The control problem of probabilistic Boolean control networks

Carmen Del Vecchio

in collaboration with Amol Yerudkar¹, Antonio Acernese², and Luigi Glielmo³

CDC Workshop 2023 - Semi-Tensor Product of Matrices and Its Applications

December 12, 2023

¹Zhejiang Normal University, Jinhua, PR China; ²Stellantis N.V.; ³University of Federico II, Naples, Italy

1 Probabilistic Boolean control network (PBCN)

- Probabilistic Boolean network
- Logic and algebraic forms of PBCN

2 Feedback stabilisation problem of PBCN

- Model-based methods
- Model-free methods

3 Example

- Finite-time feedback stabilization
- Self-triggered control co-design

4 Conclusions and perspectives

Contents

1 Probabilistic Boolean control network (PBCN)

- Probabilistic Boolean network
- Logic and algebraic forms of PBCN

2 Feedback stabilisation problem of PBCN

- Model-based methods
- Model-free methods

3 Example

- Finite-time feedback stabilization
- Self-triggered control co-design

4 Conclusions and perspectives

Probabilistic Boolean network

Probabilistic Boolean network²

The evolution of a probabilistic Boolean network (PBN) is determined by a set of *n* logic first order difference equations:

$$\begin{cases} \mathcal{X}_1(t+1) = f_1(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)) \\ \mathcal{X}_2(t+1) = f_2(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)) \\ \vdots \\ \mathcal{X}_n(t+1) = f_n(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)) \end{cases}$$

²D. Cheng, H. Qi, and Z. Li (2010). *Analysis and Control of Boolean Networks: A Semi-tensor Product Approach*. Communications and Control Engineering. Springer London.

Probabilistic Boolean network²

The evolution of a probabilistic Boolean network (PBN) is determined by a set of *n* logic first order difference equations:

$$\begin{cases} \mathcal{X}_1(t+1) = f_1\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \\ \mathcal{X}_2(t+1) = f_2\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \\ \vdots \\ \mathcal{X}_n(t+1) = f_n\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \end{cases}$$

$$\begin{split} \mathcal{X}(t) \in \mathcal{B}^n \\ f_i \in \{f_i^1, f_i^2, \dots, f_i^{l_i}\}, \text{ with } f_i^{\gamma_i}(\cdot) : \mathcal{B}^n \to \mathcal{B}, \text{ and with } Pr\{f_i = f_i^{\gamma_i}\} = p_i^{\gamma_i}, \\ \gamma_i \in \{1, 2, \dots, l_i\}, i \in \{1, 2, \dots, n\}, \text{ and } \sum_{\gamma_i = 1}^{l_i} p_i^{\gamma_i} = 1 \end{split}$$

²D. Cheng, H. Qi, and Z. Li (2010). *Analysis and Control of Boolean Networks: A Semi-tensor Product Approach*. Communications and Control Engineering. Springer London.

Probabilistic Boolean network²

The evolution of a probabilistic Boolean network (PBN) is determined by a set of n logic first order difference equations:

$$\begin{cases} \mathcal{X}_1(t+1) = f_1\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \\ \mathcal{X}_2(t+1) = f_2\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \\ \vdots \\ \mathcal{X}_n(t+1) = f_n\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \end{cases}$$

 $\begin{aligned} \mathcal{X}(t) \in \mathcal{B}^n \\ f_i \in \{f_i^1, f_i^2, \dots, f_i^{l_i}\}, \text{ with } f_i^{\gamma_i}(\cdot) : \mathcal{B}^n \to \mathcal{B}, \text{ and with } Pr\{f_i = f_i^{\gamma_i}\} = p_i^{\gamma_i}, \\ \gamma_i \in \{1, 2, \dots, l_i\}, i \in \{1, 2, \dots, n\}, \text{ and } \sum_{\gamma_i = 1}^{l_i} p_i^{\gamma_i} = 1 \end{aligned}$ $\textbf{There are } N = \prod_{i=1}^n l_i \text{ possible realizations of the network.}$

²D. Cheng, H. Qi, and Z. Li (2010). *Analysis and Control of Boolean Networks: A Semi-tensor Product Approach*. Communications and Control Engineering. Springer London.

