^{\{1\} \times \mathbf{r} \setminus \{1\}}$$

is called the matrix-1 expression of hypermatrix A.

Definition 3.4

Let $x_i \in \mathbb{F}^{n_i}$, $i \in [1, d]$. Then

$$x := \ltimes_{i=1}^d x_i \tag{6}$$

is called a hypervector of order d.

The set of hypervectors is denoted by

$$\mathbb{F}^{n_1 \ltimes \cdots \ltimes n_d} := \{x \mid x \text{ is obtaied by (6)}\}.$$

Note that the components of x can be expressed as

$$D_x := \left\{ x_{i_1, \dots, i_d} = x_1^{i_1} x_2^{i_2} \dots x_d^{i_d} \mid i_j \in [1, n_j], j \in [1, d] \right\},\,$$

where $x_r^{i_r}$ is the i_r component of x_r .

It is clear that D_x (or briefly hypervector x) is a hypermatrix.

Proposition 3.5

$$\mathbb{F}^{n_1 \times \dots \times n_d} \subset \mathbb{F}^{n_1 \times \dots \times n_d} \tag{7}$$

is a subset of hypermatrices.

Remark 3.6

Since the set of hypervectors $\mathbb{F}^{n_1 \times \cdots \times n_d}$ contains a set of basis of the set of hypermatrices $\mathbb{F}^{n_1 \times \cdots \times n_d}$, any multi-linear mapping over $\mathbb{F}^{n_1 \times \cdots \times n_d}$ is uniquely determined by its restriction on the set of hypervectors $\mathbb{F}^{n_1 \times \cdots \times n_d}$.

Definition 3.7

Assume $V \in (\mathbb{F}^n)^s$ is an s dimensional vector subspace of the n dimensional vector space on \mathbb{F} .

- (i) A hypervector $x = \ltimes_{i=1}^t x_i$ with $x_i \in V$ is said to be a hypervector over V, denoted by $x \in V^t$.
- (ii) If $x = \ltimes_{i=1}^t x_i \in V^t$ and

$$rank[x_1, \cdots, x_t] = \dim(V) \ (= s),$$

x is said to be of full rank.

(iii) If $x = \ltimes_{i=1}^t x_i \in V^t$ is of full rank and $\{x_{i_1}, \dots, x_{i_s}\} \subset \{x_1, \dots, x_t\}$ is the first set of basis of V searching from left, it is called the first basis subset.

IV. σ -transpose of Hypermatrices

Permutation Group

Definition 4.1

The symmetric group of order n, denoted by S_n , is the set of permutations of n objects. The product over S_n is the compounded permutations.

Example 4.2

Consider S₃.

(i) $\sigma \in \mathbf{S}_3$ can be expressed by

$$\sigma: [1,2,3] \rightarrow [2,1,3]; \quad \text{ or } \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}; \quad \text{ or } (1,2)$$

23 / 52

Example 4.2(cont'd)

(ii) $\mu:[1,2,3]\to[3,1,2]\in\mathbf{S}_3$. Then

$$\mu \circ \sigma = [1, 2, 3] \xrightarrow{\sigma} [2, 1, 3] \xrightarrow{\mu} [1, 3, 2].$$

That is,

$$\mu \circ \sigma = (2,3).$$

(iii)

$$\sigma^{-1} = (2,1); \quad \mu^{-1} = (1,2,3).$$

Remark 4.3

Each $\sigma \in \mathbf{S}_n$ can be expressed as a product of swaps, say,

$$(1,2,3) = (1,2)(2,3).$$

If σ can be expressed as a product of even swaps, then $sign(\sigma)=1$; otherwise, $sign(\sigma)=-1$. The expression is not unique, but the odevity (odd and even) remain unchanged.

Definition 4.4

(i) Consider a d-hypermatrix $A = [a_{j_1,j_2,\cdots,j_d}] \in \mathbb{F}^{n_1 \times n_2 \times \cdots \times n_d}$, and assume $\sigma \in \mathbf{S}_d$. The

$$A^{\sigma} := \left[a_{j_{\sigma(1)} \cdots j_{\sigma(d)}} \right] \in \mathbb{F}^{n_{\sigma(1)} \times \cdots \times n_{\sigma(d)}}. \tag{8}$$

(ii) If a d-hypercubic $A \in \mathbb{F}^{n \times \cdots \times n}$ satisfies

$$A^{\sigma} = A, \quad \forall \sigma \in \mathbf{S}_d,$$

then A is said to be a symmetric d-heypercubic.

