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Notations

Dn: n-valued logic domain Dn = {1, 2, · · · , n}

∆n: vector-form of logic domain Dn, ∆n = Col(In)

δjn: vector-form of j ∈ Dn, δjn = Colj(In)

~x: vector-form of logic variable x ∈ Dn

R[n]: power-reducing matrix
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1.1 Probabilistic Logic Dynamical Systems

A logic dynamical system (LDS) is a dynamical system evolves within the

logic domain Dn := {1, 2, · · · , n}.

xt+1 = f(xt)

I xt ∈ Dn, f : Dn → Dn

A Typical Example - Boolean network: A special LDS proposed by

Kauffman1 as a qualitative model for GRNs.

I Even though a BN provides a rougher description of GRNs, it is still

capable of efficiently predicting the long-term behavior of GRNs2.

1Stuart A Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic nets”. In: Journal of

Theoretical Biology 22.3 (1969), pp. 437–467.

2Gautier Stoll et al. “Continuous time boolean modeling for biological signaling: application of Gillespie

algorithm”. In: Bmc Systems Biology 6.1 (2012), pp. 116–116.
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1.1 Probabilistic Logic Dynamical Systems

An Example Boolean Network

fA(B) = B

fB(A,C) = A ∧ C

fC(A) = ¬A

Regulatory functions


At+1 = Bt

Bt+1 = At ∧ Ct

Ct+1 = ¬At

Dynamical equation

State At Bt Ct At+1 Bt+1 Ct+1

1 0 0 0 0 0 1

2 0 0 1 0 0 1

3 0 1 0 1 0 1

4 0 1 1 1 0 1

5 1 0 0 0 0 0

6 1 0 1 0 1 0

7 1 1 0 1 0 0

8 1 1 1 1 1 0

Truth table

State transition graph
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1.1 Probabilistic Logic Dynamical Systems

A probabilistic logic dynamical system (PLDS) is a collection of LDSs

driven by a random process

xt+1 = f(wt, xt)

I wt ∈ Dnw is the random disturbance (i.i.d. process, Markov chain, or

state-dependent process)

I f : Dnw
×Dn → Dn

A Typical Example - Probabilistic Boolean Network (PBN): A

stochastic generalization of deterministic BN, aiming to describe

uncertainties and stochasticity in GRNs3.

3Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. “From Boolean to probabilistic Boolean networks as

models of genetic regulatory networks”. In: Proceedings of the IEEE 90.11 (2002), pp. 1778–1792.
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1.1 Probabilistic Logic Dynamical Systems

A PBN is a randomly switched Boolean network

x1(t+ 1) = f
σ1(t)
1

({
xj(t)

∣∣ j ∈ N σ1(t)
1

})
x2(t+ 1) = f

σ2(t)
2

({
xj(t)

∣∣ j ∈ N σ2(t)
2

})
...

xn(t+ 1) = f
σn(t)
n

({
xj(t)

∣∣ j ∈ N σn(t)
n

}) (1)

I xi ∈ B := {0, 1} ∼ D2;

I σi(t) ∈ DNi , i = 1, 2, · · · , n, are random switching sequences; and

I f ji , i ∈ [1 : n], j ∈ DNi
, are Boolean functions of their respective

in-neighbouring nodes
{
xk(t)

∣∣ k ∈ N j
i

}
.

I There are N := Πn
i=1Ni subnetworks in total.
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1.1 Probabilistic Logic Dynamical Systems

Algebraic Form of PLDS

xt+1 = f(wt, xt)

m

~xt+1 = Lf n ~wt n ~xt

I ~xt := δxt
n and ~wt := δwt

nw
are the vector-forms of xt and wt,

respectively.

I Lf ∈ Ln×nnw
is the structural matrix of logic function f , obtained

from its truth table:

Col(w−1)n+j(Lf ) = ~f(w, j) = δf(w,j)
n , w ∈ Dnw , j ∈ Dn.

Guo Yuqian ( Central South University) August 12, 2024 10 / 111



1.1 Probabilistic Logic Dynamical Systems

Why Using Algebraic Form?

The STP and the vector-representation of logic

I transform the logical calculations into algebraic calculations, and

I embed a LDS into the Euclidean space Rn, enabling us to study LDSs

using the structure of Euclidean space.

~xt+1 =


0 1 0

1 0 0

0 0 1

 ~xt, x0 ∈ ∆3
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1.1 Probabilistic Logic Dynamical Systems

I.i.d. Switching Case (Most studied case in literature)

I Basic assumptions:

F wt is an i.i.d. random sequence

wt ∼ pw, [pw]j := P{wt = j}.

F For any t, wt is independent of state history {xs
∣∣ s ≤ t}.

I Markovian Property: xt is a homogeneous Markov chain

F Transition probability matrix (TPM):

P = Lf n pw

[P]i,j = P{xt+1 = i
∣∣ xt = j}, i, j ∈ Dn

Note: Conventionally, the TPM is defined as P>.

F Dynamics of State PDV πt: xt ∼ πt := E~xt ∈ Υn

πt+1 = Pπt

Guo Yuqian ( Central South University) August 12, 2024 12 / 111



1.1 Probabilistic Logic Dynamical Systems

State Transfer Graph (STG):

The STG of a PLS is a weighted directed graph G = (N , E ,W ) where

I N = Dn or ∆n is the set of nodes;

I E =
{

(j, i)
∣∣ [P]i,j > 0

}
is the set of directed edges;

I W : E → (0, 1], (j, i) 7→ [P]i,j , is the weight of edge.

Example 1

P =


0.6 0.3 0 0.5

0.4 0 0.5 0.5

0 0 0.2 0

0 0.7 0.3 0


1 2

34

0.6
0.4

0.3

0.7

0.5

0.2
0.3

0.5

0.5
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1.1 Probabilistic Logic Dynamical Systems

Lemma 2
For any i, j ∈ Dn, the following statements are equivalent:

[Pt]j,i > 0 for some t with 1 ≤ t ≤ n− 1;

The STG (N , E ,W ) has a path from i to j, denoted by i→ j.
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1.1 Probabilistic Logic Dynamical Systems

Stationary Distribution and Its Convergence

I Stationary distribution: A distribution π ∈ Υn satisfying Pπ = π.

F If π is a stationary distribution, then, x0 ∼ π implies xt ∼ π ∀t
F A Finite Markov chain (Thus, a PLDS) has at least one stationary

distribution.

