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l. Hypermatrix(i# 51 (%)

i Hypermatrix: Multi-indexed Data

Definition 1.1[1]

(i) A set of order d data

A:={ay 4.1 | is € [1,n4], s € [1,d]} € F>>m (1)

is called an order d hypermatrix (briefly, d-
hypermatrix) with dimensions n; x n, x --- x ny. The
set of d-hypermatrix with dimension n; x ny x - - - xng is
denoted by " >xm*>" where a; ;.. ;, € F and IF can
be R, C, or other fields.
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Definition 1.1(cont’d)

|

(ii) A ¢ P XX X1ig called a d-hypercubic (83777
K).

(iif) A € Frmxmxxna with ny = ny is called a d-hypersquare
(BEFETERE).

<

® [1] Lek-Heng Lim, Tensors and Hypermatri-
ces, in L. Hogben (Ed.) Handbook of Linear
Algebra (2nd ed.), Chapter 15, Chapman and
Hall/CRC.https://doi.org/10.1201/b16113, 2013.
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i Special Cases
(i) d =1 (Vector):

A={x|ie[l,n]} €F"

Express A into vector form:

A= (X1, %)
or

A= (x, - ,x,,)T

(if) d =2 (Matrix):
A={x;l|ie[l,m], je[l,n]} € F™".

Express A into matrix form:

X110 X12 0 Xin

X201 X22 " Xogp
A= )

Xm1l Xm2 °°° Xmpn
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or
AT

Y

or
Vr<A) — (-xl,lu-xl,Zu X, axm,n)T;

VC(A) — (-xl,]v-xZ,la oy Xmly 7xm,n)T'
(iii) d = 3 (Cubic Matrix):

A= {diJ,k | S [Lp]a ] € [lvm]7 ke [l,l’l]} S ™.
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Figure 1: — /374K
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= Tensor

Definition 1.2
Let V be an n-dimensional vector space.

d={d,,---,d,}
a basis of V.
e={e, - ,e,}
a basis of V*, which is dual to d. That is,
I, i=},
ei(dj) = {0 . .
, 1#£].

A multi-linear mapping #: V x --- x Vx V" x ... xV* 5 R

r S
is called a tensor of covariant order » and contra-variant
order s.
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Definition 1.2(cont’d)

117'7ir O L. . .. .
Wheen s o t(din o vdlr’ €15 7€Js)7

insjs € [1,n],a € [1,7], B € [1,s].

D, = {p 0 |ia,js € [Ln],a € [1,7], B € [1,5]}
is the set of structure constants.

order(D,) = r + .
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Il. STP Approach to Hypermatrix

= Application of STP

Definition 2.1

LetA € M,un B € M,y,, t = lecm(n,p). The semi-tensor
product (STP) of A and B is

AXxB:=(A®1L,) (BR1Ly,) . (2)
Consider multi-linear mappings.
(i) Let 7 : R" — R. Say,

m(0) =a;, i€]l,n.

A
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Set
Va=(ar, - ,a,).
Then

m(x) = Vax.

(ii) Let m : R™ x R" — R. Say,

(8, 8) =aij, i€[l,m],j€[l,n].

mi ~n

Set
My = (ai,j) € Myuxn.

Letx € R™, y € R". Then

m(x,y) = xTMyy.
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Example 2.2(cont’d)
(iii) Let 7 : R” x R" x R" — R. Say,
m3(0%, 00, ) = drij, k€ [1,pli € [l,m],j€[1,n].

mi» ~n

Set

VA — [dl,l,la e 7dl,1,n7 e adl,m,la T 7dl,m,n>
mn
: 7dp,1,1> e 7dp,m,n] € Reme,

Letx e R?,y € R", z € R". Then

m3(x,y,2) = Va X X X y X 2.
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Let V = R". Consider a tensor ¢t € 7, with
,u::;;: = t((sﬁ:? T 75:.{; (5{11)T7 Ty (%)T)J
lnsjs € [1,n],a € [1,7], B € [1,s].

Construct the structure matrix of ¢ as

1717'“71 1717'“72 1717' s

//L1717“'71 'Ll/l717'“71 Mlzl""al
M1717"'71 /1/1717'"72 ulzl""»n

M, = P2 B2 L2
151> 71 1727 '71 n,n,---,n

Mopo 1 Mupyo 2 "7 Manln

Letx, e R*, i e [l,r], w; € (R")*,j€[1,s]. Then

FX, s X W, W) =Wy X K wp XMy XX X XX

y
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= Summary

(i) Classical Matrix Theory is used for Matrices and
Vectors.