(iii) A d-hypercubic $A \in \mathbb{F}^{n \times \cdots \times n}$ is said to be skew-symmetric if

$$A^{\sigma} = sign(\sigma)A, \quad \forall \sigma \in \mathbf{S}_d.$$

Proposition 4.5

A d=2 hypercubic $A\in\mathbb{F}^{n\times n}$ is (skew-)symmetric, if and only if, M_A is (skew-)symmetric.

Proposition 4.6

Let $A \in \mathbb{F}^{n_1 \times \cdots \times n_d}$ and $\mathbf{r} \subset \mathbf{d} = < d >$. Then

$$\left[M_A^{\mathbf{r}\times(\mathbf{d}\setminus\mathbf{r})}\right]^T = M_A^{(\mathbf{d}\setminus\mathbf{r})\times\mathbf{r}}.$$
 (9)

Algorithm 4.7

Let $n=\prod_{i=1}^d n_i, n_i\geq 2, \,\sigma\in \mathbf{S}_n$. A logical matrix $W^\sigma_{[n_1,n_2,\cdots,n_d]}\in\mathcal{L}_{n\times n}$, called a σ -permutation matrix, is constructed as follows:

• Step 1: Define

$$D = D^{\sigma}_{[n_1, n_2, \cdots, n_d]} := \left\{ \delta^{j_1}_{n_{\sigma(1)}} \delta^{j_2}_{n_{\sigma(2)}} \cdots \delta^{j_d}_{n_{\sigma(d)}} \mid j_i \in [1, n_{\sigma(i)}], i = 1, 2, \cdots, d \right\}.$$

Exampl 4.8

Assume d=3; $n_1=2$, $n_2=3$, $n_3=5$. $\sigma=(1,2,3)$. We have

$$\sigma(1) = 2, \ \sigma(2) = 3, \ \sigma(3) = 1.$$
 $n_{\sigma_1} = 3, \ n_{\sigma_2} = 5, \ n_{\sigma_3} = 2.$

$$D^{\sigma}_{[2,3,5]} = \left[\delta_3^{j_1} \delta_5^{j_2} \delta_2^{j_3} \mid j_1 \in [1,3], j_2 \in [1,5], j_3 \in [1,2] \right].$$

Algorithm 4.7(cont'd)

• Step 2: Arrange $\{\sigma(i) \mid i \in [1,d]\}$ into an increasing sequence as

$$1 = \sigma(i_1) < \sigma(i_2) < \cdots < \sigma(i_d) = d.$$

That is,

$$i_j = \sigma^{-1}(j), \quad j \in [1, d].$$

Exampl 4.8 (cont'd)

$$1 = \sigma(3) < \sigma(1) < \sigma(2) = 3.$$

Hence,

$$i_1 = 3$$
, $i_2 = 2$, $i_3 = 2$.

Algorithm 4.7(cont'd)

Step 3: Set an index order as

$$ID_{\sigma} := ID \left(j_{i_1}, j_{i_2}, \cdots, j_{i_d}; k_{\sigma(i_1)}, k_{\sigma(i_2)}, \cdots, k_{\sigma(i_d)} \right)$$

= $ID \left(j_{\sigma^{-1}(1)}, j_{\sigma^{-1}(2)}, \cdots, j_{\sigma^{-1}(d)}; k_1, k_2, \cdots, k_d \right).$

Exampl 4.8 (cont'd)

$$ID_{\sigma} = ID(j_3, j_1, j_2 \mid k_1, k_2, k_3)$$

Algorithm 4.7(cont'd)

Step 4:

$$W^{\sigma}_{[n_1,n_2,\cdots,n_d]} := \left[d^{j_1}_{n_{\sigma(1)}} d^{j_2}_{n_{\sigma(2)}} \cdots d^{j_d}_{n_{\sigma(d)}} \right]$$
 arranged by the order of ID_{σ} .