I Basic Limit Theorem: Let xt be an irreducible, aperiodic Markov

chain having a stationary distribution π. Then

lim
t→∞

πt = lim
t→∞

Ptπ0 = π ∀π0 ∈ Υn.

Note: Please notice the difference between the convergence of stationary

distribution and the (set) stability discussed later.

Guo Yuqian ( Central South University) August 12, 2024 15 / 111



1.1 Probabilistic Logic Dynamical Systems

Fixed Point and Invariant Set (Closed Set)

I A subset C ⊂ Dn is called an invariant subset if

P
{
xt+1 ∈ C

∣∣ xt ∈ C} = 1.

I A state xe is called a fixed point if {xe} is invariant.

Lemma 3
The transition probability from any state to an invariant subset C is non-

decreasing with time, that is, for any k ∈ Z+ and any j ∈ Dn,

P{xt+k ∈ C
∣∣ x0 = j} ≥ P{xt ∈ C

∣∣ x0 = j}
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1.1 Probabilistic Logic Dynamical Systems

The Largest Invariant Subset

I The union of two invariant subsets is still invariant.

I The union of all invariant subsets contained in M is referred to as the

largest invariant subset in M, denoted by I(M).

Proposition 1

For a given subset M⊆ Dn, we define a sequence of subsets asa

Ms =

j ∈Ms−1

∣∣∣∣∣∣
∑

i∈Ms−1

[P]i,j = 1

 , s = 1, 2, · · · ,

where M0 :=M. Then, there must exist an integer k ≤ |M| such that

Mk =Mk−1. In addition, it holds that I(M) =Mk.

aYuqian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE

Transactions on Automatic Control 64 (2 2019), pp. 736–742.
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1.1 Probabilistic Logic Dynamical Systems

Probabilistic Logic Dynamical Control Systems (PLDCS){
xt+1 = f(wt, ut, xt)

yt = h(vt, xt)

I xt ∈ Dn, ut ∈ Dm, yt ∈ Dq

I f : Dnw ×Dm ×Dn → Dn; h : Dnv ×Dn → Dq

I wt ∼ pw

m{
~xt+1 = Lf n ~wt n ~ut n ~xt

~yt = Lh n ~vt n ~xt

I Lf ∈ Ln×nwmn, Lh ∈ Lq×nvn

Guo Yuqian ( Central South University) August 12, 2024 18 / 111



1.1 Probabilistic Logic Dynamical Systems

Basic assumptions:

I wt and vt are i.i.d. random sequences that are mutually independent.

wt ∼ pw, vt ∼ pv.

I For any t, wt and vt are independent of state history {xs
∣∣ s ≤ t}.

TPMs

P = Lf n pw

Pj = Lf n pw n δjm

Guo Yuqian ( Central South University) August 12, 2024 19 / 111



1.1 Probabilistic Logic Dynamical Systems

Reachability

I xd is said to be k-step reachable from x0 if there is a control sequence

u = {u(t)} such that

P{x(k;x0,u) = xd} > 0.

xd is said to be reachable from x0, denoted by x0
u→ xd, if there is a

control sequence u = {u(t)} such that

P{x(t;x0,u) = xd for some t ≥ 1} > 0.

I xd is reachable from x0 if and only if xd is k-step reachable from x0 for

some k ≤ 2n − 1.

Guo Yuqian ( Central South University) August 12, 2024 20 / 111



1.1 Probabilistic Logic Dynamical Systems

Reachability Matrix

R =

n−1∑
k=1

(P n 1m)
k

Proposition 2

i
u→ j iff [R]j,i > 0.

Sketchy Proof:

(P n 1m)
k

= (P1 + P2 + · · ·+ Pm)
k

=
∑

all possible combinations

Pik · · ·Pi2Pi1

Thus,
[
(P n 1m)

k
]
j,i
> 0 if and only if j is k-step reachable from i.
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1.1 Probabilistic Logic Dynamical Systems

Control Invariant Subsets

I A subset C ⊆ Dn is termed as a control invariant subset if, for any

state j ∈ C, there exists a control r ∈ Dm such that

P{xt+1 ∈ C
∣∣ xt = j, ut = r} = 1. (2)

I The union of any two control invariant subsets is still control invariant.

I The union of all control invariant subsets contained in a given subset

M⊆ Dn is termed as the largest control invariant subset contained

in M and is denoted by Ic(M).

I If C = {xe} is control invariant, then, xe is called a control fixed point.

Guo Yuqian ( Central South University) August 12, 2024 22 / 111



1.1 Probabilistic Logic Dynamical Systems

Proposition 3

Suppose that M0 ⊆ Dn. A sequence of subsets Ms, s ∈ Z+, is defined as

Ms =

j ∈Ms−1

∣∣∣∃k ∈ [1 : m], s.t.
∑

i∈Ms−1

[Pk]i,j = 1

 .

Then, there must exist a positive integer η 6 |M0| such that Mη =Mη+1.

Additionally, Ic(M0) =Mη holds.
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1.2 Nonnegative Matrices

Nonnegative Matrices: A matrix A is called a nonnegative matrix,

denoted as A � 0, if it is nonnegative element-wise, that is, all of its

elements are nonnegative.

Definition 4
Consider two m× q nonnegative matrices Γ1 � 0 and Γ2 � 0.

Γ1 is said to be structurally included in Γ2, denoted as Γ1 v Γ2, if for any

i ∈ [1 : m] and any j ∈ [1 : q], [Γ2]i,j = 0 implies [Γ1]i,j = 0.

They are said to be homo-structural, denoted as Γ1 ∼h Γ2, if both Γ1 v Γ2

and Γ2 v Γ1 hold.
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1.2 Nonnegative Matrices

Lemma 5

Consider m× n nonnegative matrices A,B � 0 and p× q nonnegative matrices

C,D � 0. If A v B and C v D, then it holds that

An C v B nD.
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2.1 Definitions of Stability

Consider PLDS

xt+1 = f(wt, xt)

I xt ∈ Dn, wt ∼ pw ∈ Υnw

I f : Dnw ×Dn → Dn

Definition 6 (Finite-time Stability(FTS))

A state xe ∈ Dn is said to be finite-time stable if there is a positive integer T

such thata

P{xt = xe
∣∣ x0 = j} = 1 ∀t ≥ T, ∀j ∈ Dn.

aRui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:

Automatica 50.4 (2014), pp. 1272–1278.
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2.1 Definitions of Stability

Definition 7 (Stability with Probability One (SPO))

A state xe ∈ Dn is said to be stable with probability one ifa

P
{

lim
t→∞

xt = xe
∣∣ x0 = j

}
= 1 ∀j ∈ Dn.

aYin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”.