Probabilistic Boolean network²

The evolution of a probabilistic Boolean network (PBN) is determined by a set of n logic first order difference equations:

$$\begin{cases} \mathcal{X}_1(t+1) = f_1\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \\ \mathcal{X}_2(t+1) = f_2\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \\ \vdots \\ \mathcal{X}_n(t+1) = f_n\left(\mathcal{X}_1(t), \mathcal{X}_2(t), \dots, \mathcal{X}_n(t)\right) \end{cases}$$

- $\begin{aligned} \mathcal{X}(t) \in \mathcal{B}^n \\ f_i \in \{f_i^1, f_i^2, \dots, f_i^{l_i}\}, \text{ with } f_i^{\gamma_i}(\cdot) : \mathcal{B}^n \to \mathcal{B}, \text{ and with } Pr\{f_i = f_i^{\gamma_i}\} = p_i^{\gamma_i}, \\ \gamma_i \in \{1, 2, \dots, l_i\}, i \in \{1, 2, \dots, n\}, \text{ and } \sum_{\gamma_i = 1}^{l_i} p_i^{\gamma_i} = 1 \end{aligned}$
- There are $N = \prod_{i=1}^{n} l_i$ possible realizations of the network. The probability for each model \sum_{γ} to be active is

$$P_{\gamma} = Pr\{\text{network } \Sigma_{\gamma} \text{ is selected}\} = Pr\{\underbrace{f_1 = f_1^{\gamma_1}, \dots, f_n = f_n^{\gamma_n}}_{\text{independent}}\} = \prod_{i=1}^n p_i^{\gamma_i}$$

²D. Cheng, H. Qi, and Z. Li (2010). *Analysis and Control of Boolean Networks: A Semi-tensor Product Approach*. Communications and Control Engineering. Springer London.

PBNs as switched systems

PBNs as switched systems

At each t a model Σ_γ is selected, and the next state of the PBN is determined according to the corresponding BN

PBNs as switched systems

- At each t a model Σ_{γ} is selected, and the next state of the PBN is determined according to the corresponding BN
- PBN → switching systems, with $\sigma(t)$ taking values in $\{1, 2, ..., \gamma, ..., N\}$, and $Pr{\sigma(t) = \gamma} = P_{\gamma}$

Probabilistic Boolean control network

A probabilistic Boolean control network (PBCN) is a combination of PBN and Boolean control network (BCN)

Logical form of PBCN

The evolution of a PBCN in logical form is

$$\begin{cases} \mathcal{X}_{1}(t+1) = f_{1} \big(\mathcal{X}_{1}(t), \mathcal{X}_{2}(t), \dots, \mathcal{X}_{n}(t); \mu_{1}(t), \mu_{2}(t), \dots, \mu_{m}(t) \big) \\ \mathcal{X}_{2}(t+1) = f_{2} \big(\mathcal{X}_{1}(t), \mathcal{X}_{2}(t), \dots, \mathcal{X}_{n}(t); \mu_{1}(t), \mu_{2}(t), \dots, \mu_{m}(t) \big) \\ \vdots \\ \mathcal{X}_{n}(t+1) = f_{n} \big(\mathcal{X}_{1}(t), \mathcal{X}_{2}(t), \dots, \mathcal{X}_{n}(t); \mu_{1}(t), \mu_{2}(t), \dots, \mu_{m}(t) \big) \end{cases}$$

Logical form of PBCN

The evolution of a PBCN in logical form is

$$\begin{cases} \mathcal{X}_{1}(t+1) = f_{1}(\mathcal{X}_{1}(t), \mathcal{X}_{2}(t), \dots, \mathcal{X}_{n}(t); \mu_{1}(t), \mu_{2}(t), \dots, \mu_{m}(t)) \\ \mathcal{X}_{2}(t+1) = f_{2}(\mathcal{X}_{1}(t), \mathcal{X}_{2}(t), \dots, \mathcal{X}_{n}(t); \mu_{1}(t), \mu_{2}(t), \dots, \mu_{m}(t)) \\ \vdots \\ \mathcal{X}_{n}(t+1) = f_{n}(\mathcal{X}_{1}(t), \mathcal{X}_{2}(t), \dots, \mathcal{X}_{n}(t); \mu_{1}(t), \mu_{2}(t), \dots, \mu_{m}(t)) \end{cases}$$