Exampl 4.8 (cont'd)

$$W_{\sigma} = \left\{ \delta_{3}^{j_{1}} \delta_{5}^{j_{2}} \delta_{2}^{j_{3}} \mid j_{1} \in [1, 3], j_{2} \in [1, 5], j_{3} \in [1, 2] \right\}$$

$$= \left\{ \delta_{3}^{j_{1}} \delta_{5}^{j_{2}} \delta_{2}^{j_{3}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}}, \cdots, \delta_{3}^{j_{3}} \delta_{5}^{j_{5}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{1}} \delta_{5}^{j_{1}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{1}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{3}} \delta_{5}^{j_{5}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{1}} \delta_{5}^{j_{1}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{5}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{1}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{1}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left. \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}}, \cdots, \delta_{3}^{j_{2}} \delta_{5}^{j_{2}} \delta_{2}^{j_{2}}, \right.$$

$$\left.$$

30 / 52

Example 4.8

Consider d = 3, $n_1 = 2$, $n_2 = 3$, and $n_3 = 5$. We construct $W^{\sigma} := W^{\sigma}_{[2,3,5]}$.

(1) $\sigma_1 = id$ (i.e., $[1, 2, 3] \rightarrow [1, 2, 3]$): We have

$$W^{\sigma_1}=I_{30}.$$

(2)
$$\sigma_2 = (2,3)$$
 (i.e., $[1,2,3] \rightarrow [1,3,2]$): Then

$$D = \{\delta_2^{j_1} \delta_5^{j_2} \delta_3^{j_3} \mid j_1 \in [1, 2], j_2 \in [1, 5], j_3 \in [1, 3]\}$$

$$\begin{split} W^{\sigma_2} &= \left[\delta_2^1 \delta_5^1 \delta_3^1, \delta_2^1 \delta_5^2 \delta_3^1, \delta_2^1 \delta_5^3 \delta_3^1, \delta_2^1 \delta_5^4 \delta_3^1, \delta_2^1 \delta_5^5 \delta_3^1, \\ \delta_2^1 \delta_5^1 \delta_3^2, \delta_2^1 \delta_5^2 \delta_3^2, \delta_2^1 \delta_5^3 \delta_3^2, \delta_2^1 \delta_5^4 \delta_3^2, \delta_2^1 \delta_5^5 \delta_3^2, \\ \delta_2^1 \delta_5^1 \delta_3^3, \delta_2^1 \delta_5^2 \delta_3^3, \delta_2^1 \delta_5^3 \delta_3^3, \delta_2^1 \delta_5^4 \delta_3^3, \delta_2^1 \delta_5^5 \delta_3^3, \\ \delta_2^2 \delta_5^1 \delta_3^1, \delta_2^2 \delta_5^2 \delta_3^1, \delta_2^2 \delta_5^3 \delta_3^1, \delta_2^2 \delta_5^4 \delta_3^1, \delta_2^2 \delta_5^5 \delta_3^1, \\ \delta_2^2 \delta_5^1 \delta_3^2, \delta_2^2 \delta_5^2 \delta_3^2, \delta_2^2 \delta_5^3 \delta_3^2, \delta_2^2 \delta_5^4 \delta_3^2, \delta_2^2 \delta_5^5 \delta_3^2, \\ \delta_2^2 \delta_5^1 \delta_3^3, \delta_2^2 \delta_5^2 \delta_3^3, \delta_2^2 \delta_5^3 \delta_3^3, \delta_2^2 \delta_5^4 \delta_3^3, \delta_2^2 \delta_5^5 \delta_3^3, \\ \delta_2^2 \delta_5^1 \delta_3^3, \delta_2^2 \delta_5^2 \delta_3^3, \delta_2^2 \delta_5^3 \delta_3^3, \delta_2^2 \delta_5^4 \delta_3^3, \delta_2^2 \delta_5^5 \delta_3^3 \right] \end{split}$$

Example 4.8(cont'd)

$$W^{\sigma_2} = \delta_{30}[1, 4, 7, 10, 13, 2, 5, 8, 11, 14, 3, 6, 9, 12, 15, 16, 19, 22, 25, 28, 17, 20, 23, 26, 29, 18, 21, 24, 27, 30].$$