In: Science China Information Sciences 57.1 (2014), pp. 1–14.

Definition 8 (Stability in Stochastic Sense (SSS))

A state xe ∈ Dn is said to be stable in stochastic sense ifa

lim
t→∞

E[~xt
∣∣ x0 = j] = ~xe ∀j ∈ Dn.

aMin Meng, Lu Liu, and Gang Feng. “Stability and l1 gain analysis of Boolean networks with Markovian jump

parameters”. In: IEEE Transactions on Automatic Control 62.8 (2017), pp. 4222–4228.
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2.1 Definitions of Stability

Definition 9 (Stability in Distribution (SD))

A state xe ∈ Dn is said to be stable in distribution ifa

lim
t→∞

P
{
xt = xe

∣∣ x0 = j
}

= 1 ∀j ∈ Dn.

aYuqian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE

Transactions on Automatic Control 64 (2 2019), pp. 736–742.

FTS

SDSSS SPO

Relationship between different stabilities

FTS and SD can be easily generalized to

set stability.

However, such generalizations of SPO and

SSS are not convenient, because they

require the existences of the limits

limt→∞ xt and limt→∞ Ext, respectively.
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2.1 Definitions of Stability

Definition 10 (Finite-time Set Stability)

A subset M⊂ Dn is said to be finite-time stable if there is a positive integer T

such thata

P{xt ∈M
∣∣ x0 = j} = 1 ∀t ≥ T, ∀j ∈ Dn.

aLi Rui, Yang Meng, and Chu Tianguang. “VÇÙ��ä�8Ü	½��”. In: XÚ�Æ�êÆ 36.3 (2016),

pp. 371–380.

Definition 11 (Set Stability in Distribution (SSD))

A subset M⊂ Dn is said to be stable in distribution ifa

lim
t→∞

P
{
xt ∈M

∣∣ x0 = j
}

= 1 ∀j ∈ Dn.

aYuqian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE

Transactions on Automatic Control 64 (2 2019), pp. 736–742.
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2.1 Definitions of Stability

21

4 3

1

1

0.5
0.2

1

0.3

P =


0 1 0 0.5

1 0 0 0.2

0 0 0 0.3

0 0 1 0


M = {1, 2}

The limitations

lim
t→∞

x(t), lim
t→∞

E~x(t)

do not exist;

However, for any x0,

lim
t→∞

P
{
x(t) ∈M

∣∣ x(0) = x0

}
= 1
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2.1 Definitions of Stability

Typical Set Stability Problem: Synchronization of networks

Consider two n-valued PLDSs

xt+1 = f(wt, xt), zt+1 = g(vt, zt, xt)

xt, zt ∈ Dn

I Finite-time synchronization: There exists a T > 0 such that

P{xt = zt
∣∣ x0 = j, z0 = i} = 1 ∀t ≥ T, ∀j, i ∈ Dn.

I Asymptotical synchronization:

lim
t→∞

P
{
xt = zt

∣∣ x0 = j, z0 = i
}

= 1 ∀j, i ∈ Dn

.
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2.1 Definitions of Stability

The synchronization problem is equivalent to the stability of the combined

system {
xt+1 = f(wt, xt)

zt+1 = g(vt, zt, xt)

with respect to the synchronization set

M := {(j, j)
∣∣ j ∈ Dn} ⊂ Dn ×Dn
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2.2 Reachability-based Stability Analysis

Theorem 12
A PBN is finite-time stable with respect to xe if and only if

Col
{
Pn−1

}
= {~xe}, (where P = Lf n pw) (3)

Sketchy Proof: (Necessity) FT stability

⇒ xe is a fixed point, and the

solution from any initial state reaches xe within n− 1 steps. ⇒ (3)

(Sufficiency) (3) ⇒

P~xe = Pn~x0 = Pn−1(P~x0) = [~xe, · · · , ~xe](P~x0) = ~xe

⇒ xe is a fixed point⇒ For any t ≥ n, any j ∈ Dn,

P{xt = xe
∣∣ x0 = j} ≥ P{x(n− 1) = xe

∣∣ x0 = j} = 1

⇒ FT stability
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2.2 Reachability-based Stability Analysis

Criterion of FT Stability in terms of STG4

P{xt = xe
∣∣ x0 = j} = 1 ∀t ≥ T, ∀j ∈ Dn.

m
(i) xe is a fixed point

(ii) x0 → xe ∀x0

(iii) Any path from any x0 to xe in G \ (xe, xe) is with finite length

m

G \ (xe, xe) is acyclic

Note: G \ (xe, xe) is the graph obtained from the STG G of the PLDS by

removing the self-loop of xe

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A

Topological Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020),

pp. 695–699.
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2.2 Reachability-based Stability Analysis

8

12

3 4 5

67

1

1
1

0.5

0.5

0.5

0.30.20.4

0.6

0.6 0.4

0.3

0.7

STG G

8

12

3 4 5

67

1
1

0.5

0.5

0.5

0.30.20.4

0.6

0.6 0.4

0.3

0.7

G \ (xe, xe)

STG of a PLDS that is finite-time stable w.r.t. xe = 8

Guo Yuqian ( Central South University) August 12, 2024 40 / 111



2.2 Reachability-based Stability Analysis

8

12

3 4 5

67

1

1
1

0.5

0.5

0.5

0.30.20.4

0.5

0.1

0.6

0.4

0.3

0.7

STG G

8

12

3 4 5

67

1
1

0.5

0.5

0.5

0.30.20.4

0.5

0.1

0.6

0.4

0.3

0.7

G \ (xe, xe)

STG of a PLDS that is not finite-time stable w.r.t. xe = 8

Guo Yuqian ( Central South University) August 12, 2024 41 / 111



2.2 Reachability-based Stability Analysis

Theorem 13

A PBN is finite-time stable with respect to xe if and only if G \ (xe, xe) is acyclica.

aShiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A

Topological Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020),

pp. 695–699.
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2.2 Reachability-based Stability Analysis