where

- $\blacksquare \ \mathcal{X}(t) \in \mathcal{B}^n, \mu(t) \in \mathcal{B}^m$
- at each time-step $t, f_i \in \{f_i^1, f_i^2, \dots, f_i^{l_i}\}$, with $f_i^{\gamma_i}(\cdot) : \mathcal{B}^n \times \mathcal{B}^m \to \mathcal{B}$, and with $Pr\{f_i = f_i^{\gamma_i}\} = p_i^{\gamma_i}, \gamma_i \in \{1, 2, \dots, l_i\}, i \in \{1, 2, \dots, n\}$, and $\sum_{\gamma_i=1}^{l_i} p_i^{\gamma_i} = 1$ ■ Σ_{γ} models, with $\gamma = 1, 2, \dots, N$, and $N = \prod_{i=1}^{n} l_i$:

$$P_{\gamma} = Pr\{\text{network } \sum_{\gamma} \text{ is selected}\} = \prod_{i=1}^{n} p_{i}^{\gamma_{i}}$$

Algebraic form of PBCN

PBCN can be converted into its algebraic form using semi-tensor product (STP):

$$\begin{cases} x_{1}(t+1) = f_{1}(x_{1}(t), x_{2}(t), \dots, x_{n}(t); u_{1}(t), u_{2}(t), \dots, u_{m}(t)) = \\ = M_{f_{1}} \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t) \\ x_{2}(t+1) = f_{2}(x_{1}(t), x_{2}(t), \dots, x_{n}(t); u_{1}(t), u_{2}(t), \dots, u_{m}(t)) = \\ = M_{f_{2}} \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t) \\ \vdots \\ x_{n}(t+1) = f_{n}(x_{1}(t), x_{2}(t), \dots, x_{n}(t); u_{1}(t), u_{2}(t), \dots, u_{m}(t)) = \\ = M_{f_{n}} \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t) \end{cases}$$

 $\mathbf{x}(t) = \ltimes_{i=1}^{n} x_{i}(t) \in \mathcal{L}^{2^{n}}, \mathbf{u}(t) = \ltimes_{j=1}^{m} u_{j}(t) \in \mathcal{L}^{2^{m}}, M_{f_{i}} \in \mathcal{L}^{2^{n} \times 2^{n+m}}, \text{ and } M_{f_{i}} \in \{M_{f_{i}}^{1}, M_{f_{i}}^{2}, \dots, M_{f_{i}}^{l_{i}}\}$

Algebraic form of PBCN

PBCN can be converted into its algebraic form using semi-tensor product (STP):

$$\begin{cases} x_{1}(t+1) = f_{1}(x_{1}(t), x_{2}(t), \dots, x_{n}(t); u_{1}(t), u_{2}(t), \dots, u_{m}(t)) = \\ = M_{f_{1}} \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t) \\ x_{2}(t+1) = f_{2}(x_{1}(t), x_{2}(t), \dots, x_{n}(t); u_{1}(t), u_{2}(t), \dots, u_{m}(t)) = \\ = M_{f_{2}} \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t) \\ \vdots \\ x_{n}(t+1) = f_{n}(x_{1}(t), x_{2}(t), \dots, x_{n}(t); u_{1}(t), u_{2}(t), \dots, u_{m}(t)) = \\ = M_{f_{n}} \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t) \end{cases}$$

 $\mathbf{x}(t) = \ltimes_{i=1}^{n} x_{i}(t) \in \mathcal{L}^{2^{n}}, \mathbf{u}(t) = \ltimes_{j=1}^{m} u_{j}(t) \in \mathcal{L}^{2^{m}}, M_{f_{i}} \in \mathcal{L}^{2^{n} \times 2^{n+m}}, \text{ and } M_{f_{i}} \in \{M_{f_{i}}^{1}, M_{f_{i}}^{2}, \dots, M_{f_{i}}^{l_{i}}\}$ PBCN can be rewritten as:

$$\mathbf{x}(t+1) = L_{\gamma(t)} \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t),$$

where $L_{\gamma(t)} \in \mathcal{L}^{2^n imes 2^{n+m}}$ is one of the N structure matrices

PBCN as switched system

As a switching system, a PBCN can be written as

 $\mathbf{x}(t+1) = L \ltimes \gamma(t) \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t),$

where $L = [L_1 \quad L_2 \quad \dots \quad L_N]$, $\gamma(t) \in \mathcal{L}^N$ selects with $Pr\{\gamma(t) = \delta_N^{\gamma}\} = P_{\gamma}$ the active structure matrix $L_{\gamma} \in \mathcal{L}^{2^n \times 2^{n+m}}$ taking values in $\{1, 2, \dots, N\}$, and $\mathbf{u}(t) \in \mathcal{L}^{2^m}$ is the input selecting the sub-model of L_{γ}