(3) $\sigma_3 = (1,2)$ (i.e., $[1,2,3] \rightarrow [2,1,3]$): Similarly, we have

$$D = \{\delta_3^{j_1} \delta_2^{j_2} \delta_5^{j_3} \mid j_1 \in [1, 3], j_2 \in [1, 2], j_3 \in [1, 5]\}$$

$$W^{\sigma_3} = \begin{bmatrix} \delta_3^1 \delta_2^1 \delta_5^1, \delta_3^1 \delta_2^1 \delta_5^2, \cdots, \delta_3^2 \delta_2^1 \delta_5^1, \\ \cdots, d_3^2 \delta_2^1 \delta_5^5, \cdots, \delta_3^3 \delta_2^2 \delta_5^5 \end{bmatrix}$$

$$= \delta_{30} \begin{bmatrix} 1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 21, 22, 23, 24, \\ 25, 6, 7, 8, 9, 10, 16, 17, 18, 19, 20, 26, 27, 28, 29, 30 \end{bmatrix}.$$

Example 4.8(cont'd)

(4) $\sigma_4 = (1,2,3)$ (i.e., $[1,2,3] \rightarrow [2,3,1]$): We have

$$W^{\sigma_4} = \left[\delta_3^1 \delta_5^1 \delta_2^1, \cdots, \delta_3^3 \delta_5^5 \delta_2^2 \right]$$

= $\delta_{30} [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30].$

(5) $\sigma_5 = (1,3,2)$ (i.e., $[1,2,3] \rightarrow [3,1,2]$): Then

$$W^{\sigma_5} = \left[\delta_5^1 \delta_2^1 \delta_3^1, \cdots, \delta_5^5 \delta_2^2 \delta_3^3\right] = \delta_{30}[1, 7, 13, 19, 25, 2, 8, 14, 20, 26, 3, 9, 15, 21, 27 4, 10, 16, 22, 28, 5, 11, 17, 23, 29, 6, 12, 18, 24, 30].$$

(6) $\sigma_6 = (1,3)$ (i.e., $[1,2,3] \rightarrow [3,2,1]$): Then

$$W^{\sigma_6} = \begin{bmatrix} \delta_5^1 \delta_3^1 \delta_2^1, \cdots, \delta_5^5 \delta_3^3 \delta_2^2 \end{bmatrix}$$

= $\delta_{30}[1, 7, 13, 19, 25, 3, 9, 15, 21, 27, 5, 11, 17, 23, 29, 2, 8, 14, 20, 26, 4, 10, 16, 22, 28, 6, 12, 18, 24, 30].$

Proposition 4.9

(i)

$$\left[W_{[n_1,\cdots,n_d]}^{\sigma}\right]^T = \left[W_{[n_1,\cdots,n_d]}^{\sigma}\right]^{-1} = W_{[n_1,\cdots,n_d]}^{\sigma^{-1}}.$$
 (11)

(ii) Let $\sigma, \mu \in \mathbf{S}_d$. Then

$$W^{\sigma}_{[n_1, n_2, \cdots, n_d]} W^{\mu}_{[n_1, n_2, \cdots, n_d]} = W^{\sigma \circ \mu}_{[n_1, n_2, \cdots, n_d]}. \tag{12}$$

Proposition 4.10

Assume $x_i \in \mathbb{F}^{n_i}$, $i \in d > \sigma \in \mathbf{S}_d$. Then

$$\ltimes_{i=1}^d x_{\sigma(i)} = W^{\sigma}_{[n_1, n_2, \cdots, n_d]} \ltimes_{i=1}^d x_i.$$
 (13)

Corollary 3.11

Let $A \in \mathbb{F}^{n_1 \times \cdots \times n_d}$ be a hypermatrix of order d. Then

$$V_{A^{\sigma}} = V_A \left[W_{[n_1, \dots, n_d]}^{\sigma} \right]^T = V_A W_{[n_1, \dots, n_d]}^{\sigma^{-1}}.$$
 (14)

Conversion of Matrix Expressions

Definition 4.12

(i) Let $A = [a_{i,i}] \in \mathbb{F}^{m \times n}$ be a matrix. Then

$$\mathbf{V}_r(A) := [a_{1,1}, a_{1,2}, \cdots, a_{1,n}, a_{2,1}, \cdots, a_{m,n}]$$
 (15)

is called the row stacking form of A;

$$\mathbf{V}_c(A) := [a_{1,1}, a_{2,1}, \cdots, a_{m,1}, a_{1,2}, \cdots, a_{m,n}]$$
 (16)

is called the column stacking form of A.