Finite-time Set Stability

I Finite-time stability w.r.t. M

⇔ Finite-time stability w.r.t.

the largest invariant subset

I(M) in M

⇔ I(M) 6= ∅ and the STG

has no cycles outside I(M).
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2.2 Reachability-based Stability Analysis

An asymptotically stable PLDS that is not FT stable

4

12

3

1

0.81

0.5

0.5

0.2

P =


0 0 0.5 0

0 0 0.5 0

0.2 0 0 0

0.8 1 0 1


lim
t→∞

P{xt = 4
∣∣ x0 = j}

= lim
t→∞

[Pt]4,j = 1 ∀j
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2.2 Reachability-based Stability Analysis

Criterion of Stability with Probability One

P
{

lim
t→∞

xt = xe
∣∣ x0 = j

}
= 1 ∀j ∈ Dn.

m{
xe is a fixed point. (Thus, it is recurrent)

x0 → xe ∀x0.

Theorem 14
A PLDS is asymptotically stable w.r.t. xe = i with probability one if and only if

xe is a fixed point anda

Rowi

(
Pn−1

)
� 0 (4)

aYin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks”.

In: Science China Information Sciences 57.1 (2014), pp. 1–14.
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2.2 Reachability-based Stability Analysis

Criterion of asymptotical stability in distribution

Theorem 15
A PLDS is asymptotically stable w.r.t. xe in distribution if and only ifa{

xe is a fixed point.

x0 → xe ∀x0.

Or, equivalently, xe is a fixed point and Rowi

(
Pn−1

)
� 0.

aYuqian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: IEEE

Transactions on Automatic Control 64 (2 2019), pp. 736–742.

I The necessity is obvious. A sketchy proof for sufficiency is provided in

the next page.
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2.2 Reachability-based Stability Analysis

Sketchy Proof of Sufficiency.

lim
t→∞

P
{
xt = xe

∣∣ x0 = j
}

= 1 ∀j ∈ Dn.

m

lim
t→∞

Pt =

[
0(n−1)×n

1>n

]
(Assume xe = n)

m

lim
t→∞

αt = 1n−1, where Pt :=

[
Γ>t 0(n−1)×1

α>t 1

]
.

m

lim
t→∞

(αnt − 1n−1︸ ︷︷ ︸
ηt

) = 0 (By Monotonicity)
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2.2 Reachability-based Stability Analysis

P(n(t+ 1)) = P(nt)P(n)

⇓
αn(t+1) = Γnαnt +αn

⇓
αn(t+1)−1n−1 = Γn(αnt−1n−1)+Γn1n−1 + αn − 1n−1︸ ︷︷ ︸

=0

⇓
ηt+1 = Γnηt

{
xe is a fixed point.

x0 → xe ∀x0

⇓

αn � 0

⇓

Γn is strictly Schur stable

︸ ︷︷ ︸
⇓

lim
t→∞

ηt = 0 ⇒ lim
t→∞

αt = 1n−1
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2.2 Reachability-based Stability Analysis

Criterion of asymptotical stability in stochastic sense

lim
t→∞

E[~xt
∣∣ x0 = j] = ~xe ∀j ∈ Dn.

m E[~xt
∣∣ x0 = j] = Colj [P

t]

lim
t→∞

Colj [P
t] = ~xe ∀j ∈ Dn

m

Asymptotically stable in distribution

Note: The above results confirm that SSO, SSS, and SD are equivalent

indeed.

Guo Yuqian ( Central South University) August 12, 2024 49 / 111



2.2 Reachability-based Stability Analysis

Corollary 16

Consider two PLDSs of the same size with TPMs P1 and P2, respectively.

Suppose that xe is the fixed point of both PLDSs, that is,

P1~xe = P2~xe = ~xe.

Suppose that P1 v P2. If PLDS P1 is asymptotical xe-stable, then, so is

PLDS P2.

Suppose that P1 ∼h P2. Then, PLDS P1 is asymptotical xe-stable iff

PLDS P2 is asymptotical xe-stable.
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2.2 Reachability-based Stability Analysis

Example 17

The STGs corresponding the three TPMs satisfying (xe = 3)

P1~xe = P2~xe = P3~xe = ~xe,

P1 v P2 ∼h P3.

1

2 3

0.25

0.5

0.25

0.75

0.25

1

P1

1

2 3

0.2

0.6

0.2

0.5

0.3

0.2
1

P2

1

2 3

0.25

0.5

0.25

0.75

0.25

0.2
1

P3
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2.2 Reachability-based Stability Analysis

Asymptotical Set Stability

lim
t→∞

P
{
xt ∈M

∣∣ x0 = j
}

= 1 ∀j ∈ Dn.

m

lim
t→∞

P
{
xt ∈ I(M)

∣∣ x0 = j
}

= 1 ∀j ∈ Dn.

m{
I(M) 6= ∅
x0 → I(M) ∀x0

Note: x0 → I(M) means x0 → x for some x ∈ I(M).
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2.2 Reachability-based Stability Analysis

STG of a asymptotically M-stable PLDS that is not finite-time stable.
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2.3 Error-based Stability Analysis

Dynamics of State PDV πt := E~xt

πt+1 = Pπt, π0 = ~x0 ∈ ∆n. (5)

I Note: The PLDS is asymptotically xe-stable iff

lim
t→∞

πt = ~xe, ∀π0 ∈ ∆n.

Error System: We define the state distribution error as

et := πt − ~xe

If xe is a fixed point, then,

et+1 = Pet, e0 ∈ ∆n − ~xe,

where ∆n − ~xe := {δjn − ~xe
∣∣ j ∈ Dn}.
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2.3 Error-based Stability Analysis

n− 1-dimensional invariant subspace of error system: We define

αi := δin − δxe
n , i ∈ [1 : n].

We construct an n× (n− 1) matrix as

Mxe
:= [α1,α2, · · · ,αxe−1,αxe+1, · · · ,αn].

Then Mxe
is of full column rank. We define

Mxe
:= Span{∆n − ~xe} = Span{Mxe

}.