(if) STP Theory can be used for Hypermatrices.

(iii) The multi-linear mapping over Hypermatrices can
be realized by STP as:

Hypermatrix — Matrix My

\
STP: MH X MH — MH

Figure 2: Using STP For Hypermatrices
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lll. Matrix Expression of Hypermatrix

= Set Point of View for Hypermatrix

A hypermatrix consists of two ingredients:
(i) aset of data

DA o= {ail,-~~,id | is S [17nS]7 s € [l,d]}, (3)
(i) an ordered set of indexes.
r:={r,r, - ,rq}.

Definition 3.1
Given a hypermatrix A = [a,, ,, ... ,,]. For each partition

L= {r17r27.“7rd}:(ri1>ri2>"'7rip> (4)
U{rjwrjzv"' 7rjq} =rUr,

there is a matrix expression of A, denoted by

”
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Definition 3.1(cont’d)

ME™ = MY € B, (5)

where s = [[_,m, t = [I/_,n,. Moreover, the
elements in M} ™ are {a,,. .}, Which are ar-
ranged by ID(ry;n, ,n,,---.n,) for rows, and by
ID(xy;m,, 1y s ,n,jq) for columns.
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Given A = [a;, ;,;,] € F¥***2. Then
(i)
Mfi = [61111,61112,012170122,61131,0132;
a1, A212, 421, A222, A231 61232]-
(ii)
Mf,l): ainn diz dizl Az A1z diz
azil Qi dzz1 Az d231 A3

@ apy diiz 4z Az
M, = |aip1 ain axn axn|; etc.
apzr Aapzp dzzp A3
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Example 3.2(cont’d)

(iii)

(iv)

aiyr  ai

(1,3) apy ain
MA

a1l Aani

az12 Az

-61111 apnz
a1 A1
(1,2) _ |4131 4132
My = a1 212
azp1 a4z
4231 d232

aisi
a3
a3
az3

etc.

etc.
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Definition 3.3
(i)

VA = ngr
is called the (row) vector expression of hypermatrix A.
(ii)
M, = Mjl}xr\{l}

is called the matrix-1 expression of hypermatrix A.
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= Hypervectors

Definition 3.4

Let x; € F", i € [1,d]. Then
x = x4 x (6)

is called a hypervector of order d.

The set of hypervectors is denoted by

Frresnd = {x | x is obtaied by (6)}.

Note that the components of x can be expressed as
D, = {xiy,.. i, = X35 x4 | iy € [I,n],j € [1,d]},

where x” is the i, component of x,.
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It is clear that D, (or briefly hypervector x) is a hypermatrix.

Proposition 3.5

FVI]K"'IXVL{] C ]FYI]X"'Xnd (7)

is a subset of hypermatrices.

Remark 3.6

Since the set of hypervectors F**" contains a set of
basis of the set of hypermatrices F" << any multi-linear
mapping over <" js uniquely determined by its re-
striction on the set of hypervectors > "4,
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Definition 3.7

Assume V € (F")* is an s dimensional vector subspace of
the n dimensional vector space on F.

(i) A hypervector x = x!_,x; with x; € V is said to be a
hypervector over V, denoted by x € V".
(ii) If x = x!_,x; € V' and

rank[x, - -+ , x| = dim(V) (=),
x is said to be of full rank.
(iii) If x = x/_,x; € V"is of full rank and {x;,,--- ,x,} C
{x1,--- ,x} is the first set of basis of V searching from

left, it is called the first basis subset.
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IV. o-transpose of Hypermatrices

= Permutation Group

Definition 4.1

The symmetric group of order n, denoted by S,, is the set
of permutations of n objects. The product over S, is the
compounded permutations.

Example 4.2
Consider S;.
(i) o € S5 can be expressed by

|

3
o:[1,2,3] = [2,1,3]; or {2 ) 3}, or (1,2)
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Example 4.2(cont’d)
(ii) p:[1,2,3] — [3,1,2] € S;. Then

poo=[1,23]%102,1,3] 5 [1,3,2].

That is,
poo=(2,3).
(iiii)
o '=(2,1); p'=(1,23).

Remark 4.3
Each o € S, can be expressed as a product of swaps, say,

(1,2,3) = (1,2)(2,3).