PBCN as switched system

As a switching system, a PBCN can be written as

 $\mathbf{x}(t+1) = L \ltimes \gamma(t) \ltimes \mathbf{u}(t) \ltimes \mathbf{x}(t),$

where $L = [L_1 \quad L_2 \quad \dots \quad L_N]$, $\gamma(t) \in \mathcal{L}^N$ selects with $Pr\{\gamma(t) = \delta_N^{\gamma}\} = P_{\gamma}$ the active structure matrix $L_{\gamma} \in \mathcal{L}^{2^n \times 2^{n+m}}$ taking values in $\{1, 2, \dots, N\}$, and $\mathbf{u}(t) \in \mathcal{L}^{2^m}$ is the input selecting the sub-model of L_{γ}

Denote with $\mathbf{u}_{[0,T-1]} := {\mathbf{u}(0), \dots, \mathbf{u}(T-1)}, T \in \mathbb{Z}_+$ a control sequence, and with $\mathbf{x}(t; \mathbf{x}(0), \mathbf{u}_{[0,T-1]})$ the state of a PBCN at time $t \in \mathbb{Z}_+$

PBCNs were first introduced by Shmulevich in 2002³

³I. Shmulevich et al. (Feb. 2002). "Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks". In: *Bioinformatics* 18.2, pp. 261–274.

- PBCNs were first introduced by Shmulevich in 2002³
- The motivation for adopting PBCNs stems from several modeling advantages and applications:
 - Modeling complexity and uncertainty

³I. Shmulevich et al. (Feb. 2002). "Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks". In: *Bioinformatics* 18.2, pp. 261–274.

- PBCNs were first introduced by Shmulevich in 2002³
- The motivation for adopting PBCNs stems from several modeling advantages and applications:
 - Modeling complexity and uncertainty
 - Developing therapeutic interventions

³I. Shmulevich et al. (Feb. 2002). "Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks". In: *Bioinformatics* 18.2, pp. 261–274.

- PBCNs were first introduced by Shmulevich in 2002³
- The motivation for adopting PBCNs stems from several modeling advantages and applications:
 - Modeling complexity and uncertainty
 - Developing therapeutic interventions
 - Predictive modeling

³I. Shmulevich et al. (Feb. 2002). "Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks". In: *Bioinformatics* 18.2, pp. 261–274.

- PBCNs were first introduced by Shmulevich in 2002³
- The motivation for adopting PBCNs stems from several modeling advantages and applications:
 - Modeling complexity and uncertainty
 - Developing therapeutic interventions
 - Predictive modeling
- The study of stabilization problems for PBCN is crucial for ensuring reliable and predictable behavior in complex biological and engineered systems

³I. Shmulevich et al. (Feb. 2002). "Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks". In: *Bioinformatics* 18.2, pp. 261–274.

Contents

1 Probabilistic Boolean control network (PBCN)

- Probabilistic Boolean network
- Logic and algebraic forms of PBCN

2 Feedback stabilisation problem of PBCN

- Model-based methods
- Model-free methods

3 Example

- Finite-time feedback stabilization
- Self-triggered control co-design

4 Conclusions and perspectives

Control fixed point

A state $\mathbf{x}_e \in \mathcal{L}^{2^n}$ is called a control fixed point if

$$\exists \mathbf{u}(t) \in \mathcal{L}^{2^{m}} : Pr\{\mathbf{x}(t+1; \mathbf{x}_{e}, \mathbf{u}(t)) = \mathbf{x}_{e}\} = 1$$

⁴X. Yang and H. Li (2022). "On state feedback asymptotical stabilization of probabilistic Boolean control networks". In: *Systems & Control Letters* 160, p. 105107.

