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Notations

Dy n-valued logic domain Z,, = {1,2,--- ,n}

A,,: vector-form of logic domain 2,,, A, = Col(I,,)

87 vector-form of j € 9, 6 = Col;(1,)

@ . vector-form of logic variable x € 2,

Ry,): power-reducing matrix
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1.1 Probabilistic Logic Dynamical Systems

@ A logic dynamical system (LDS) is a dynamical system evolves within the

logic domain 2,, :=={1,2,--- ,n}.

Tip1 = f(or)

> 2 €D, f Dy — D

Stuart A Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic nets”. In: Journal off;
Theoretical Biology 22.3 (1969), pp. 437-467. 5

2Gautier Stoll et al. “Continuous time boolean modeling for biological signaling: application of Gillespie
algorithm”. In: Bmc Systems Biology 6.1 (2012), pp. 116-116.
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1.1 Probabilistic Logic Dynamical Systems

@ A logic dynamical system (LDS) is a dynamical system evolves within the

logic domain Z,, :={1,2,--- ,n}.
Ty = f(2r)
> 2 €D, f Dy — D

@ A Typical Example - Boolean network: A special LDS proposed by

Kauffman® as a qualitative model for GRNSs.

» Even though a BN provides a rougher description of GRNs, it is still
capable of efficiently predicting the long-term behavior of GRNs?.

Stuart A Kauffman. “Metabolic stability and epigenesis in randomly constructed genetic nets”. In: Journal of
Theoretical Biology 22.3 (1969), pp. 437-467.

2Gautier Stoll et al. “Continuous time boolean modeling for biological signaling: application of Gillespie
algorithm”. In: Bmc Systems Biology 6.1 (2012), pp. 116-116.
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1.1 Probabilistic Logic Dynamical Systems

@ An Example Boolean Network
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Regulatory functions
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1.1 Probabilistic Logic Dynamical Systems

@ An Example Boolean Network

Ja

©/ fB A1 = By

Biy1 =A NCh
fa(B) =B Ciy1 = 24

Dynamical equation

T
=
I
J
b

Regulatory functions
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1.1 Probabilistic Logic Dynamical Systems

@ An Example Boolean Network

State | Ay By C; | Ayr By Cin
,,f:‘] 1 0 0 0 0 0 1
’ 2 0 0 1 0 0 1
9 3 0 1 0 1 0 1
4 0 1 1 1 0 1
‘, 5 1 0 0 0 0 0
6 1 0 1 0 1 0
\ 7 1 1 0 1 0 0
‘éc/ﬁ A = B EER R
Bipr = A NG, Truth table
42(B) =B Cry1 = A (7) (3)
fa(B) O—O—0O—C

fB(A,C)=ANC Dynamical equation
fe(4)=-4A - {O—@®

Regulatory functions State transition (graph
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1.1 Probabilistic Logic Dynamical Systems

@ A probabilistic logic dynamical system (PLDS) is a collection of LDSs

driven by a random process

Ti41 = f(wt7$t)
> wy € Dy, is the random disturbance (i.i.d. process, Markov chain, or

state-dependent process)

> i Do, X Dy — Dy

3Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. “From Boolean to probabilistic Boolean networks as
models of genetic regulatory networks”. In: Proceedings of the IEEE 90.11 (2002), ppril778-1792.
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1.1 Probabilistic Logic Dynamical Systems

@ A probabilistic logic dynamical system (PLDS) is a collection of LDSs

driven by a random process

Ti41 = f(wtvl't)
> wy € Dy, is the random disturbance (i.i.d. process, Markov chain, or

state-dependent process)

> i Do, X Dy — Dy

@ A Typical Example - Probabilistic Boolean Network (PBN): A
stochastic generalization of deterministic BN, aiming to describe

uncertainties and stochasticity in GRNs®.

3Ilya Shmulevich, Edward R Dougherty, and Wei Zhang. “From Boolean to probabilistic Boolean networks as
models of genetic regulatory networks”. In: Proceedings of the IEEE 90.11 (2002), ppril778-1792.
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1.1 Probabilistic Logic Dynamical Systems

@ A PBN is a randomly switched Boolean network

et +1) = 7O (Lo [ j e NO
wa(t +1) = 52 ({a;(0) | j € N5

oalt +1) = £ ({zs0) 15 enim@})

>z, € B:={0,1} ~ D;

» 0,(t) € Dn,,i=1,2,--- ,n, are random switching sequences; and

> Z] 1 €[l:n], j € Dy,, are Boolean functions of their respective
in-neighbouring nodes {xk(t) | ke M?}

> There are N := II7"_; N; subnetworks in total.
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1.1 Probabilistic Logic Dynamical Systems

@ Algebraic Form of PLDS

Ti41 = f(wt73€t)

)

ft+1 :Lf [><’(17t D(ft

» Ty := 0, and W, := 9" are the vector-forms of x; and wy,
respectively.
» Ly € L) xnn, is the structural matrix of logic function f, obtained

from its truth table:

—

Col(y—1ynt;(Ly) = flw,5) =61, we Dy,,j € Dk
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1.1 Probabilistic Logic Dynamical Systems

@ Why Using Algebraic Form?

The STP and the vector-representation of logic

» transform the logical calculations into algebraic calculations, and
» embed a LDS into the Euclidean space R", enabling us to study LDSs

using the structure of Euclidean space.

Tip1 = Ty, x0 € A3

oS = O
o O =
_ o O
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1.1 Probabilistic Logic Dynamical Systems

@ l.i.d. Switching Case (Most studied case in literature)

» Basic assumptions:

* w; is an i.i.d. random sequence

wy ~p*,  [pY]; = Plws =}

* For any t, w; is independent of state history {zs ’ s <t}
» Markovian Property: z, is a homogeneous Markov chain

* Transition probability matrix (TPM):

P = Lf X pw
[Plij =P{zip1=i|a =4}, i,j€Dn

Note: Conventionally, the TPM is defined as P'.
* Dynamics of State PDV =w:: 2y ~m, :=EZ, € T\,

Ti4+1 = Pr,
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1.1 Probabilistic Logic Dynamical Systems

@ State Transfer Graph (STG):
The STG of a PLS is a weighted directed graph G = (N, &, W) where

» N =9, or A, is the set of nodes;
» £={(j,i) | [Pli; > 0} is the set of directed edges;
» W:E&—(0,1], (j,i) — [P]i,;, is the weight of edge.

Example 1

v

Guo Yugian ( Central South University) August 12, 2024
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1.1 Probabilistic Logic Dynamical Systems

Lemma 2

For any i,j € 2, the following statements are equivalent:
o [P'];; >0 forsomet withl <t <n-—1;

@ The STG (N,E,W) has a path from i to j, denoted by i — j.
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1.1 Probabilistic Logic Dynamical Systems

@ Stationary Distribution and Its Convergence

» Stationary distribution: A distribution 7 € T, satisfying P = .