If o can be expressed as a product of even swaps, then
sign(c) = 1; otherwise, sign(c) = —1. The expression

is not unique, but the odevity (odd and even) remain un-
changed.
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Definition 4.4
(i) Consider a d-hypermatrix A = [a;, j,.... j,] € F" >
and assume o € S,. The

Ao = [aja(l)"'ja(d)] < ]Fno‘(l)x”.xno‘(d). (8)

d

——
(i) If a d-hypercubic A € F* ¥ """ X ' gatisfies
A=A, VoeS§,,

then A is said to be a symmetric d-heypercubic.

d

——
(iii) A d-hypercubic A € F"* X " X is said to be skew-
symmetric if

A% =sign(o)A, Yo €8S,.
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Proposition 4.5

A d = 2 hypercubic A € F"*" is (skew-)symmetric, if and
only if, M, is (skew-)symmetric.

Proposition 4.6
LetA e F"* > andr C d =< d >. Then

T
[ M;x (d\r):| _ Mgd\r)xr. 9)
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> Permutation Matrix
Algorithm 4.7

Letn =[], nmi,n >2,0 € S,. Alogical matrix W[(:n,nz,v-»ndg €
L.«n, called a o-permutation matrix, is constructed as fol-

lows:
@ Step 1: Define

D= D = {5210(1)5&(2) o '5%([1)
Ji € [17na(i)],i: 1,2, ,d} '
Exampl 4.8

Assumed =3; ny =2,n, =3,n; =5. 0 = (1,2,3). We
have
o(1)=2, 0(2) =3, 0(3) = 1.

Ny, = 3, Ny, =3, Ny, = 2.

o = |402685 1jn € [1,3].2 € [1,5],5 € [1,2]]
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Algorithm 4.7(cont’d)

@ Step 2: Arrange {o(i) | i € [1,d]} into an increasing
sequence as

l=0(i)) <o) <---<o(iy) =d.

That is,
j=0"'(j), jell,d.

Exampl 4.8 (cont’d)

|

l=03)<o(l)<o(2) =3.

Hence,
i1:3, i2:2, l322
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Algorithm 4.7(cont’d)
@ Step 3:
Set an index order as

IDU :=1ID (jin.jiz? U 7.jid;k.0'(i1)7k0'(i2)7 o 7k0'(id))
=ID (ja—1(1)7.]a—1(2)a s Jom(d)s ki ky, - akd) . )

Exampl 4.8 (cont’d)

ID, = ID (js,j1,j2 | ki, k2, k3)

\
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Algorithm 4.7(cont’d)

@ Step 4:

g
W[nl 25

g -

~a,

No(1)

2
N7 (2)

jd
o (d)

arranged by the order of ID,] .

Exampl 4.8 (cont’d)

W, = {81020% | ji € [1,3],2 € [1,5.js € [1,2]}

316102, 610302, -, 610302,
555;557 5%5%5%, T 75%%%7
5%6;6%> 5§5§5%a e 755525%7
30102, 030202, - 630303

= 63[1,3,5,7,9,11,13,15,17,19,21,23,25,27,
29,2,4,6,8,10,12, 14, 16, 18,20, 22,24, 26, 28, 30].

(10)
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Example 4.8

Considerd = 3, n; = 2, n, = 3, and n3; = 5. We construct
We .= W[%,3,5]-

(1) oy =1id (i.e, [1,2,3] — [1,2,3]): We have

wet 2130.
@) o2 = (2,3) (ie., [1,2,3] — [1,3,2]): Then
D= {595152513'3 ‘]1 € [172]7j2 € [175]7j3 € [1)3]}

W2 = [81010}, 636201, 610361, 636204, 636361,
00503, 0,0303, 050303, 050503, 0,303,
0,0503,0,0303, 050303, 050503, 0,303,
030161, 620261, 636261, 620461, 636363,
050303, 050303, 030303, 050503, 050303,
030303, 030303, 030303, 630303, 636303 |
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Example 4.8(cont’d)

W = 6y[1,4,7,10,13,2,5,8,11, 14,3,6,9, 12, 15,
16, 19,22,25,28,17,20,23, 26,29, 18,21, 24,27, 30].