I By the linearity, the error system

et+1 = Pet, e0 ∈ ∆n − ~xe

is finite-time/asymptotically stable iff the following system is

finite-time/asymptotically stable:

et+1 = Pet, e0 ∈Mxe

.Guo Yuqian ( Central South University) August 12, 2024 56 / 111



2.3 Error-based Stability Analysis

Lemma 18

If xe is a fixed point, then, Mxe
is an (n− 1)-dimensional invariant subspace of

et+1 = Pet

Proof:

1n is orthogonal to each αi, i ∈ [1 : n] \ {xe}.
Thus, it is orthogonal to Mxe

.

For any e0 ∈Mxe
and any t, et = Pte0 and

1>n et = 1>nPt︸ ︷︷ ︸
=1>n

e0 = 1>n e0 = 0.

Thus, et is orthogonal to 1n and et ∈Mxe
.

n = 3, xe = 3

Mxe = Span




1 0

0 1

−1 −1



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2.3 Error-based Stability Analysis

Restriction of error system on Mxe

I We define the coordinate transformation as

et = [Mxe
,1n]

[
z1(t)

z2(t)

]
= Mxe

z1(t) + 1nz2(t)

where z1(t) ∈ Rn−1, z2(t) ∈ R. Then,[
z1(t+ 1)

z2(t+ 1)

]
=

[
M+

xe
PMxe

M+
xe

P1n

0 1

][
z1(t)

z2(t)

]

where M+
xe

:= (M>
xe

Mxe
)−1M>

xe
is the pseudo-inverse of Mxe

.

I In the z-coordinate system, Mxe
= {(z>1 , z2)> ∈ Rn

∣∣ z2 = 0}. By

letting z2(t) = 0,

z1(t+ 1) = M+
xe

PMxe
z1(t)
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2.3 Error-based Stability Analysis

Theorem 19
The PLDS is finite-time xe-stable iff

xe is a fixed point.

The (n− 1)× (n− 1) matrix D := M+
xe

PMxe is nipolent.
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2.3 Error-based Stability Analysis

Theorem 20

The PLDS is asymptotically xe-stable iffa

xe is a fixed point.

The (n− 1)× (n− 1) matrix D := M+
xe

PMxe is Schur stable.

aGuo Yuqian et al. “Asymptotical Stabilization of Logic Dynamical Systems via Output-Based Random

Control”. In: IEEE transactions on Automatic Control 69.5 (2024), pp. 3286 –3293.

Remark 1

Suppose Q is an (n− 1)× (n− 1) positive-definite matrix. Then, by according to

Theorem 20, the PLDS is asymptotically xe-stable iff there exists an

(n− 1)× (n− 1) positive-definite matrix Ω such that

D>ΩD− Ω = −Q.
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3. State Feedback Stabilization

Consider a PLDS

xt+1 = f(wt, ut, xt)

and its algebraic form

~xt+1 = Lf n ~wt n ~ut n ~xt

I xt ∈ Dn, ut ∈ Dm, yt ∈ Dq

I f : Dnw
×Dm ×Dn → Dn;

I wt ∼ pw;

I Lf ∈ Ln×nwmn

I TPMs P = Lf n pw, Pj = Lf n pw n δjm.
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3. State Feedback Stabilization

Closed-loop TPM under State Feedback

~ut = K~xt, K ∈ Lm×n

⇓

~xt+1 = Lf n ~wt n ~ut n ~xt

= Lf n ~wt nK n ~xt n ~xt

= Lf n ~wt nKR[n]~xt

R[n]: Power-reducing Matrix

⇓

PK = (Lf n pw)KR[n].

Guo Yuqian ( Central South University) August 12, 2024 64 / 111



3. State Feedback Stabilization

Problem: Find a state-feedback

u(t) = Kx(k)

to stabilize a PBN to a point or a subset in finite-time or asymptotically.

If

K = δm[k1, k2, · · · , k2n ]

Then, the TPM of the closed loop, denoted by PK , is

Colj(PK) = Colj(Pkj )
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3.1 Finite-time Stabilization by State Feedback

Hierarchical structure of the STG of a Finite-time stable PLDS

Ω0 = {xe}

Ω1 =
{
x
∣∣ P{xt+1 ∈ Ω0

∣∣ xt = x} = 1
}

Ωk =
{
x
∣∣ P{xt+1 ∈ Ωk−1

∣∣ xt = x} = 1
}

We can always rearrange the STG into the

hierarchical structure for a finite-time stable

PLDS.
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3.1 Finite-time Stabilization by State Feedback

Finite-time Stablizability by State Feedback

I Define a sequence of subsets as
Ω0 = {xe}
Ωk =

{
x
∣∣ ∃u s.t. P{xt+1 ∈ Ωk−1

∣∣ xt = x, ut = u} = 1
}

k = 1, 2, 3, · · ·

I If xe is control invariant, then Ω0 ⊆ Ω1 ⊆ Ω2 ⊆ · · ·

Theorem 21
A PLDS is finite-time stabilizable w.r.t. xe by a state feedback iffa

I xe is control invariant;

I There is a positive integer K ≤ n− 1 such that ΩK = Dn.

aRui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:

Automatica 50.4 (2014), pp. 1272–1278.
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3.1 Finite-time Stabilization by State Feedback

Design of Finite-time Stabilizing feedback gain5

I Assigning a control u(xe) for xe such that

P{xt+1 = xe
∣∣ xt = xe} = 1;

I Assigning a control u(x) for every x ∈ Ωk \ Ωk−1 such that

P{xt+1 ∈ Ωk−1

∣∣ xt = x} = 1.

I Then,

K = δm[u(1), u(2), · · · , u(n)]

5Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In:

Automatica 50.4 (2014), pp. 1272–1278.
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3.1 Finite-time Stabilization by State Feedback
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3.1 Finite-time Stabilization by State Feedback

Finite-time Feedback Set Stabilization

Finite-time Feedback M-Stabilizable

m

Finite-time Feedback Ic(M)-Stabilizable
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3.2 Asymptotical Stabilization by State Feedback

Asymptotical Feedback Stabilizability

Theorem 22

A state xe is asymptotically feedback stabilizable iffab

1 xe is a control-fixed point, and

2 x0
u→ xe ∀x0, that is,

~x>e (P n 1m)
n−1 � 0.

aRongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:

IEEE Transactions on Neural Network & Learning Systems 31.11 (2020), pp. 4524–4537.

bWang Liqing et al. “Stabilization and Finite-Time Stabilization of Probabilistic Boolean Control Networks”.