* |f 7 is a stationary distribution, then, xo ~ 7 implies x; ~ 7 Vt
* A Finite Markov chain (Thus, a PLDS) has at least one stationary
distribution.

» Basic Limit Theorem: Let x; be an irreducible, aperiodic Markov

chain having a stationary distribution 7. Then
lim m; = lim Plry=m VYmg e Y.
t—o0 t— o0

Note: Please notice the difference between the convergence of stationary

distribution and the (set) stability discussed later.
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1.1 Probabilistic Logic Dynamical Systems

@ Fixed Point and Invariant Set (Closed Set)

» A subset C C &, is called an invariant subset if
]P’{a)‘t+1 eC ‘ Tt GC} =1.

> A state . is called a fixed point if {z.} is invariant.

Guo Yugian ( Central South University) August 12, 2024 16 / 111



1.1 Probabilistic Logic Dynamical Systems

@ Fixed Point and Invariant Set (Closed Set)
» A subset C C &, is called an invariant subset if
]P’{l‘pﬂ eC ‘ Tt GC} =1.

> A state . is called a fixed point if {z.} is invariant.

Lemma 3
The transition probability from any state to an invariant subset C is non-

decreasing with time, that is, for any k € Z and any j € D,

P{zssr € C | 3o = j} > P{z, € C | 20 = j}

Guo Yugian ( Central South University) August 12, 2024 16 / 111



1.1 Probabilistic Logic Dynamical Systems
@ The Largest Invariant Subset

» The union of two invariant subsets is still invariant.
» The union of all invariant subsets contained in M is referred to as the

largest invariant subset in M, denoted by T(M).

Proposition 1
For a given subset M C 2,,, we define a sequence of subsets as®

MS: jEMs—l Z [P]i,jzl , 3:1’2’...7
1EMs_1

where Mg := M. Then, there must exist an integer k < | M| such that
My = My_1. In addition, it holds that (M) = Mj.

?Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: /EEE
Transactions on Automatic Control 64 (2 2019), pp. 736-742.

v
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1.1 Probabilistic Logic Dynamical Systems

@ Probabilistic Logic Dynamical Control Systems (PLDCS)

i1 = f(we, ut, v4)
Yt = h(vtvmt)

> Tt € Dy, Ut € D,y Yt € Dy
> [ Dpy X Doy X Dy = Dy b Dy X Dy — Dy

> wy ~ p*

)

{ft.i_l:[/f[)(wtlx’ljtlet

g‘t:LhD(’Uthft

> Lf S ozﬂnxnwmn. Lh S D‘qunvn
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1.1 Probabilistic Logic Dynamical Systems

@ Basic assumptions:

» w; and vy are i.i.d. random sequences that are mutually independent.
w U
wg ~ P ! 5 Vg ~pP .

» For any t, w; and v; are independent of state history {5 | s <t}

@ TPMs
P:Lf I><pw

P, = L; x p* x 0,
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1.1 Probabilistic Logic Dynamical Systems

@ Reachability

> x4 is said to be k-step reachable from z if there is a control sequence
u = {u(t)} such that

P{z(k; zo,u) = 24} > 0.

x4 is said to be reachable from zq, denoted by x( 5 2,4, if there is a

control sequence u = {u(¢)} such that
P{x(t; xo,u) = x4 for some t > 1} > 0.

> x4 is reachable from zq if and only if x4 is k-step reachable from ;g for
some k < 2" — 1.
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1.1 Probabilistic Logic Dynamical Systems

@ Reachability Matrix

n—1
R = (P x1,)"
k=1
Proposition 2
i % j iff[R]j; > 0.
Sketchy Proof:
Px1,) = (P,+Py+---+P,)"

= Z P, ---P,P;,

all possible combinations

Thus, [(P X 1m)k} - >0 if and only if j is k-step reachable from i.
VI
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1.1 Probabilistic Logic Dynamical Systems

@ Control Invariant Subsets

> A subset C C 2, is termed as a control invariant subset if, for any

state j € C, there exists a control r € Z,,, such that
]P{l‘t+1 eC | Ty = j, Uy = 7’} = 1. (2)

» The union of any two control invariant subsets is still control invariant.

» The union of all control invariant subsets contained in a given subset
M C 9, is termed as the largest control invariant subset contained
in M and is denoted by I.(M).

» If C = {z.} is control invariant, then, z. is called a control fixed poiqt:
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1.1 Probabilistic Logic Dynamical Systems

Proposition 3
Suppose that My C 2,,. A sequence of subsets M, s € Z™T, is defined as

M, = jEMS,1 er[lzm],s.t. Z [Pk]i’jzl
1EMs 1

Then, there must exist a positive integer n < |My| such that M, = M, 1.
Additionally, I.(My) = M,, holds.
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1.2 Nonnegative Matrices

@ Nonnegative Matrices: A matrix A is called a nonnegative matrix,
denoted as A > 0, if it is nonnegative element-wise, that is, all of its

elements are nonnegative.

Definition 4

Consider two m X g nonnegative matrices I'y = 0 and I's > 0.

@ I'; is said to be structurally included in 'z, denoted as I'y C T, if for any

1€ [1 : m] and any j € [1 : q], [Fg]i,j =0 |mpI|es [Fl]i,j = 0.

@ They are said to be homo-structural, denoted as I'y ~, Iy, if both T’y C T’y
and I's C I'y hold.
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1.2 Nonnegative Matrices

Lemma 5

Consider m X n nonnegative matrices A, B > 0 and p X q nonnegative matrices
C,D >0. If AC B and C' C D, then it holds that

AxCC BxD.
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9 Stability Analysis
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2.1 Definitions of Stability

@ Consider PLDS
Tiy1 = f(we, )

> 4 € D, wy ~pY €Ty,
> [ Dn, X Dy — Dy

Definition 6 (Finite-time Stability(FTS))

A state z. € 2, is said to be finite-time stable if there is a positive integer T’

such that?
P{z; =ac |mo =4} =1 Vt>T,Vj€E Dy.

?Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In

Automatica 50.4 (2014), pp. 1272-1278.
y

August 12, 2024 30 / 111
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2.1 Definitions of Stability

Definition 7 (Stability with Probability One (SPO))
A state z, € 2, is said to be stable with probability one if?

P{nmxt:me\xo:j}zl Vi € D.

t—o0

2Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks" .
In: Science China Information Sciences 57.1 (2014), pp. 1-14.
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2.1 Definitions of Stability
Definition 7 (Stability with Probability One (SPO))
A state z, € 2, is said to be stable with probability one if?

P{lim o =z [z0=j} =1 Vj€
t—o00

2Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks" .

In: Science China Information Sciences 57.1 (2014), pp. 1-14.