(3) o3 =(1,2) (i.e., [1,2,3] = [2,1,3]):
Similarly, we have
D = {5{%15]22&53 |.]1 € [173]7.j2 € [172]7.j3 S [175]}
W = [(%5%5517 5315%5; T ,5%5%551,

oo, d30303, - -, 030363
= 030[1,2,3,4,5,11,12, 13, 14, 15,21,22,23, 24,

25,6,7,8,9,10, 16,17, 18, 19, 20, 26,27, 28, 29, 30].
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Example 4.8(cont’d)
(4) 04 =(1,2,3) (i.e., [1,2,3] — [2,3,1]): We have

W = [616363, - , 036303
= 030[1,3,5,7,9,11,13,15,17,19,21,23,25,27,

29,2,4,6,8, 10,12, 14, 16, 18, 20, 22, 24, 26,28, 30].

(5) o5 =(1,3,2) (i.e, [1,2,3] — [3,1,2]): Then
W = [6;521531’ e 7526%53}
= 63[1,7,13,19,25,2,8,14,20,26,3,9,15,21,27
4,10,16,22,28,5,11,17,23,29,6,12, 18,24, 30].
(6) o6 = (1,3) (i.e., [1,2,3] — [3,2,1]): Then

Wos = [516363, -, 036303]
= 030[1,7,13,19,25,3,9,15,21,27,5,11,17, 23,

29,2,8,14,20,26,4,10,16,22,28,6,12, 18,24, 30].
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Proposition 4.9

(i)
o T o —1 ="
(Weoma)” = oo ma] ™ = Wi
(ii) Leto,u € S,. Then
o ) . oo
W[”l:”z:"' 7”0,'] W[n. STLORCEE ,nd] o W[n17n27... , d}

Proposition 4.10

Assume x; € F", i e<d >, 0 € S,;. Then

d . o d
Wizt Xo() = Wiy, g Xiz1 Xie

Corollary 3.11
Let A € F**" be a hypermatrix of order d. Then

o T _ o
Vie = Vy [W[ﬂlf'w”d}] — VAW[m,'“»”d]'

(14)
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i Conversion of Matrix Expressions

Definition 4.12

(i) Let A = [a;;] € """ be a matrix. Then

V(A) = lai,a12, a1 G20, 5 G (15)

is called the row stacking form of A;

V(A) = [ai1,a2,1, s Qm1, 012, ,Amp) (16)

is called the column stacking form of A.
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Definition 4.12(cont’d)

(ii) Let x € F* and s|n. Say, n = st. Then
X1 X . Xs_
V)= | e (17)
x(tfi)erl Xe-1)s+2 "0 s |
X1 Xep1 o X(1)stl)
V‘z(x) _ X2 Xg42 0 X(t—1)s+2 (18)
Xg Xog tee Xis ]
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Definition 4.12(cont’d)

(iii) Let A € F™*" and s|(mn). Then
Vi(4) = Vi (V.(4)) (19)
is called the s-row stacking form.

Ve(4) == Vi (V.(4)) (20)

is called the s-column stacking form.

Proposition 4.13
LetA ¢ " X € F"*4, and Y € FP*™". Then

V,(AX) = A x V,(X), (1)

V.(YA) = AT x V(7). (22)
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Denote by

8= V,(I,) = Ve(l,) = [(6)7, (6, , (a1

n n n

Proposition 4.14

Let A € F™*". Then
V.(A) = A x . (23)
V.(A) = AT x & . (24)

Conversely,

A= VI(V,(4)) = VI(Vo(A)). (25)
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Proposition 4.15

Given A = [a;, ... ;] € T = (i, -+ ,0y) Cd=<d >,

and

cd — (i, d\i), Hn,y, Ra\i, = H n,.

ijed\ir

Then
(i) (Vector Form to Matrix Form:)

ka(d\ir) _ Vi’d\ir (V W Ty nﬂ) o

[y,
(if) (Matrix Form to Vector Form:)

q q T
Va= (MO0 g, Y

g\ iy

[y, nal”
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Corollary 4.16

Leti,, oy, be as in Proposition 4.15, and js = (ji, - - -

gj, : d = (js,d\js). Then

. . , . . T
Mi‘s X (d\js) = Vfd\ls |: (MX x (d\ir) X 5{]\],)

,Js) and
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V. STP of Hypermatrices

Definition 5.1

Let A € F>s*m and B € F"™**™_ The M-1 expressions of
A and B are

MA — [A17A27 o 7As]>
MB — [BI7BZ7 e 7BS]7

where A; € M,y xn> Bi € Myysnys i € [1,5]. The STP of A
and B, denoted by C = A x B is defined by

MC = [Al KBl,AZMBZf" 7AS[><BS]' (29)

v

Denote by

o0 00
[Fooxsx00 . U UFmXSXn

m=1 n=1

Then

D( . FOOXSXOO X FOOXSXOO _> ]F‘OOXSXOO
’ : 41/52



iz DK-STP of Matrices

Definition 5.2

LetA € M,,x, and B € M,,»,, t = lem(n, p). The DK-STP of
A and B, denoted by A x B € M,,.,, is defined as follows.