Definition 4.12(cont'd)

(ii) Let $x \in \mathbb{F}^n$ and s|n. Say, n = st. Then

$$\mathbf{V}_{r}^{s}(x) := \begin{bmatrix} x_{1} & x_{2} & \cdots & x_{s} \\ x_{s+1} & x_{s+2} & \cdots & x_{2s} \\ \vdots & & & & \\ x_{(t-1)s+1} & x_{(t-1)s+2} & \cdots & x_{ts} \end{bmatrix}$$
(17)

$$\mathbf{V}_{c}^{s}(x) := \begin{bmatrix} x_{1} & x_{s+1} & \cdots & x_{(t-1)s+1} \\ x_{2} & x_{s+2} & \cdots & x_{(t-1)s+2} \\ \vdots & & & \\ x_{s} & x_{2s} & \cdots & x_{ts} \end{bmatrix}$$
(18)

Definition 4.12(cont'd)

(iii) Let $A \in \mathbb{F}^{m \times n}$ and s|(mn). Then

$$\mathbf{V}_r^s(A) := \mathbf{V}_r^s\left(\mathbf{V}_r(A)\right) \tag{19}$$

is called the s-row stacking form.

$$\mathbf{V}_{c}^{s}(A) := \mathbf{V}_{c}^{s}(\mathbf{V}_{c}(A)) \tag{20}$$

is called the s-column stacking form.

Proposition 4.13

Let $A \in \mathbb{F}^{m \times n}$, $X \in \mathbb{F}^{n \times q}$, and $Y \in \mathbb{F}^{p \times m}$. Then

$$\mathbf{V}_r(AX) = A \ltimes \mathbf{V}_r(X),\tag{21}$$

$$\mathbf{V}_c(YA) = A^T \ltimes \mathbf{V}_c(Y). \tag{22}$$

Denote by

$$\delta_n^I := \mathbf{V}_r(I_n) = \mathbf{V}_c(I_n) = [(\delta_n^1)^T, (\delta_n^2)^T, \cdots, (\delta_n^n)^T]^T.$$

Proposition 4.14

Let $A \in \mathbb{F}^{m \times n}$. Then

$$\mathbf{V}_r(A) = A \ltimes \delta_n^I. \tag{23}$$

$$\mathbf{V}_c(A) = A^T \ltimes \delta_m^I. \tag{24}$$

Conversely,

$$A = \mathbf{V}_r^n(\mathbf{V}_r(A)) = \mathbf{V}_c^m(\mathbf{V}_c(A)). \tag{25}$$

Proposition 4.15

Given $A = [a_{i_1,\cdots,i_d}] \in \mathbb{F}^{n_1 \times \cdots \times n_d}$, $\mathbf{i_r} = (i_1,\cdots,i_r) \subset \mathbf{d} = < d >$, and

$$\sigma_{\mathbf{i_r}}: \mathbf{d} \to (\mathbf{i_r}, \mathbf{d} \setminus \mathbf{i_r}), \quad n_{\mathbf{i_r}} = \prod_{s=1}^r n_{i_s}, \quad n_{\mathbf{d} \setminus \mathbf{i_r}} = \prod_{i_i \in \mathbf{d} \setminus \mathbf{i_r}} n_{i_j}.$$

Then

(i) (Vector Form to Matrix Form:)

$$M_A^{\mathbf{i_r} \times (\mathbf{d} \setminus \mathbf{i_r})} = \mathbf{V}_r^{n_{\mathbf{d} \setminus \mathbf{i_r}}} \left(V_A W_{[n_1, \cdots, n_d]}^{\sigma_{\mathbf{i_r}}^{-1}} \right). \tag{26}$$

(ii) (Matrix Form to Vector Form:)

$$V_A = \left(M_A^{\mathbf{i_r} \times (\mathbf{d} \setminus \mathbf{i_r})} \ltimes \delta_{n_{\mathbf{d} \setminus \mathbf{i_r}}}^I\right)^T W_{[n_1, \dots, n_d]}^{\sigma_{\mathbf{i_r}}}.$$
 (27)