Definition 8 (Stability in Stochastic Sense (SSS))

A state z. € 9, is said to be stable in stochastic sense if?

lim E[Z; | xog=j]l=Z. VYjE D,.

t—o0

?Min Meng, Lu Liu, and Gang Feng. “Stability and 11 gain analysis of Boolean networks with Markovian jump

parameters”. In: IEEE Transactions on Automatic Control 62.8 (2017), pp. 4222-4228.

August 12, 2024
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2.1 Definitions of Stability

Definition 9 (Stability in Distribution (SD))
A state z. € 9, is said to be stable in distribution if?

lim P{z; =a. |20 =34} =1 Vj€ Dn.

t—o00

?Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks". In: /EEE
Transactions on Automatic Control 64 (2 2019), pp. 736-742.
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2.1 Definitions of Stability

Definition 9 (Stability in Distribution (SD))
A state z. € 9, is said to be stable in distribution if?

lim P{z; =a. |20 =34} =1 Vj€ Dn.

t—o00

?Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks". In: /EEE

Transactions on Automatic Control 64 (2 2019), pp. 736-742.

@ FTS and SD can be easily generalized to
set stability.

@ However, such generalizations of SPO and

SSS are not convenient, because they

require the existences of the limits

Relationship between different stabilities . . .
limy, o ¢ and limy_, o Exy, respectively.

Guo Yugian ( Central South University) August 12, 2024 32 /111




2.1 Definitions of Stability

Definition 10 (Finite-time Set Stability)

A subset M C 2, is said to be finite-time stable if there is a positive integer T’

such that?
Pz e M |2g=j}=1 Vt>T,Vj€E D,.
9Li Rui, Yang Meng, and Chu Tianguang. “BEZAi/KMEHHESBUERR]". In: #4415 55 36.3 (2016),
pp. 371-380.
y
Definition 11 (Set Stability in Distribution (SSD))
A subset M C 2, is said to be stable in distribution if?
lim P{z, e M |z =4} =1 Vj€ D,.
t—o0
?Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks". In: /EEE
Transactions on Automatic Control 64 (2 2019), pp. 736-742.
.



2.1 Definitions of Stability

0 1 0 05
100 02
P:
000 03
0 01 O
M ={1,2}
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2.1 Definitions of Stability

@ The limitations

lim x(t), lim EZ(t)

t—o0 t— o0
do not exist;
01 0 05 @ However, for any z,
P= 1 0 0 02 lim P{x(t) € M| 2(0) =z} =1
0 01 0
M={1,2}
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2.1 Definitions of Stability

@ Typical Set Stability Problem: Synchronization of networks

Consider two n-valued PLDSs

Ti41 = f(wt; l't); Zt41 = Q(Un Zt,»Tt)

T, 2t € @n

» Finite-time synchronization: There exists a T' > 0 such that
Ploy =z |@o=j,20 =i} =1 Vt>T\Nj,i€ D,
» Asymptotical synchronization:

lim }P’{xt:zt|x0:j720:i}:1 Vi, i € Dy,

t—o0

Guo Yugian ( Central South University) August 12, 2024 35 /111



2.1 Definitions of Stability

The synchronization problem is equivalent to the stability of the combined
system
{ Ti+1 = f(wtaxt)
zt41 = g(Vt 2t, )

with respect to the synchronization set

M :={(j,4) | ] € Dn} C D0 x Dn

Guo Yugian ( Central South University) August 12, 2024 36 / 111
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9 Stability Analysis

@ Reachability-based Stability Analysis
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2.2 Reachability-based Stability Analysis

Theorem 12
A PBN is finite-time stable with respect to x. if and only if

Col {P" '} = {&.}, (whereP =L;x p") (3)

Sketchy Proof: (Necessity) FT stability
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2.2 Reachability-based Stability Analysis

Theorem 12
A PBN is finite-time stable with respect to x. if and only if

Col {P" '} = {&.}, (whereP =L;x p") (3)

Sketchy Proof: (Necessity) FT stability = «. is a fixed point, and the

solution from any initial state reaches x. within n — 1 steps.
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2.2 Reachability-based Stability Analysis

Theorem 12
A PBN is finite-time stable with respect to x. if and only if

Col {P" '} = {&.}, (whereP =L;x p") (3)

Sketchy Proof: (Necessity) FT stability = «. is a fixed point, and the

solution from any initial state reaches x, within n — 1 steps. = (3)
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2.2 Reachability-based Stability Analysis

Theorem 12
A PBN is finite-time stable with respect to x. if and only if

Col {P" '} = {&.}, (whereP =L;x p") (3)

Sketchy Proof: (Necessity) FT stability = «. is a fixed point, and the
solution from any initial state reaches x. within n — 1 steps. = (3)
(Sufficiency) (3) =

Pz, = P"%y = P" 1 (PZy) = [Ze, -, Ze](PTy) = 2
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2.2 Reachability-based Stability Analysis

Theorem 12
A PBN is finite-time stable with respect to x. if and only if

Col {P" '} = {&.}, (whereP =L;x p") (3)

Sketchy Proof: (Necessity) FT stability = «. is a fixed point, and the
solution from any initial state reaches x. within n — 1 steps. = (3)
(Sufficiency) (3) =

Pz, = P"%y = P" 1 (PZy) = [Ze, -, Ze](PTy) = 2

= z. is a fixed point
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2.2 Reachability-based Stability Analysis

Theorem 12
A PBN is finite-time stable with respect to x. if and only if

Col {P" '} = {&.}, (whereP =L;x p") (3)

Sketchy Proof: (Necessity) FT stability = «. is a fixed point, and the
solution from any initial state reaches x. within n — 1 steps. = (3)
(Sufficiency) (3) =

Pz, = P"%y = P" 1 (PZy) = [Ze, -, Ze](PTy) = 2
= x, is a fixed point= For any t > n, any j € 2,

]P’{wt:xe’xozj}ZP{x(n—l):xe‘xozj}zl
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2.2 Reachability-based Stability Analysis

Theorem 12
A PBN is finite-time stable with respect to x. if and only if

Col {P" '} = {&.}, (whereP =L;x p") (3)

Sketchy Proof: (Necessity) FT stability = «. is a fixed point, and the
solution from any initial state reaches x. within n — 1 steps. = (3)
(Sufficiency) (3) =

Pz, = P"%y = P" 1 (PZy) = [Ze, -, Ze](PTy) = 2
= x, is a fixed point= For any t > n, any j € 2,
Ploy =z |20 =4} > P{a(n—1) =a. |zo =4} =1

= FT stability
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2.2 Reachability-based Stability Analysis

@ Criterion of FT Stability in terms of STG*

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A
Topological Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020),
pp. 695-699.
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2.2 Reachability-based Stability Analysis

@ Criterion of FT Stability in terms of STG*

P{xt:xe‘m():j}zl Vt >T,Vj € Dp.