AxXB:=(A®1],)(Bo1,). (30)

(i) When n =p,

AXB = AB.

(ii) fA,B e M,,x,,thenAX B € M,,»,.

® D. Cheng, From DK-STP to Non-square General Lin-
ear Algebra and General Linear Group, (preprint:
http:arxiv.org/abs/2305.19794v2), 2023.
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Remark 5.3(cont’d)

(iii) It is MM-, MV-, and VV- STP.
(iv) (MerM +7 X ) iS a I'ing.

Proposition 5.4
LetA € M, and B € M,.,, t =lem(n, p).

| A

AxB = A(Le1],)(L®1,)B
= AV,.,B,

where

Uy = (L ®1],) (I, ® 1y/,) € My,
is called the bridge matrix of dimension n x p.
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Definition 5.5

Assume A € M,,»,. Consider A : R® — R* by x — A X x.
Then R™ C R* is an invariant subspace.

Denote by I1, the restriction of A|g» = I14. That is

Axx=1I4x, VxeR" (32)

v

Proposition 5.6

HA :AXIm :A\Ijnxm- (33)
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i Generalized Cayley-Hamilton Theorem

Definition 5.7
(i)
AP =A% ... xA. (34)
———

k

(ii) LetA € M,,», and A|g» = I14. The characteristic poly-
nomial of 11, is called the characteristic polynomial of

|>

Theorem 5.8

Let A € M, and Alg» = II,. Denote by p(x) = x" +
Pm_1X"~" 4 .- + p, the characteristic polynomial of II(A).
Then

A< L AT 4 poA =0, 5
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Definition 5.9

Consider M,,..., a Lie bracket over M,,,, defined by using
X, IS

[A,B]x :==AXB—BxXA, A,B€ M,x. (36)

Proposition 5.10

(i) M, with Lie bracket defined by (36) is a Lie algebra,
denoted by gl(m x n,F).

(i) There exists the corresponding Lie group, denoted by
GL(m x n,IF), which has gl(m x n,F) as its Lie algebra.
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i DK-STP of Hypermatrices

Definition 5.11
Let A, B € F>***> with M-1 expressions of A and B as

MA — [A17A27 e 7AS]7
MB — [B17B27' o ;BS]'

The DK-STP of A and B, denoted by C = A X B, is defined

by

MC = [A] XB],AZ XBz, © 00 ,As XBS].

(37)

v
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Definition 5.2

Let A € F™*" with M-1 expressions of A as M, =
[A17A27”' 7AS]'

(i)

A =A% ... XA,
k

(ii) Let p;(x) be the characteristic function of A;, i € [1,s].
p(x) :=[[_, pi(x) is the characteristic function of A.

y

= Generalized Cayley-Hamilton Theorem for Hypermatrices

Let A € "> with its characteristic function p(x) = x* +
Pu—1x*~' 4 -+ po. Then

A<HFI> +pu*1A<u> + -+ pA = 0. (38)
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Definition 5.13

Consider F*sx" g Lie bracket over F"**" defined by us-
ing x,is

[A,B]x :=AXB—BXA, ABcF™ (39

Proposition 5.14
(i) Fm=*"with Lie bracket defined by (39) is a Lie algebra,
denoted by gl(m x s x n,F).
(if) There exists the corresponding Lie group, denoted by
GL(m x s x n,F), which has gl(m x s x n,[F) as its Lie
algebra.

v
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VI. Conclusion

(i) Classical Matrix Theory is a dimension-restricted ma-
trix theory.

STP Theory is a dimension-free matrix theory.

(ii) Classical Matrix Theory is used for matrices and vec-
tors.
STP Theory is used for hypermatrices.

Hypermatrix is a wide field for STP to demonstrate her
ability!
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Thank you for your attention!

Question?
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