In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 51.3 (2021), pp. 1559–1566.
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3.2 Asymptotical Stabilization by State Feedback

Asymptotical Feedback Set Stabilizability

Theorem 23
A subset M is asymptotically feedback stabilizable iffa

1 Ic(M) 6= ∅, and

2 x0
u→ Ic(M) ∀x0, that is,∑

j∈Ic(M)

Rowj

[
(P n 1m)

n−1
]
� 0.

aRongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:

IEEE Transactions on Neural Network & Learning Systems 31.11 (2020), pp. 4524–4537.
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3.2 Asymptotical Stabilization by State Feedback

Design of Asymptotically Stabilizing Feedback

I Decomposition of State Space:

Θ0 = Ic(M),

Θk =

j ∈
(
k−1⋃
s=0

Θs

)c ∣∣∣ ∑
i∈Θk−1

[P n 1m]i,j > 0

 ,

k = 1, 2, · · · , λ.
I For any j ∈ Dn, there is a unique kj such that j ∈ Θkj . Then, we

assign state j a control uj as∑
i∈Θkj−1

[P n δuj
m ]i,j > 0 where Θ−1 := Θ0

I Stabilizing state feedback gain: K = δm[u1, u2, · · · , un].
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3.2 Asymptotical Stabilization by State Feedback
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4.1 Deterministic and Random Output Feedback

Logic Dynamical System in Algebraic Form{
~xt+1 = Ln ~wt n ~ut n ~xt

~yt = H~xt
(6)

I xt ∈ Dn, ut ∈ Dm, and yt ∈ Dq

I ωt ∼ pω ∈ ΥN

Deterministic output feedback678

~ut = F~yt, F ∈ Lm×q

I The deterministic output feedback has a limitation (See the next page)

6Nicoletta Bof, Ettore Fornasini, and Maria Elena Valcher. “Output feedback stabilization of Boolean control

networks”. In: Automatica 57 (2015), pp. 21–28.

7Haitao Li and Yuzhen Wang. “Output feedback stabilization control design for Boolean control networks”. In:

Automatica 49.12 (2013), pp. 3641–3645.

8Rongjian Liu et al. “Output feedback control for set stabilization of Boolean control networks”. In: IEEE

transactions on neural networks and learning systems 31.6 (2019), pp. 2129 –2139.

Guo Yuqian ( Central South University) August 12, 2024 80 / 111



4.1 Deterministic and Random Output Feedback

Example 24 ( A Motivating Example )
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Consider a PLDS{
~xt+1 = Ln ~ωt n ~ut n ~xt

~yt = H~xt

L = δ3[1, 2, 3, 3, 2, 2, 2, 1, 3, 1, 2, 3]

ωt ∼ pω = [0.5, 0, 5]>, H = δ2[1, 1, 2]

I xe = is unstabilizable by any time-invariant

deterministic output feedback.

I Is it a stabilizing time-invariant output

feedback? Yes!
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Example 25 ( Example 24 Revisited)
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We apply the following control strategy:

ut ∼

[
0.5 1

0.5 0

]
~yt.

I At each t, ut is randomly selected from D2

according to the above distribution.

I The closed-loop is a homogeneous Markovian

chain and is asymptotically stable w.r.t. 3.

1

2 3

0.25

0.5

0.25

0.75

0.25

1

P =


0.5 0.25 0

0.25 0.75 0

0.25 0 1


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4.1 Deterministic and Random Output Feedback

1
2 ...m

ut

PLDS

ωt

~yt

Gain Matrix

Π
putswitching signal

generatorσt ∈ Dm

Random Output Feedback

ut ∼ Π~yt

I Each column of Π ∈ Rm×q is a PDV satisfying Π � 0, 1>mΠ = 1>q .

I Deterministic output feedback ~ut = F~yt can be regarded as a

particular random output feedback with Π = F .
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4.1 Deterministic and Random Output Feedback

An Equivalent Random Switching Output Feedback Model

I Introduce q mutually independent random sequences ηr(t) ∈ Dm,

r ∈ Dq that are i.i.d. with

ηr(t) ∼ Colr(Π), r ∈ Dq.

I Then, the equivalent switching model for ROF ut ∼ Π~yt is given by

~ut = Fηt~yt

with Fηt := [~η1(t), ~η2(t), · · · , ~ηq(t)].
I It is easily checked that ut ∼ E~ut = E(Fηt~yt) = (EFηt)~yt = Π~yt.
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4.1 Deterministic and Random Output Feedback

Assumption 1

The selection probability of ut at each step t is completely determined by yt; i.e.,

for any random event E satisfying

P{yt = j, E} 6= ∅,

the following holds

P
{
ut = i

∣∣ yt = j, E
}

= P
{
ut = i

∣∣ yt = j
}
.
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4.1 Deterministic and Random Output Feedback

Closed-loop system under random output feedback

I The random output feedback is essentially a time-invariant strategy.

I The closed-loop system under the random output feedback ut ∼ Π~yt is

a homogeneous Markovian chain with the 1-step transition

probability matrix (TPM)

P(Π) = P n (ΠH) n R[n] = P(ΠH ⊗ In)R[n],

where R[n] is the power-reducing matrix and P = Ln pω.

(See the next page for the derivation)
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4.1 Deterministic and Random Output Feedback

Derivation of the closed-loop TPM:

~xt+1 = Ln ~wt n ~ut n ~xt

= Ln ~wt n Fηt nH n ~xt n ~xt

= Ln ~wt n Fηt nH n R[n] n ~xt

⇓

P(Π) = P n (ΠH) n R[n]
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4.2 Stabilizability by Random Output Feedback

Set of Output Feedback Gain Matrice:

K =
{
Π ∈ Rm×q

∣∣ Π � 0, 1>mΠ = 1>q
}

Set of Equilibrium-preserving Output Feedback Gain Matrices:

Kxe
:=
{
Π ∈ K

∣∣ P(Π)~xe = ~xe
}

Set of Stabilizing Output Feedback Gain Matrices:

SKxe
:=
{
Π ∈ K

∣∣ Π is asymptotically xe-stabilizing
}
.

I SKxe ⊆ Kxe ⊆ K
I The system is asymptotically xe-stabilizable iff there is a Π ∈ Kxe

under which every state has a path to xe in the closed-loop STG.
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4.2 Stabilizability by Random Output Feedback

Proposition 4

Suppose that Π1,Π2 ∈ Kxe .