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A
Topological Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020),
pp. 695-699.
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2.2 Reachability-based Stability Analysis

@ Criterion of FT Stability in terms of STG*
Ploy =ac |zo =4} =1 Vt>T\Vj€E Dy.

i)

(i) z is a fixed point
(II) Ty — Te Va:o

(iii) Any path from any xg to x. in G\ (z., z.) is with finite length

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A
Topological Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020),
pp. 695-699.
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2.2 Reachability-based Stability Analysis

@ Criterion of FT Stability in terms of STG*
Ploy =ac |zo =4} =1 Vt>T\Vj€E Dy.

)

(i) z is a fixed point
(II) Ty — Te Va:o

(iii) Any path from any zq to z. in G \ (z.,z.) is with finite length
(i
G\ (xe, ) is acyclic

@ Note: G\ (z,x.) is the graph obtained from the STG G of the PLDS by

removing the self-loop of x,

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. “Finite-time Stability of Probabilistic Logical Networks: A
Topological Sorting Approach”. In: IEEE Transactions on Circuits & Systems -Il: Express Briefs 67.4 (2020)
pp. 695-699.
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2.2 Reachability-based Stability Analysis

g\(l'evl'e)

STG G
STG of a PLDS that is finite-time stable w.r.t. z, = 8
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2.2 Reachability-based Stability Analysis

G\ (e, )

STG G
STG of a PLDS that is not finite-time stable w.r.t. z, = 8
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2.2 Reachability-based Stability Analysis

Theorem 13
A PBN is finite-time stable with respect to x. if and only if G\ (z., z.) is acyclic®.

4Shiyong Zhu, Jianquan Lu, and Daniel W.C.Ho. ‘“Finite-time Stability of Probabilistic Logical Networks: A
Topological Sorting Approach”. In: IEEE Transactions on Circuits & Systems -II: Express Briefs 67.4 (2020),
pp. 695-699.

Guo Yugian ( Central South Univ

August 12, 2024 42 /111



2.2 Reachability-based Stability Analysis

@ Finite-time Set Stability

» Finite-time stability w.r.t. M

< Finite-time stability w.r.t.
the largest invariant subset

(M) in M

< I(M) # 0 and the STG
has no cycles outside I(M).
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2.2 Reachability-based Stability Analysis

@ An asymptotically stable PLDS that is not FT stable
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2.2 Reachability-based Stability Analysis

@ An asymptotically stable PLDS that is not FT stable

0 0 05 0
o 005 0
S lo2 0 0

0.8 1 1
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2.2 Reachability-based Stability Analysis

@ Criterion of Stability with Probability One

P{limxt:xe|x0:j}:l Vi € D,.

t—o00

)

{ x. is a fixed point. (Thus, it is recurrent)

To — Te Vo.

Theorem 14
A PLDS is asymptotically stable w.r.t. x. = i with probability one if and only if
Ze Is a fixed point and®

Row; (P"') =0 (4)

?Yin Zhao and Daizhan Cheng. “On controllability and stabilizability of probabilistic Boolean control networks" .
In: Science China Information Sciences 57.1 (2014), pp. 1-14.

v
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2.2 Reachability-based Stability Analysis

@ Criterion of asymptotical stability in distribution

Theorem 15
A PLDS is asymptotically stable w.r.t. x. in distribution if and only if

{ Ze IS a fixed point.

To — T Vag.

Or, equivalently, . is a fixed point and Row; (P”_l) = 0.

?Yugian Guo et al. “Stability and Set Stability in Distribution of Probabilistic Boolean Networks”. In: [EEE
Transactions on Automatic Control 64 (2 2019), pp. 736-742.

» The necessity is obvious. A sketchy proof for sufficiency is provided

the next page.
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2.2 Reachability-based Stability Analysis
Sketchy Proof of Sufficiency.

lim ]P’{:Et:xe|x0:j}:1 Vi€ D,.

t—o0
)
. t O(nfl)xn
tlggoP = o7 (Assume z, = n)
n

)

lim oy =1,,_1, where P?!:=
t—o00 a;r 1

T/ Opm_1)x1 ]

)

lim (et —1,-1) =0 (By Monotonicity)
—_———

t—o0
U
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2.2 Reachability-based Stability Analysis

P(n(t +1)) = P(nt)P(n)

\
Api+1) = Dnane + ay
)
Oén(t+1)*1n—1 = Fn(ant71n71)+rn1n71 +on — 11
=0
\
Ny = Tumy
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2.2 Reachability-based Stability Analysis

P(n(t+1)) = P(nt)P(n) Z. is a fixed point.
U Ty —> Te Vl'()
an(tJrl) = Fnant + o,
I3
¢ =0
a,
an(t+1)71n71 = Fn(antflnfl)‘l‘rnlnfl +on —1n1

=0 ll

4 o
T, is strictly Schur stable
Ney1 = ',
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2.2 Reachability-based Stability Analysis

P(n(t+1)) = P(nt)P(n) Z. is a fixed point.
U Ty — Te Vl'()
an(tJrl) = Fnant + o,
I3
¢ =0
a,
an(t+1)71n71 = Fn(antflnfl)‘l‘rnlnfl +on —1n1

=0 ll

4 o
T, is strictly Schur stable
Ney1 = ',

4

limn,=0 = Ilmaoa =1,
t—o0 t—o00
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2.2 Reachability-based Stability Analysis
@ Criterion of asymptotical stability in stochastic sense

lim E[Z; | x9g=jl=2Z. VjE D,.
t—o00
II E[.’ft | o = ]] = COlj [Pt]
lim Col;[P!| =%, Vj€ P,
t—o0 :
(i

Asymptotically stable in distribution

Note: The above results confirm that SSO, SSS, and SD are equivalent:
indeed.
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2.2 Reachability-based Stability Analysis

Corollary 16

Consider two PLDSs of the same size with TPMs Py and Ps, respectively.
Suppose that x. is the fixed point of both PLDSs, that is,

P.%. = PyZ. = Ze.

@ Suppose that Py C Ps. If PLDS P, is asymptotical x.-stable, then, so is
PLDS Ps.

@ Suppose that Py ~y, Py. Then, PLDS P+ is asymptotical x.-stable iff
PLDS Ps is asymptotical x.-stable.
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2.2 Reachability-based Stability Analysis

Example 17
The STGs corresponding the three TPMs satisfying (z. = 3)

P, Py P;
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2.2 Reachability-based Stability Analysis

@ Asymptotical Set Stability

tllréloP{xtEM’xozj}:l Vi€ Dp.