Corollary 4.16

Let $\mathbf{i_r}$, $\sigma_{\mathbf{i_r}}$ be as in Proposition 4.15, and $\mathbf{j_s}=(j_1,\cdots,j_s)$ and $\sigma_{\mathbf{j_s}}:\mathbf{d}\to(\mathbf{j_s},\mathbf{d}\backslash\mathbf{j_s})$. Then

$$M_{A}^{\mathbf{j_{s}}\times(\mathbf{d}\setminus\mathbf{j_{s}})} = \mathbf{V}_{r}^{n_{\mathbf{d}\setminus\mathbf{j_{s}}}} \left[\left(M_{A}^{\mathbf{i_{r}}\times(\mathbf{d}\setminus\mathbf{i_{r}})} \ltimes \delta_{\mathbf{d}\setminus\mathbf{i_{r}}}^{I} \right)^{T} \times W_{[n_{1},\cdots,n_{d}]}^{\sigma_{\mathbf{i_{r}}}} W_{[n_{1},\cdots,n_{d}]}^{\sigma_{\mathbf{j_{s}}}^{-1}} \right].$$
(28)

V. STP of Hypermatrices

Definition 5.1

Let $A \in \mathbb{F}^{m_1 \times s \times n_1}$ and $B \in \mathbb{F}^{m_2 \times s \times n_2}$. The M-1 expressions of A and B are

$$M_A = [A_1, A_2, \cdots, A_s],$$

 $M_B = [B_1, B_2, \cdots, B_s],$

where $A_i \in \mathcal{M}_{m_1 \times n_1}$, $B_i \in \mathcal{M}_{m_2 \times n_2}$, $i \in [1, s]$. The STP of A and B, denoted by $C = A \ltimes B$ is defined by

$$M_C := [A_1 \ltimes B_1, A_2 \ltimes B_2, \cdots, A_s \ltimes B_s]. \tag{29}$$

Denote by

$$\mathbb{F}^{\infty \times s \times \infty} := \bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \mathbb{F}^{m \times s \times n}.$$

Then

$$\ltimes : \mathbb{F}^{\infty \times s \times \infty} \times \mathbb{F}^{\infty \times s \times \infty} \to \mathbb{F}^{\infty \times s \times \infty}$$

Let $A \in \mathcal{M}_{m \times n}$ and $B \in \mathcal{M}_{p \times a}$, t = lcm(n, p). The DK-STP of *A* and *B*, denoted by $A \times B \in \mathcal{M}_{m \times a}$, is defined as follows.

$$A \times B := \left(A \otimes \mathbf{1}_{t/n}^T\right) \left(B \otimes \mathbf{1}_{t/p}\right).$$
 (30)

Remark 5.3

(i) When n=p,

$$A \times B = AB$$
.

- (ii) If $A, B \in \mathcal{M}_{m \times n}$, then $A \times B \in \mathcal{M}_{m \times n}$.
- D. Cheng, From DK-STP to Non-square General Linear Algebra and General Linear Group, (preprint: http:arxiv.org/abs/2305.19794v2), 2023.

Remark 5.3(cont'd)

- (iii) It is MM-, MV-, and VV- STP.
- (iv) $(\mathcal{M}_{m\times n}, +, \times)$ is a ring.

Proposition 5.4

Let $A \in \mathcal{M}_{m \times n}$ and $B \in \mathcal{M}_{p \times q}$, t = lcm(n, p).

$$A \times B = A \left(I_n \otimes \mathbf{1}_{t/n}^T \right) \left(I_p \otimes \mathbf{1}_{t/p} \right) B$$

:= $A \Psi_{n \times p} B$, (31)

where

$$\Psi_{n imes p} = \left(I_n \otimes \mathbf{1}_{t/n}^T\right) \left(I_p \otimes \mathbf{1}_{t/p}\right) \in \mathcal{M}_{n imes p}$$

is called the bridge matrix of dimension $n \times p$.

Assume $A \in \mathcal{M}_{m \times n}$. Consider $A : \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$ by $x \mapsto A \times x$.

Then $\mathbb{R}^m \subset \mathbb{R}^{\infty}$ is an invariant subspace.

Denote by Π_A the restriction of $A|_{\mathbb{R}^m}=\Pi_A$. That is

$$A \times x = \Pi_A x, \quad \forall x \in \mathbb{R}^m.$$
 (32)

Proposition 5.6

$$\Pi_A = A \times I_m = A \Psi_{n \times m}. \tag{33}$$

(i)

$$A^{\langle k \rangle} := \underbrace{A \times \cdots \times A}_{k}. \tag{34}$$

(ii) Let $A \in \mathcal{M}_{m \times n}$ and $A|_{\mathbb{R}^m} = \Pi_A$. The characteristic polynomial of Π_A is called the characteristic polynomial of A.

