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I. Axiomatic Definition for STP

+ Cross-Dimensional Objects

Vector Space:

R∞ :=
∞⋃

n=1

Rn.

Linear Operator:

M :=
∞⋃

m=1

∞⋃
n=1

Mm×n.
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+ Axiomatic STP

Definition 1.1
(1) Let A, B ∈ M. A matrix-matrix (MM-) STP is a map-

ping π :M×M→M, satisfying
(i) £Consistency¤When A ∈ Mm×n, B ∈ Mp×q, and

n = p, it coincides with standard matrix product, i.e.,

π(A,B) = AB. (1)

(ii) (Associativity)

π(A, π(B,C)) = π(π(A,B),C), A,B,C ∈M. (2)

(iii) (Distributivity) Let A, B ∈Mm×n. Then

π(A + B,C) = π(A,C) + π(B,C). (3)
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Definition 1.1(cont’d)
(2) Let A ∈ Mm×n and Let x ∈ Rr. A matrix-vector (MV-)

STP is a mapping π :M× R∞ → R∞, satisfying
(i) (Consistency) when n = r, it coincides with standard

matrix-vector product. That is,

π(A, x) = Ax. (4)

(ii) (Associativity) Assume the product of A and B exists,
then

π(A, π(B, x)) = π(AB, x). (5)

(iii) (Distributivity) Let A, B ∈Mm×n, x, y ∈ Rp. Then

π(A + B, x) = π(A, x) + π(B, x);
π(A, x + y) = π(A, x) + π(A, y).

(6)
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Definition 1.1(cont’d)
(3) Let x ∈ Rs, y ∈ Rt. A vector-vector (VV-) STP is a

mapping π : R∞ × R∞ → R, satisfying
(i) when s = t, it coincides with standard inner product.

That is

π(x, y) = 〈x, y〉 . (7)

(ii) (Commutativity)

π(x, y) = π(y, x). (8)
(9)

(iii) (Distributivity) Let x, y ∈ Rn. Then

π(x + y, z) = π(x, z) + π(y, z);
π(z, x + y) = π(z, x) + π(z, y).

(10)
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II. Commonly Used STP
+ MM-STP

Definition 2.1
(MM-STP) Let A ∈Mm×n, B ∈Mp×q, t = lcm(n, p).

A n B :=
(
A⊗ It/n

) (
B⊗ It/p

)
. (11)

Proposition 2.2
(i) Consistency; Associativity; Distributivity.

(ii)

(A n B)T = BT n AT . (12)

(iii) Assume A and B are invertible, then

(A n B)−1 = B−1 n A−1. (13)
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+ MV-STP

Definition 2.3
(MV-STP) Let A ∈Mm×n, x ∈ Rp, t = lcm(n, p).
~n :M× R∞ → R∞ is defined by

A ~n x :=
(
A⊗ It/n

) (
x⊗ 1t/p

)
. (14)

+ VV-STP

Definition 2.4
(VV-STP) Let x ∈ Rm, y ∈ Rn, t = lcm(m, n).
~· : R∞ × R∞ → R is defined by

x~· y :=
〈
x⊗ 1t/m, y⊗ 1t/n

〉
. (15)
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III. Dimension-Keeping STP
+ DK-STP

Definition 3.1
Let A ∈Mm×n and B ∈Mp×q, t = lcm(n, p). The DK-STP of
A and B, denoted by A

n

B ∈Mm×q, is defined as follows.

A

n

B :=
(
A⊗ 1T

t/n

) (
B⊗ 1t/p

)
. (16)

Remark 3.2
(i) When n = p,

A
n
B = AB.

(ii) If A,B ∈Mm×n, then A

n
B ∈Mm×n.
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Remark 3.2(cont’d)
(iii) It is MM-, MV-, and VV- STP.
(iv) (Mm×n,+,

n

) is a ring.

Proposition 3.3
Let A ∈Mm×n and B ∈Mp×q, t = lcm(n, p).

A

n

B = A
(

In ⊗ 1T
t/n

) (
Ip ⊗ 1t/p

)
B

:= AΨn×pB,
(17)

where
Ψn×p =

(
In ⊗ 1T

t/n

) (
Ip ⊗ 1t/p

)
∈Mn×p

is called the bridge matrix of dimension n× p.
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Definition 3.4
Assume A ∈ Mm×n. Consider A : R∞ → R∞ by x 7→ A

n
x.

Then Rm ⊂ R∞ is an invariant subspace.
Denote by ΠA the restriction of A|Rm = ΠA. That is

A

n

x = ΠAx, ∀x ∈ Rm. (18)

Proposition 3.5

ΠA = A
n

Im = AΨn×m. (19)

11 / 15



+ Generalized Cayley-Hamilton Theorem

Definition 3.6
(i)

A<k> := A

n · · · n A︸ ︷︷ ︸
k

. (20)

(ii) Let A ∈ Mm×n and A|Rm = ΠA. The characteristic poly-
nomial of ΠA is called the characteristic polynomial of
A.

Theorem 3.7
Let A ∈ Mm×n and A|Rm = ΠA. Denote by p(x) = xm +
pm−1xm−1 + · · · + p0 the characteristic polynomial of Π(A).
Then

A<m+1> + pr−1A<m> + · · ·+ p0A = 0. (21)
12 / 15



Definition 3.8
ConsiderMm×n, a Lie bracket overMm×n, defined by usingn

, is

[A,B] n := A

n

B− B

n

A, A,B ∈Mm×n. (22)

Proposition 3.9
(i) Mm×n with Lie bracket defined by (22) is a Lie algebra,

denoted by gl(m× n,F).
(ii) There exists the corresponding Lie group, denoted by

GL(m× n,F), which has gl(m× n,F) as its Lie algebra.
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IV. Conclusion

+ Brief Conclusion:

(i) STP is a powerful tool in dealing with higher dimen-
sional data.

(ii) According to the axiomatic definition, we are able to
define various different STPs, which might be used to
different fields.

(iii) DK-STP is theoretically interesting and has potential
applications. It is worth to be investigated.

A new problem area is like a newly discovered mine.
For the same effort you can pick up more nuggets.

– Y.C. Ho
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Thank you!
Any Question?
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