¢
Jim P{z, € I(M) |20 =j} =1 Vj€ Ty
0
I(M) #0
580—)[(./\/1) Vo

Note: zg — I(M) means xg — x for some x € I(M).
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2.2 Reachability-based Stability Analysis

STG of a asymptotically M-stable PLDS that is not finite-time stab\le:xr /:
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Outline

9 Stability Analysis

@ Error-based Stability Analysis
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2.3 Error-based Stability Analysis

@ Dynamics of State PDV =, := EZ;
’7'l'15+1:l:)7'l't7 Ty = To € A,,. (5)
» Note: The PLDS is asymptotically z.-stable iff

lim 7; = %., Vmg € A,.
t—o00
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2.3 Error-based Stability Analysis
@ Dynamics of State PDV =, := EZ;
w1 = Pmwy, o =Ty € A, (5)
» Note: The PLDS is asymptotically z.-stable iff
tlirgo Ty = Te, Vo € A,
@ Error System: We define the state distribution error as
€ =Ty — Te
If . is a fixed point, then,
er1=Pey, ey e, -2,
where A, — . :={6] — Z. | j € D}
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2.3 Error-based Stability Analysis

@ n — l-dimensional invariant subspace of error system: We define
o =6 — 0%, ic[l:n).
We construct an n x (n — 1) matrix as
M,, :=[a1, 9, , 0, 1,0, 11, " 5 Qp.
Then M, is of full column rank. We define

My, = Span{A,, — Z.} = Span{M,,_}.

» By the linearity, the error system
eir1=Pey, eyc A, -7

is finite-time/asymptotically stable iff the following system is

finite-time/asymptotically stable:
er1 =Pey, ey € Mg,
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2.3 Error-based Stability Analysis

Lemma 18

If . is a fixed point, then, M,_ is an (n — 1)-dimensional invariant subspace of

eir1 = Pey

1,
Proof:
@ 1, is orthogonal to each o, i € [1: 0]\ {zx.}. =3 N
o’ 2
Thus, it is orthogonal to M., . b M,
@ For any eg € M, and any ¢, e; = P'eq and ]
(0] 51
3

T _ 1 Tpt _ 1T _
1n€t—1nP 60—1n60—0. TLZS, ZCEZS

_1;1F

Thus, e; is orthogonal to 1,, and e; € M, . M, = Span 0
-1 -1
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2.3 Error-based Stability Analysis
@ Restriction of error system on M,

» We define the coordinate transformation as

e = [M:ve7 1n] [ 221((:)) ‘| = Mmezl(t) + 1n22(t)
where z;(t) € R"™1, 25(t) € R. Then,

Zl(t + 1) B M;}PML, M;}Pln Zl(t)

nt+1) | 0 1 22(t)

where M = (M] M, )~'M] is the pseudo-inverse of M, .
> In the z-coordinate system, M, = {(z],22)" € R" | 20 =0}. By
letting 22(t) = 0,

Zl(t + 1) = M;PMmezl(t)
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2.3 Error-based Stability Analysis

Theorem 19
The PLDS is finite-time x.-stable iff

@ . is a fixed point.

@ The (n—1) x (n— 1) matrix D := M PM,, is nipolent.
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2.3 Error-based Stability Analysis
Theorem 20
The PLDS is asymptotically x.-stable ifP
@ x. Is a fixed point.

® The (n—1) x (n—1) matrix D :== M} PM,, is Schur stable.

2Guo Yugian et al. “Asymptotical Stabilization of Logic Dynamical Systems via Output-Based Random
Control”. In: IEEE transactions on Automatic Control 69.5 (2024), pp. 3286 —3293.
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2.3 Error-based Stability Analysis
Theorem 20
The PLDS is asymptotically x.-stable ifP
@ x. Is a fixed point.

® The (n—1) x (n—1) matrix D :== M} PM,, is Schur stable.

2Guo Yugian et al. “Asymptotical Stabilization of Logic Dynamical Systems via Output-Based Random

Control”. In: IEEE transactions on Automatic Control 69.5 (2024), pp. 3286 —3293.

Remark 1
Suppose Q is an (n — 1) x (n — 1) positive-definite matrix. Then, by according to
Theorem 20, the PLDS is asymptotically x.-stable iff there exists an

(n —1) x (n — 1) positive-definite matrix §) such that

D'OD-Q=-Q.
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Outline

o Basic Concepts and Preliminaries
@ Probabilistic Logic Dynamical Systems
@ Nonnegative Matrices
e Stability Analysis
@ Definitions of Stability
@ Reachability-based Stability Analysis
@ Error-based Stability Analysis
© State Feedback Stabilization
@ Finite-time Stabilization by State Feedback
@ Asymptotical Stabilization by State Feedback
@ Output Feedback Stabilization
@ Deterministic and Random Output Feedback
@ Stabilizability by Random Output Feedback
@ Optimal Random Output Feedback
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QOutline

© State Feedback Stabilization
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3. State Feedback Stabilization

@ Consider a PLDS
T = flwy, ug, ¢)

and its algebraic form

.ft+1 :Lf Kwt I><1Zt D(ft

\4

Tt € Dy Ut € Dy Yt € Yy

[ Dy X Do X Dy — D

> w ~ pY;

Ly € Loxnymn

TPMs P = L; x p*, P; = Ly x p* X 0),.

v

v

\4
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3. State Feedback Stabilization

@ Closed-loop TPM under State Feedback

ﬂt :Kft, Kefmxn

¢

ft+1 = LfKZEtKﬂtht
= Lyx WX KX T X Ty
= Lf X ’lﬁt X KR[n].ft
R,): Power-reducing Matrix

¢
Px = (Lf X pw)KR[n]

Guo Yugian ( Central South University)
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3. State Feedback Stabilization

@ Problem: Find a state-feedback
u(t) = Kx(k)

to stabilize a PBN to a point or a subset in finite-time or asymptotically.

o If
K == (5m[k1,k27"' 7I€2n]

Then, the TPM of the closed loop, denoted by Py, is

CO]j (PK) = CO]j (ij )
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Outline

© State Feedback Stabilization
@ Finite-time Stabilization by State Feedback
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3.1 Finite-time Stabilization by State Feedback

@ Hierarchical structure of the STG of a Finite-time stable PLDS

QO = {xe}
le{x‘ﬂ"{xtﬂ EQolxt:x}zl}

Qp = {l’ | P{:L'H_l € Qp_1 | Ty = .T} = 1}

@ We can always rearrange the STG into the

hierarchical structure for a finite-time stable
PLDS. P
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3.1 Finite-time Stabilization by State Feedback
@ Finite-time Stablizability by State Feedback

» Define a sequence of subsets as

Qo = {xe}
Q. = {33 ’ Ju st P{zry1 € Qo | 2o = 2,up = u} = 1}
k=1,2,3,-

» If x, is control invariant, then Qg C Q; C Qs C ---

Theorem 21
A PLDS is finite-time stabilizable w.r.t. x. by a state feedback ifP

T, Is control invariant;

There is a positive integer K < n — 1 such that Qx = 2,,.

?Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks”. In
Automatica 50.4 (2014), pp. 1272-1278.

v
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3.1 Finite-time Stabilization by State Feedback

@ Design of Finite-time Stabilizing feedback gain®

» Assigning a control u(x.) for z, such that
P{ziy1 =z, | T =2} =1

» Assigning a control u(x) for every x € Q \ Qx_1 such that
P{xi11 € Qg—1 ’ xp=x}=1.

» Then,

5Rui Li, Meng Yang, and Tianguang Chu. “State feedback stabilization for probabilistic Boolean networks". In &
Automatica 50.4 (2014), pp. 1272-1278.
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3.1 Finite-time Stabilization by State Feedback

u=1 U,E2 ﬁt :52[1a2a27171752{“’
(=

N
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3.1 Finite-time Stabilization by State Feedback

)

i = 65[1,2,2,1, 1,24 \
(2 2

\




3.1 Finite-time Stabilization by State Feedback

U,E2 ﬁt :52[1a2a27171752?%
(=

N




3.1 Finite-time Stabilization by State Feedback




3.1 Finite-time Stabilization by State Feedback




3.1 Finite-time Stabilization by State Feedback




3.1 Finite-time Stabilization by State Feedback

u=2 ﬁt :62[1a2325171725272]ft
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3.1 Finite-time Stabilization by State Feedback

@ Finite-time Feedback Set Stabilization

Finite-time Feedback M-Stabilizable

)

Finite-time Feedback I.(M)-Stabilizable
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Outline

© State Feedback Stabilization

@ Asymptotical Stabilization by State Feedback
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3.2 Asymptotical Stabilization by State Feedback

@ Asymptotical Feedback Stabilizability

Theorem 22
A state x. is asymptotically feedback stabilizable ifP®

@ z. is a control-fixed point, and

Q 20 > z. Vo, that is,
2l (P x1,)" " = 0.

?Rongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:
IEEE Transactions on Neural Network & Learning Systems 31.11 (2020), pp. 4524-4537.

bWang Liging et al. “Stabilization and Finite-Time Stabilization of Probabilistic Boolean Control Networks".
In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 51.3 (2021), pp. 1559-1566.
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3.2 Asymptotical Stabilization by State Feedback

@ Asymptotical Feedback Set Stabilizability

Theorem 23
A subset M is asymptotically feedback stabilizable if

Q I.(M)#0D, and

Q o > I.(M) Vao, that is,

Z Row; {(P X 1,,)" "t = 0.
JEI(M)

?Rongpei Zhou et al. “Asymptotical Feedback Set Stabilization of Probabilistic Boolean Control Networks”. In:
IEEE Transactions on Neural Network & Learning Systems 31.11 (2020), pp. 4524-4537.
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3.2 Asymptotical Stabilization by State Feedback
@ Design of Asymptotically Stabilizing Feedback

» Decomposition of State Space:

@0 :IC(M)7
k—1 ¢
Or=1{j¢ <U@S> DN HEN S
s=0 1€EOQK_1
k=1,2,---, )\

» For any j € 9y, there is a unique k; such that j € ©y,. Then, we

assign state j a control u; as

Z [P X (S;L,:’{LJ >0 where ©_; := 0

ie@k]-—l
» Stabilizing state feedback gain: K = ,,[u1, ua, -+, uy)].
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3.2 Asymptotical Stabilization by State Feedback
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Outline
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QOutline

e Output Feedback Stabilization
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Outline

@ Output Feedback Stabilization
@ Deterministic and Random Output Feedback
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4.1 Deterministic and Random Output Feedback
@ Logic Dynamical System in Algebraic Form
Trp1 = L X Wy X 1y X Ty
v = HZ,
> 2t € Dy, Ut € Dy, and Yy € Z,
»wp~pYEeTN

@ Deterministic output feedback®’®

Uy = Fi, F e Ly

» The deterministic output feedback has a limitation (See the next page)

SNicoletta Bof, Ettore Fornasini, and Maria Elena Valcher. “Output feedback stabilization of Boolean control
networks”. In: Automatica 57 (2015), pp. 21-28.

"Haitao Li and Yuzhen Wang. "Output feedback stabilization control design for Boolean control networks”. [n=|
Automatica 49.12 (2013), pp. 3641-3645. WL €

8Rc>ngjian Liu et al. “Output feedback control for set stabilization of Boolean control networks”. In: [EEE :

transactions on neural networks and learning systems 31.6 (2019), pp. 2129 -2139.
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4.1 Deterministic and Random Output Feedback
Example 24 (A Motivating Example )

@ Consider a PLDS

ft_;,_l:LD((r)tD(’thD(ft
G = Ha,
g L =0651,2,3,3,2,2,2,1,3,1,2,3]

Wi pr = [05, 0,5]T, H = 52[1 12}

T, = is unstabilizable by any time-invariant

deterministic output feedback.

1 05
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4.1 Deterministic and Random Output Feedback
Example 24 (A Motivating Example )

@ Consider a PLDS

= = = =
$t+1:LD<wt[><Utl><$t
Y = HZ,

L =651,2,3,3,2,2,2,1,3,1,2, 3]
Wi pr = [05, 0,5]T, H = 52[1 12}

T, = is unstabilizable by any time-invariant
deterministic output feedback.

Is it a stabilizing time-invariant output
feedback?
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4.1 Deterministic and Random Output Feedback
Example 24 (A Motivating Example )

@ Consider a PLDS

u=1 — — — —
{ $t+1:LD<wt[><Utl><$t

@:Hft

L =651,2,3,3,2,2,2,1,3,1,2, 3]
Wt pr = [05, 0,5]T, Jal = 52[1 12}

. = is unstabilizable by any time-invariant
deterministic output feedback.

Is it a stabilizing time-invariant output
feedback? Yes!
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Example 25 ( Example 24 Revisited)

03 @ We apply the following control strategy:
05 1|,
Ug ~ Yt
0.5 0

At each ¢, u; is randomly selected from %5

according to the above distribution.
The closed-loop is a homogeneous Markovian

chain and is asymptotically stable w.r.t. 3.

05 025 0
P=|025 075 0
025 0 1

Guo Yugian ( Central South University) August 12, 2024 82 /111



4.1 Deterministic and Random Output Feedback

switching signal Pt
ot € Dm generator -

@ Random Output Feedback

U ~ H!jt

» Each column of IT € R™*? is a PDV satisfying IT > 0, 1;1’1 = 1;'—.
> Deterministic output feedback #; = F'¢j; can be regarded asa =

particular random output feedback with IT = F'.
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4.1 Deterministic and Random Output Feedback

@ An Equivalent Random Switching Output Feedback Model

» Introduce ¢ mutually independent random sequences 7,.(t) € Py,

r € 9, that are i.i.d. with
Ny (t) ~ Col,.(II), r € 9.
» Then, the equivalent switching model for ROF w; ~ Iy, is given by
iy = Fy, g

with F’r/t = [ﬁl(f)7 ﬁQ(t)a Ty ﬁq(t)]
» It is easily checked that u;, ~ Ei; = E(F,,3;) = (EF,,)%: = I
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4.1 Deterministic and Random Output Feedback

Assumption 1

The selection probability of u; at each step t is completely determined by y;; i.e.,

for any random event £ satisfying

Ply: =5, €} # 0,

the following holds
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4.1 Deterministic and Random Output Feedback

@ Closed-loop system under random output feedback

» The random output feedback is essentially a time-invariant strategy.