1 If Π1 v Π2 and Π1 ∈ SKxe
. Then, Π2 ∈ SKxe

.

2 If Π1 ∼h Π2, then, Π1 ∈ SKxe
iff Π2 ∈ SKxe

.

Proof: (Claim 1) By Lemma 5, if Π1 v Π2, then,

P(Π1) = P n (Π1H) n R[n] v P n (Π2H) n R[n] = P(Π2).

The claims follow by using Corollary 16. �
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4.2 Stabilizability by Random Output Feedback

A Partial Order Structure of Kxe
/ ∼h

I Equivalence Class:

〈Π〉 := {Π̄ ∈ Kxe

∣∣ Π̄ ∼h Π}

I Quotient set:

Kxe/ ∼h:= {〈Π〉
∣∣ Π ∈ Kxe}

I Partial ordered set (Kxe/ ∼h,v): If Π1 v Π2, then,

Π̄1 v Π̄2, ∀Π̄1 ∈ 〈Π1〉,∀Π̄2 ∈ 〈Π2〉.

In this case, we denote 〈Π1〉 v 〈Π2〉. Then, “v” defines a partial

order relation on Kxe
/ ∼h:

F Reflexivity: 〈Π〉 v 〈Π〉 for any 〈Π〉 ∈ Kxe/ ∼h
F Antisymmetry: 〈Π1〉 v 〈Π2〉 and 〈Π2〉 v 〈Π1〉 implies 〈Π1〉 = 〈Π2〉.
F Transitivity: 〈Π1〉 v 〈Π2〉 and 〈Π2〉 v 〈Π3〉 implies 〈Π1〉 v 〈Π3〉.
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4.2 Stabilizability by Random Output Feedback

The unique maximum element of poset (Kxe
/ ∼h,v)

I Uniformly distributed Feedback Gain Matrix

Colj(Γxe) =


1

m
1m, j 6= hje
1

|Uxe |
∑
u∈Uxe

~u, j = hje ,
j ∈ [1 : q]

F Uxe :=
{
u ∈ Dm

∣∣ P n ~un ~xe = ~xe
}

F hje = idx(H~xe)

I 〈Γxe
〉 is the unique maximum element of poset (Kxe

/ ∼h,v)

1 Γxe ∈ Kxe .

2 For any Π ∈ Kxe , it holds that 〈Π〉 v 〈Γxe〉.
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4.2 Stabilizability by Random Output Feedback

Example 26 {
~xt+1 = Ln ~ωt n ~ut n ~xt

~yt = H~xt

L1 = δ4[1, 2, 3, 3, 2, 2, 3, 4], L2 = δ4[2, 1, 3, 1, 2, 3, 4, 2]

ωt ∼ pω = [0.5, 0, 5]>, H = δ3[2, 3, 1, 1], xe = 3

P = Ln pw =


0.5 0.5 0 0.5 0 0 0 0

0.5 0.5 0 0 1 0.5 0 0.5

0 0 1 0.5 0 0.5 0.5 0

0 0 0 0 0 0 0.5 0.5


je = idx(H~xe) = 1, Uxe = {1}

Kxe =

{
Π =

[
1 ∗ ∗
0 ∗ ∗

]}
, Γxe =

[
1 0.5 0.5

0 0.5 0.5

]
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4.2 Stabilizability by Random Output Feedback

Hasse diagram of poset (Kxe/ ∼h,v)

To check stabilizability, we only need to check whether Γxe
is stabilizing.
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4.2 Stabilizability by Random Output Feedback

Theorem 27

A PLDS is asymptotically xe-stabilizable by random output feedback iff xe is a

control-fixed point and Γxe
is asymptotically xe-stabilizing.

Every Π ∈ 〈Γxe
〉 can be a testing feedback gain matrix.

This method is not valid for stabilizability under deterministic output

feedback, because each equivalence class in Lxe
/ ∼h is a singleton. Thus,

the maximal elements are not unique, where Lxe
denotes the set of

equilibrium-preserving logical output feedback gain matrices.
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4.3 Optimal Random Output Feedback

The Problem of Designing Optimal Random Output Feedback:

I Quadratic cost function

J(x0,Π) :=

∞∑
t=0

e>t Set =

∞∑
t=0

[pxt − ~xe]
>
S [pxt − ~xe]

where S is positive definite.

I For any given initial output y0, we aim to find a Π ∈ SFxe
to minimize

J (y0,Π) := max
x0∈H−1(y0)

J(x0,Π),

where

H−1(y0) := {x0 ∈ Dn

∣∣ H~x0 = ~y0}.
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4.3 Optimal Random Output Feedback

Zero Gap Between 〈Γxe
〉 and SKxe

Proposition 5

If PLDS (6) is asymptotically xe-stabilizable by random output feedback, then,

〈Γxe
〉 ⊆ SKxe

⊆ 〈Γxe
〉 = Kxe

,

where 〈Γxe〉 is the closure of 〈Γxe〉, that is,

〈Γxe
〉 :=

{
Π ∈ K

∣∣ ∃ {Γk} ⊆ 〈Γxe
〉, s.t. lim

k→∞
Γk = Π

}
.
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4.3 Optimal Random Output Feedback

Example 28 (Example 26 Revisited)

Kxe =

{
Π =

[
1 ∗ ∗
0 ∗ ∗

]}
, Γxe =

[
1 0.5 0.5

0 0.5 0.5

]

Consider

Π =

[
1 1 0.5

0 0 0.5

]
∈ Kxe

Obviously, Π /∈ 〈Γxe〉. We construct

Πk :=

[
1 1− 1/k 0.5

0 1/k 0.5

]
∈ 〈Γxe〉, k = 1, 2, · · · .

Then,

lim
k→∞

Πk = Π.
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4.3 Optimal Random Output Feedback

Remark 2

It can be verified that J (y0,Π) is continuous with respect to Π within

SKxe
. Thus, by Proposition 5,

inf
Π∈SKxe

J (y0,Π) = inf
Π∈〈Γxe 〉

J (y0,Π) =: λ∗(y0).
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4.3 Optimal Random Output Feedback

Based on the error system-based stability analysis in Section 2.3

et+1 = P(Π)et, e0 ∈ ∆n − ~xe,

⇓ et = Mxez1(t)

z1(t+ 1) = M+
xe

P(Π)Mxe︸ ︷︷ ︸
D(Π)

z1(t)

Mxe := [α1,α2, · · · ,αxe−1,αxe+1, · · · ,αn].