Control fixed point

A state $\mathbf{x}_e \in \mathcal{L}^{2^n}$ is called a control fixed point if

$$\exists \mathbf{u}(t) \in \mathcal{L}^{2^{m}} : Pr\{\mathbf{x}(t+1;\mathbf{x}_{e},\mathbf{u}(t)) = \mathbf{x}_{e}\} = 1$$

Stabilisation in distribution Given $\mathbf{x}_e \in \mathcal{L}^{2^n}$, a PBCN is said to be stabilisable at \mathbf{x}_e in distribution if

$$\exists \mathbf{u}_{[0,t-1]} : \lim_{t \to \infty} Pr\{\mathbf{x}(t; \mathbf{x}(0), \mathbf{u}_{[0,t]}) = \mathbf{x}_e\} = 1, \ \forall \mathbf{x}(0) \in \mathcal{L}^{2^n}$$

⁴X. Yang and H. Li (2022). "On state feedback asymptotical stabilization of probabilistic Boolean control networks". In: *Systems & Control Letters* 160, p. 105107.

Control fixed point

A state $\mathbf{x}_e \in \mathcal{L}^{2^n}$ is called a control fixed point if

$$\exists \mathbf{u}(t) \in \mathcal{L}^{2^{m}} : Pr\{\mathbf{x}(t+1;\mathbf{x}_{e},\mathbf{u}(t)) = \mathbf{x}_{e}\} = 1$$

Stabilisation in distribution Given $\mathbf{x}_e \in \mathcal{L}^{2^n}$, a PBCN is said to be stabilisable at \mathbf{x}_e in distribution if

$$\exists \mathbf{u}_{[0,t-1]} : \lim_{t \to \infty} Pr\{\mathbf{x}(t; \mathbf{x}(0), \mathbf{u}_{[0,t]}) = \mathbf{x}_e\} = 1, \ \forall \mathbf{x}(0) \in \mathcal{L}^{2^n}$$

Stabilisation w.p.o.

Given $\mathbf{x}_e \in \mathcal{L}^{2^n}$, a PBCN is said to be finite-time stabilisable at \mathbf{x}_e w.p.o. if $\exists \mathbf{u}_{[0,T-1]} : Pr\{\mathbf{x}(t;\mathbf{x}(0),\mathbf{u}_{[0,T-1]}) = \mathbf{x}_e\} = 1, \ \forall t \geq T, \ \forall \mathbf{x}(0) \in \mathcal{L}^{2^n}$

⁴X. Yang and H. Li (2022). "On state feedback asymptotical stabilization of probabilistic Boolean control networks". In: *Systems & Control Letters* 160, p. 105107.

Control fixed point

A state $\mathbf{x}_e \in \mathcal{L}^{2^n}$ is called a control fixed point if

$$\exists \mathbf{u}(t) \in \mathcal{L}^{2^{m}} : Pr\{\mathbf{x}(t+1;\mathbf{x}_{e},\mathbf{u}(t)) = \mathbf{x}_{e}\} = 1$$

Stabilisation in distribution Given $\mathbf{x}_e \in \mathcal{L}^{2^n}$, a PBCN is said to be stabilisable at \mathbf{x}_e in distribution if

$$\exists \mathbf{u}_{[0,t-1]} : \lim_{t \to \infty} \Pr\{\mathbf{x}(t; \mathbf{x}(0), \mathbf{u}_{[0,t]}) = \mathbf{x}_e\} = 1, \ \forall \mathbf{x}(0) \in \mathcal{L}^{2^n}$$

Stabilisation w.p.o.

Given $\mathbf{x}_e \in \mathcal{L}^{2^n}$, a PBCN is said to be finite-time stabilisable at \mathbf{x}_e w.p.o. if $\exists \mathbf{u}_{[0,T-1]} : Pr\{\mathbf{x}(t;\mathbf{x}(0),\mathbf{u}_{[0,T-1]}) = \mathbf{x}_e\} = 1, \ \forall t \geq T, \ \forall \mathbf{x}(0) \in \mathcal{L}^{2^n}$

Feedback stabilisation problem

Find a state feedback control law $\mathbf{u}(t) = \mathcal{K}(\mathbf{x}(t)), \forall \mathbf{x}(t) \in \mathcal{L}^{2^n}$ such that the PBCN is stabilised at \mathbf{x}_e

⁴X. Yang and H. Li (2022). "On state feedback asymptotical stabilization of probabilistic Boolean control networks". In: *Systems & Control Letters* 160, p. 105107.