» The closed-loop system under the random output feedback u; ~ IIg; is
a homogeneous Markovian chain with the 1-step transition
probability matrix (TPM)

P(IT) = P x (IIH) x Ry, = P(ILH ® )Ry,

where Ry, is the power-reducing matrix and P = L x p*.

(See the next page for the derivation)
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4.1 Deterministic and Random Output Feedback

Derivation of the closed-loop TPM:

ft—&-l = LMU_}’tD(ﬁtD(ft
= LxwxF, x HxZ XT

= Lxuyx Fy, x Hx Ry, X Ty

U
P(IT) = P x (ILH) x Ry,
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Outline

@ Output Feedback Stabilization

@ Stabilizability by Random Output Feedback
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4.2 Stabilizability by Random Output Feedback

@ Set of Output Feedback Gain Matrice:

K={IIeR™ |0, 1, =1}
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4.2 Stabilizability by Random Output Feedback

@ Set of Output Feedback Gain Matrice:

K={IIeR™ |0, 1, =1}

@ Set of Equilibrium-preserving Output Feedback Gain Matrices:

K., ={Ile K |PIN)7. = 7.}
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4.2 Stabilizability by Random Output Feedback

@ Set of Output Feedback Gain Matrice:

K={IIeR™ |0, 1, =1}

@ Set of Equilibrium-preserving Output Feedback Gain Matrices:

K., ={Ile K |PIN)7. = 7.}

@ Set of Stabilizing Output Feedback Gain Matrices:

SK,, :={Il € K | IT is asymptotically z.-stabilizing} .
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4.2 Stabilizability by Random Output Feedback

@ Set of Output Feedback Gain Matrice:

K={IIeR™ |0, 1, =1}

@ Set of Equilibrium-preserving Output Feedback Gain Matrices:

K., ={Ile K |PIN)7. = 7.}

@ Set of Stabilizing Output Feedback Gain Matrices:
SK,, :={Il € K | IT is asymptotically z.-stabilizing} .
» SKy, CKz, CK

» The system is asymptotically z.-stabilizable iff there is a IT € Ky,

under which every state has a path to x. in the closed-loop STG:
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4.2 Stabilizability by Random Output Feedback

Proposition 4
Suppose that I1;,I1s € K, .

Q@ /fII; C I, and II; € SK:zE Then, I15 € S’Cwe

Q /fII; ~y, I1,, then, II; € S’Cxe iffTIy € S’Cxe

Proof: (Claim 1) By Lemma 5, if II; C II5, then,
P(II,) = P x (I H) x Ry,) E P x (IIx H) x Ry, = P(II).

The claims follow by using Corollary 16. (]
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4.2 Stabilizability by Random Output Feedback
@ A Partial Order Structure of K,/ ~p

» Equivalence Class:
(I) :={Il € K,, | I ~, IT}

> Quotient set:
Ko,/ ~pi={(II) | T € K, }

» Partial ordered set (K, / ~p,C): If II; C IIo, then,

].:[1 C 1:_[27 Vl:.[l S <H1>,V1:[2 S <H2>

In this case, we denote (IT;) C (II5). Then, “C" defines a partial
order relation on Ky, / ~p:
* Reflexivity: (IT) C (II) for any (IT) € K, / ~p
* Antisymmetry: (IT;) C (ITy) and (II2) C (II;) implies (II;) =TI
* Transitivity: (IT1) C (ILs) and (IL,) C (Il3) implies (IT;) C (II3).
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4.2 Stabilizability by Random Output Feedback

@ The unique maximum element of poset (K, / ~p,C)

» Uniformly distributed Feedback Gain Matrix

1 .
E]-mm J 7& hje
Col;(T'y,) = 1 S j€el:q
¢ u, J= h'gv
w2 f

* Uy, ::{ue@m‘PMﬁxeri”e}
* hj, =idx(HZ.)

» (T';.) is the unique maximum element of poset (K, / ~p,C)

QrI. k...
@ Forany IT € K,_, it holds that (II) C (T, ).
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4.2 Stabilizability by Random Output Feedback

Example 26
ft+1:LK6tKﬁtht
Yr = Hy
L1 =64[1,2,3,3,2,2,3,4], Ly =054[2,1,3,1,2,3,4,2]
we ~ p* = [0.5, 075]T7 H=63[2,3,1,1], z.=3
0.5 0.5 0510 O 0 0
P=Lxp"“=

05/0 05 05 O

0

05 05 0 0 |1 05 0 0.5
1
0 0|0 O 05 05

1 *x =* 1 05 0.5
Kxe = II = 0 Fﬁfe =
0 * =x 0 05 0.5
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4.2 Stabilizability by Random Output Feedback

1 05 05
0 05 0.5

—/ A\

Hasse diagram of poset (K, / ~p, =)
To check stabilizability, we only need to check whether IT';_ is stabilizifg?”
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4.2 Stabilizability by Random Output Feedback

Theorem 27

A PLDS is asymptotically x.-stabilizable by random output feedback iff x. is a

control-fixed point and I, is asymptotically x.-stabilizing.

@ Every IT € (T',_) can be a testing feedback gain matrix.

@ This method is not valid for stabilizability under deterministic output
feedback, because each equivalence class in %,/ ~, is a singleton. Thus,
the maximal elements are not unique, where ., denotes the set of

equilibrium-preserving logical output feedback gain matrices.
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@ Output Feedback Stabilization

@ Optimal Random Output Feedback



4.3 Optimal Random Output Feedback

@ The Problem of Designing Optimal Random Output Feedback:

» Quadratic cost function

t=0 t=0

where S is positive definite.