αi := δin − ~xe, i ∈ [1 : n].

⇓

J(x0,Π) =

∞∑
t=0

e>t Set =

∞∑
t=0

z>1 (t)M>
xe
SMxe

z1(t)
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4.3 Optimal Random Output Feedback

Lemma 29

Suppose that Π ∈ SKxe . The following claims hold:

There exists an (n− 1)× (n− 1) positive-definite matrix Ω such that

D>(Π)ΩD(Π)− Ω = −M>
xeSMxe

and for any i ∈ [1 : n],

J(i,Π) = α>i (M+
xe)>ΩM+

xeαi.

If an (n− 1)× (n− 1) positive-definite matrix Ω satisfies

D>(Π)ΩD(Π)− Ω ≤ −M>
xeSMxe ,

then, for any i ∈ [1 : n], it holds that

J(i,Π) ≤ α>i (M+
xe)>ΩM+

xeαi.
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4.3 Optimal Random Output Feedback

Canonical form: A PLDS satisfying

Uxe
= {1, 2, · · · , r}, ~ye = H~xe = δ1

q .

If a PLDS is not of the canonical form, we can always convert it to the

canonical form through the input and output transformations

~ut = U~vt, ~ηt = Θ~yt.

canonical form

switch
δ1m
δ2m ...
δmm

v(t)

U
u(t)

PLDS

ω(t)

y(t)

Θ

η(t)

Π̃
pv(t)switching signal

generator

σ(t)
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Theorem 30
Suppose that the PLDS is asymptotically xe-stabilizable and denote r := |Uxe |. Thena

For a given λ > 0, if there exist symmetric matrices Q and Ω, a vector β, and a matrix Σ such that

Ω > 0 (7)[
Q −M+

xe
P
(
Γβ,Σ

)
Mxe

∗ Ω−M>xe
SMxe

]
> 0 (8)

α
>
j (M

+
xe

)
>

ΩM
+
xe
αj < λ, j ∈ idx(H−1

(y0)) \ {je} (9)

β � 0, Σ � 0, 1− 1
>
r−1β > 0, 1

>
q−1 − 1

>
m−1Σ � 0 (10)

QΩ = I, (11)

where

Γβ,Σ :=

[
1− 1>r−1β 1>q−1 − 1>m−1Σ

I(m−1)×(r−1)β Σ

]
.

Then, Γβ,Σ ∈ 〈Γxe 〉 is asymptotically xe-stabilizing and J (y0,Γβ,Σ) < λ.

For any λ > λ∗(y0), the LMIs (7), (8), (9), and (10) with equality constraint (11) have a solution.

aGuo Yuqian et al. “Asymptotical Stabilization of Logic Dynamical Systems via Output-Based Random

Control”. In: IEEE transactions on Automatic Control 69.5 (2024), pp. 3286 –3293.
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4.3 Optimal Random Output Feedback

Remark 3

The LMIs with equality constraint can be transformed into the cone

complementary problem which can be solved with the recursive algorithm

proposed in [14].

In addition, using the dichotomy for parameter λ, we can find an output

feedback gain matrix Π ∈ 〈Γxe〉 such that the cost J (y0,Π) approximates

the optimal value λ∗(y0) with any given accuracy.

[14] L. E. Ghaoui and F. Oustry, A cone complementarity linearization algorithm for static output-feedback and related

problems, IEEE Transactions on Automatic Control, vol. 42, no. 8, pp. 1171–1176, 1997.
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4.3 Optimal Random Output Feedback

Reduced model for the lac operon in the bacterium Escherichia coli[15]

U2

U1

U3

X2

X1

X3

Normal and blunt arrows indicate positive

and negative interactions, respectively.


X1(t+ 1) = ¬U1(t) ∧ (X2(t) ∨X3(t))

X2(t+ 1) = ¬U1(t) ∧ U2(t) ∧X1(t)

X3(t+ 1) = ¬U1(t) ∧ (U2(t) ∨ (U3(t) ∧X1(t)))

We consider the problem of stabilizing

Xe = (1, 0, 1), which represents the ON

status of the lac perion [11], and minimizing

J (y0,Π) := max
x0∈H−1(y0)

∞∑
t=0

‖ep(t)‖2

[15] A. Veliz-Cuba and B. Stigler, Boolean models can explain bistability in the lac operon. Journal of Computational

Biology, vol. 18, no. 6, pp. 783–794, 2011.
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4.3 Optimal Random Output Feedback

Comparison between TIDOF and random output feedback

measurable
states initial output

minimum cost
under TIDOF

minimum cost
under random output feedback

x1 δ12 4.00 4.00

δ22 4.00 3.89

x1, x2 δ14 , δ34 2.00 2.00

δ24 4.00 4.00

δ34 4.00 3.89

x1, x3 δ14 , δ34 2.00 2.00

δ24 4.00 3.43

δ44 4.00 3.74

x2, x3 δ14 � 2.95

δ24 � 2.99

δ34 � 6.55

δ44 � 8.00

x1, x2, x3 δ18 , δ28 , δ58 , δ68 ,δ78 2.00 2.00

δ48 4.00 3.43

δ88 4.00 3.74
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4.3 Optimal Random Output Feedback

Time-domain Simulation:

I Measurable states are y1 = x1 and y2 = x3, H = δ4[1, 2, 1, 2, 3, 4, 3, 4].

I Initial output is y0 = δ2
4 , H−1(y0) = {δ2

8 , δ
4
8}.

I The optimal deterministic and random output feedback gain matrices:

F ∗ = δ8[7, 7, 6, 6], Π∗ =



0 0.0297 0.0016 0.0408

0 0.0297 0.0016 0.0408

0 0.0297 0.0016 0.0408

0 0.0297 0.0016 0.0408

0 0.2072 0.4949 0.3723

0 0.2072 0.4949 0.3723

1 0.4329 0.0020 0.0462

0 0.0339 0.0020 0.0462

 .
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4.3 Optimal Random Output Feedback

The curves of ‖ep(t)‖2 with the initial state x0 = δ4
8
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Conclusion

Basic theories of stability and feedback stabilization for PLDSs were

reviewed.

New stability result and the random output feedback for PLDSs were

discussed.
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Thank you!
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