State feedback control of PBCN⁵

The problem of stabilisation can be solved using a time-invariant feedback law as:

$$\mathbf{u}(t) = K \ltimes \mathbf{x}(t),$$

where $K \in \mathcal{L}^{2^m \times 2^n}$ is the structure feedback matrix of the control law

⁵R. Li, M. Yang, and T. Chu (2014). "State feedback stabilization for probabilistic Boolean networks". In: *Automatica* 50.4, pp. 1272–1278.

State feedback control of PBCN⁵

The problem of stabilisation can be solved using a time-invariant feedback law as:

$$\mathbf{u}(t) = K \ltimes \mathbf{x}(t),$$

where $K \in \mathcal{L}^{2^m \times 2^n}$ is the structure feedback matrix of the control law The overall closed-loop system

$$\mathbf{x}(t+1) = L_{in} \ltimes K \ltimes \mathbf{x}(t) \ltimes \mathbf{x}(t)$$

is stable w.p.o., where $L_{in} \in \mathcal{L}^{2^m \times 2^{n+m}}$ is defined as:

$$L_{in} = \sum_{\gamma=1}^{N} L_{\gamma}$$

⁵R. Li, M. Yang, and T. Chu (2014). "State feedback stabilization for probabilistic Boolean networks". In: *Automatica* 50.4, pp. 1272–1278.

State feedback control of PBCN

Recursive sets

4

Assume $\mathbf{x}_e \in \mathcal{L}^{2^n}$ is the fixed point to which the network needs to be stabilised. Define $\{\Omega_k(\mathbf{x}_e)\}$ as

$$\begin{cases} \Omega_1(\mathbf{x}_e) = \{ a \in \mathcal{L}^{2^n} : \text{ there is a } \mathbf{u} \in \mathcal{L}^{2^m} \text{ such that} \\ Pr\{\mathbf{x}(t+1) = \mathbf{x}_e | \mathbf{x}(t) = a, \mathbf{u}(t) = \mathbf{u} \} = 1 \} \\ \Omega_{k+1}(\mathbf{x}_e) = \{ a \in \mathcal{L}^{2^n} : \text{ there is a } \mathbf{u} \in \mathcal{L}^{2^m} \text{ such that the conditions} \\ Pr\{\mathbf{x}(t+1) = b | \mathbf{x}(t) = a, \mathbf{u}(t) = \mathbf{u} \} > 0, b \in \mathcal{L}^{2^n} \\ \text{ imply that } b \in \{\Omega_k(\mathbf{x}_e)\}, k = 1, 2, \dots \} \end{cases}$$

State feedback control of PBCN

Recursive sets

Assume $\mathbf{x}_e \in \mathcal{L}^{2^n}$ is the fixed point to which the network needs to be stabilised. Define $\{\Omega_k(\mathbf{x}_e)\}$ as

$$\begin{cases} \Omega_1(\mathbf{x}_e) = \{a \in \mathcal{L}^{2^n} : \text{ there is a } \mathbf{u} \in \mathcal{L}^{2^m} \text{ such that} \\ Pr\{\mathbf{x}(t+1) = \mathbf{x}_e | \mathbf{x}(t) = a, \mathbf{u}(t) = \mathbf{u}\} = 1\} \\ \Omega_{k+1}(\mathbf{x}_e) = \{a \in \mathcal{L}^{2^n} : \text{ there is a } \mathbf{u} \in \mathcal{L}^{2^m} \text{ such that the conditions} \\ Pr\{\mathbf{x}(t+1) = b | \mathbf{x}(t) = a, \mathbf{u}(t) = \mathbf{u}\} > 0, b \in \mathcal{L}^{2^n} \\ \text{ imply that } b \in \{\Omega_k(\mathbf{x}_e)\}, k = 1, 2, \dots\} \end{cases}$$

• **Remark.** The structure of $\Omega_k(\mathbf{x}_e)$ does not depend on the probabilities P_1, P_2, \ldots, P_N that a certain BCN is selected. \rightarrow Does not influence whether a PBCN can be stabilised by state feedback

State feedback control of PBCN

- **[Theorem]** Consider a PBCN, and let $\mathbf{x}_e = \ltimes_{i=1}^n x_{e_i}(t)$. If there is a state feedback control $\mathbf{u}(\cdot)$ such that the PBCN is sabilisable at \mathbf{x}_e w.p.o., then it holds that
 - $\mathbf{x}_e \in \Omega_1(\mathbf{x}_e)$
 - There exists an integer $G \leq 2^n 1$ such that $\Omega_G(\mathbf{x}_e) = \mathcal{L}^{2^n}$

⁶R. Li, M. Yang, and T. Chu (2014). "State feedback stabilization for probabilistic Boolean networks". In: *Automatica* 50.4, pp. 1272–1278.