Theorem 5.8

Let $A \in \mathcal{M}_{m \times n}$ and $A|_{\mathbb{R}^m} = \Pi_A$. Denote by $p(x) = x^m +$ $p_{m-1}x^{m-1} + \cdots + p_0$ the characteristic polynomial of $\Pi(A)$. Then

$$A^{\langle m+1\rangle} + p_{r-1}A^{\langle m\rangle} + \dots + p_0A = 0.$$
 (35)

Consider $\mathcal{M}_{m\times n}$, a Lie bracket over $\mathcal{M}_{m\times n}$, defined by using x, is

$$[A,B]_{\times} := A \times B - B \times A, \quad A,B \in \mathcal{M}_{m \times n}. \tag{36}$$

Proposition 5.10

- (i) $\mathcal{M}_{m\times n}$ with Lie bracket defined by (36) is a Lie algebra, denoted by $gl(m\times n, \mathbb{F})$.
- (ii) There exists the corresponding Lie group, denoted by $GL(m \times n, \mathbb{F})$, which has $gl(m \times n, \mathbb{F})$ as its Lie algebra.

DK-STP of Hypermatrices

Definition 5.11

Let $A, B \in \mathbb{F}^{\infty \times s \times \infty}$ with M-1 expressions of A and B as

$$M_A = [A_1, A_2, \cdots, A_s],$$

 $M_B = [B_1, B_2, \cdots, B_s].$

The DK-STP of A and B, denoted by $C = A \times B$, is defined by

$$M_C := [A_1 \times B_1, A_2 \times B_2, \cdots, A_s \times B_s]. \tag{37}$$

Let $A \in \mathbb{F}^{m \times s \times n}$ with M-1 expressions of A as $M_A = [A_1, A_2, \cdots, A_s]$.

(i)

$$A^{< k>} := \underbrace{A \times \cdots \times A}_{k}.$$

(ii) Let $p_i(x)$ be the characteristic function of A_i , $i \in [1, s]$. $p(x) := \prod_{i=1}^{s} p_i(x)$ is the characteristic function of A.

Generalized Cayley-Hamilton Theorem for Hypermatrices

Theorem 5.12

Let $A\in\mathbb{F}^{m imes s imes n}$ with its characteristic function $p(x)=x^\mu+p_{\mu-1}x^{\mu-1}+\cdots+p_0.$ Then

$$A^{<\mu+1>} + p_{\mu-1}A^{<\mu>} + \dots + p_0A = 0.$$
 (38)

Consider $\mathbb{F}^{m \times s \times n}$, a Lie bracket over $\mathbb{F}^{m \times s \times n}$, defined by using x, is

$$[A, B]_{\times} := A \times B - B \times A, \quad A, B \in \mathbb{F}^{m \times s \times n}.$$
 (39)

Proposition 5.14

- (i) $\mathbb{F}^{m \times s \times n}$ with Lie bracket defined by (39) is a Lie algebra, denoted by $gl(m \times s \times n, \mathbb{F})$.
- (ii) There exists the corresponding Lie group, denoted by $\mathrm{GL}(m \times s \times n, \mathbb{F})$, which has $\mathrm{gl}(m \times s \times n, \mathbb{F})$ as its Lie algebra.

References

- [1] D. Cheng, X. Zhang, Z. L. Ji, Semi-tensor product of htpermatrices with application to compound hypermatrices. *Proc. 42nd CCC*, 239-245, 2023.
- [2] D. Cheng, M. Meng, X. Zhang, Z. Ji, Contracted product of hypermatrices via STP of matrices, *Contr. Theory & Tech.*, Vol. 21, 265-280, 2023.
- [3] D. Cheng, M. Meng, X. Zhang, Z. Ji, Compound product of hypermatrices, J. Syst. Sci. Complex, to appear.
- [4] D. Cheng, Z. Ji, On universal eigenvalues and eigenvectors of hypermatrices, arXiv:2310.14266, 2023.

VI. Conclusion

- (i) Classical Matrix Theory is a dimension-restricted matrix theory.
 - STP Theory is a dimension-free matrix theory.
- (ii) Classical Matrix Theory is used for matrices and vectors.

STP Theory is used for hypermatrices.

Hypermatrix is a wide field for STP to demonstrate her ability!

Thank you for your attention!

Question?