» For any given initial output g, we aim to find a IT € SF,, to minimize

I := max  J(xo, ),
J (4o, 1D zoEH 1 (yo) (o, IT)

where
H ™ (yo) == {wo € Zn | HZo = 1o}
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4.3 Optimal Random Output Feedback

@ Zero Gap Between (T, ) and SK,,

Proposition 5

If PLDS (6) is asymptotically x.-stabilizable by random output feedback, then,

(Tz.) € SKq, € (Ta,) = Ko,

where (T';._) is the closure of (T',_), that is,

(T,,) = {H €K |I{Tx} C (Ts.), st Jim T = H}.

b de el
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4.3 Optimal Random Output Feedback

Example 28 (Example 26 Revisited)
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4.3 Optimal Random Output Feedback

Example 28 (Example 26 Revisited)

Consider

1 1 05
H:
[0 0 05

Obviously, IT ¢ (T';_). We construct

{1 1-1/k 05
II, =

el.,), k=1,2---.
0 1/k 05

Then,
lim IT, = II.

k— oo
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4.3 Optimal Random Output Feedback

Remark 2

@ [t can be verified that J (yo,II) is continuous with respect to I within
SK4,. Thus, by Proposition 5,

f —  inf ) = \*
HEm J(yo, Im = Helg“ze)j(yo’ ) = A" (yo)-
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4.3 Optimal Random Output Feedback

@ Based on the error system-based stability analysis in Section 2.3
€t+1 = P(H)et, € € An — fe,

\U/ €t = M"L'ezl(t)
z1(t+1) =M} P(IT)M,, z(t)
[ —
D(II)

Mm = [a13a27"' )aIe—laawe-‘rla"' 7an]-

e

o =0 — T, i€[l:n].

J(x0, 1 Zet Se; = Zzl MTSMwezl()

t=0
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4.3 Optimal Random Output Feedback

Lemma 29

Suppose that IT € SK;,. The following claims hold:

@ There exists an (n — 1) X (n — 1) positive-definite matrix S0 such that
D (IHQD(M) — Q = —M,_SM,,,
and for any i € [1: n],
J(i, 1) = ] (M) TOMY a;.
@ [fan (n—1) x (n — 1) positive-definite matrix ) satisfies
D' (IQD(M) - Q < -M,_SM,,

then, for any i € [1 : n], it holds that

J(i, ) < o (M) "OM] a;.
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4.3 Optimal Random Output Feedback

@ Canonical form: A PLDS satisfying
uﬂce:{laza"'ar}a Zje:erZ(S;.

@ If a PLDS is not of the canonical form, we can always convert it to the

canonical form through the input and output transformations

iy = Uty, 17 = Oy.

switch w(t)

canonical form
a(t) switching signal p"(t) [ = |
LI |

generator
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Theorem 30
Suppose that the PLDS is asymptotically x . -stabilizable and denote r := |Uy. |. Then?
@ For agiven X > 0, if there exist symmetric matrices Q and Q, a vector 3, and a matrix = such that
Q>0 @)
Q _M;’GP (_Ir‘ﬁy):) Mwe >0 (8)
* Q- M, SM,,
T T 0 q =1l q
o] (MF)TeMTE o <A, j€idx(H (yo) \ {de} (9)
B0, =0, 1-1],6>0, 1] ;-1 ;5>0 (10)
QQ =1, (11)
where . - -
Tos e 1-1" .8 1] -1, 4%
' Iim—1)x (r—1)B =
Then, Tg 5 € (Ty,) is asymptotically x-stabilizing and J (yo,Tg,x) < A.
@ Forany A > \*(yo), the LMIs (7), (8), (9), and (10) with equality constraint (11) have a solution.
2Guo Yugian et al. “Asymptotical Stabilization of Logic Dynamical Systems via Output-Based Random
Control”. In: IEEE transactions on Automatic Control 69.5 (2024), pp. 3286 —3293.
y
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4.3 Optimal Random Output Feedback

Remark 3

@ The LMIs with equality constraint can be transformed into the cone

complementary problem which can be solved with the recursive algorithm
proposed in [14].
@ In addition, using the dichotomy for parameter \, we can find an output

feedback gain matrix II € (T',_) such that the cost J (yo,II) approximates

the optimal value \*(yo) with any given accuracy.

[14] L. E. Ghaoui and F. Oustry, A cone complementarity linearization algorithm for static output-feedback and related
problems, |IEEE Transactions on Automatic Control, vol. 42, no. 8, pp. 1171-1176, 1997.

Guo Yugian ( Central South University) August 12, 2024 105 / 111



4.3 Optimal Random Output Feedback

@ Reduced model for the lac operon in the bacterium Escherichia colil*®!

__________ Xi(t+1) = ~Ui(t) A (Xa(t) v X3(t))

' | Xo(t+1) = =Ui(t) ANU2(t) A X1(t)
i //. Xs(t+1) = ~Us(t) A (Ua(t) V (Us(t) A Xa(2)))
| 4:_. @ We consider the problem of stabilizing

---------- Xe = (1,0,1), which represents the ON

status of the fac perion 'Y, and minimizing

Normal and blunt arrows indicate positive

and negative interactions, respectively. j(yO 1—[) max Z Hep ||
N :

ToEH ™

[15] A. Veliz-Cuba and B. Stigler, Boolean models can explain bistability in the /ac operon. Journal of ComputatiaW’
Biology, vol. 18, no. 6, pp. 783-794, 2011. T
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4.3 Optimal Random Output Feedback

@ Comparison between TIDOF and random output feedback

measurable minimum cost minimum cost

states initial output under TIDOF under random output feedback

z1 5% 4.00 4.00

63 4.00 3.89

z1, o 51,63 2.00 2.00

5§ 4.00 4.00

63 4.00 3.89

z1, z3 51,63 2.00 2.00

5% 4.00 3.43

53 4.00 3.74

®o, T3 6% / 2.95

6% / 2.99

6?1 / 6.55

54 / 8.00

z1, T2, T3 53, 63, 55, 68,67 2.00 2.00

6§ 4.00 3.43

I 4.00 3.74
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4.3 Optimal Random Output Feedback

@ Time-domain Simulation:

» Measurable states are y; = 1 and yo = a3, H = 84[1,2,1,2,3,4,3,4].
» Initial output is yo = 63, H ' (yo) = {62, 04}

» The optimal deterministic and random output feedback gain matrices:

F* = 64]7,7,6,6],

Guo Yugian ( Central South University)

I =

o o

o = O 0O o o

0.0297
0.0297
0.0297
0.0297
0.2072
0.2072
0.4329
0.0339

0.0016
0.0016
0.0016
0.0016
0.4949
0.4949
0.0020
0.0020

August 12, 2024

0.0408
0.0408
0.0408
0.0408
0.3723
0.3723
0.0462
0.0462
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4.3 Optimal Random Output Feedback

N

- & - Optimal Deterministic Output Feedback
—%—  Optimal Random Output Feedback

-
)]

-

=
2]

o

Distribution error square |[e,(t)[|?

o
-
N
w
£
[$)]

Time step ¢

The curves of ||ep(t)]|? with the initial state zo = 03
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Conclusion

@ Basic theories of stability and feedback stabilization for PLDSs were

reviewed.

@ New stability result and the random output feedback for PLDSs were

discussed.
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Thank you!
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