Feedback stabilisation problem of PBCN Model-based methods

State feedback control of PBCN

- **[Theorem]** Consider a PBCN, and let $\mathbf{x}_e = \ltimes_{i=1}^n x_{e_i}(t)$. If there is a state feedback control $\mathbf{u}(\cdot)$ such that the PBCN is sabilisable at \mathbf{x}_e w.p.o., then it holds that
 - $\mathbf{x}_e \in \Omega_1(\mathbf{x}_e)$
 - There exists an integer $G \leq 2^n 1$ such that $\Omega_G(\mathbf{x}_e) = \mathcal{L}^{2^n}$
- Li et al.⁶ defined a constructive method to obtain v_i , $i = 1, ..., 2^n$ such that, when the structure matrix K of the feedback law has the following shape

$$K=[v_1 \quad v_2 \quad \cdots \quad v_{2^n}],$$

the PBCN is stabilisable at \mathbf{x}_e w.p.o.

⁶R. Li, M. Yang, and T. Chu (2014). "State feedback stabilization for probabilistic Boolean networks". In: *Automatica* 50.4, pp. 1272–1278.

Feedback stabilisation problem of PBCN | Model-based methods

State feedback control of PBCN

- **[Theorem]** Consider a PBCN, and let $\mathbf{x}_e = \ltimes_{i=1}^n x_{e_i}(t)$. If there is a state feedback control $\mathbf{u}(\cdot)$ such that the PBCN is sabilisable at \mathbf{x}_e w.p.o., then it holds that
 - $\mathbf{x}_e \in \Omega_1(\mathbf{x}_e)$
 - There exists an integer $G \leq 2^n 1$ such that $\Omega_G(\mathbf{x}_e) = \mathcal{L}^{2^n}$
- Li et al.⁶ defined a constructive method to obtain v_i , $i = 1, ..., 2^n$ such that, when the structure matrix K of the feedback law has the following shape

$$K=[v_1 \quad v_2 \quad \cdots \quad v_{2^n}],$$

the PBCN is stabilisable at \mathbf{x}_e w.p.o.

Remark. If a PBCN can be stabilised at x_e w.p.o., then every x can be steered to x_e w.p.o. using random control.

⁶R. Li, M. Yang, and T. Chu (2014). "State feedback stabilization for probabilistic Boolean networks". In: *Automatica* 50.4, pp. 1272–1278.

Feedback stabilisation problem of PBCN | Model-based methods

State feedback control of PBCN

- **[Theorem]** Consider a PBCN, and let $\mathbf{x}_e = \ltimes_{i=1}^n x_{e_i}(t)$. If there is a state feedback control $\mathbf{u}(\cdot)$ such that the PBCN is sabilisable at \mathbf{x}_e w.p.o., then it holds that
 - $\mathbf{x}_e \in \Omega_1(\mathbf{x}_e)$
 - There exists an integer $G \leq 2^n 1$ such that $\Omega_G(\mathbf{x}_e) = \mathcal{L}^{2^n}$
- Li et al.⁶ defined a constructive method to obtain v_i , $i = 1, ..., 2^n$ such that, when the structure matrix K of the feedback law has the following shape

$$K=[v_1 \quad v_2 \quad \cdots \quad v_{2^n}],$$

the PBCN is stabilisable at \mathbf{x}_e w.p.o.

Remark. If a PBCN can be stabilised at x_e w.p.o., then every x can be steered to x_e w.p.o. using random control. However, the above constructive method and the theorem ensure the shortest path to stabilise the network

⁶R. Li, M. Yang, and T. Chu (2014). "State feedback stabilization for probabilistic Boolean networks". In: *Automatica* 50.4, pp. 1272–1278.

Model-based methods for PBCN stabilisation

- Some modifications to PBCN stabilisation problem:
 - Y. Liu et al.⁷ built a state feedback controller to reach a target state while avoiding undesirable states
 - X. Yang et al.⁸ proposed a computationally efficient solution for the asymptotic stabilisation of PBCN
 - A. Yerudkar et al.⁹ developed the solution of the output tracking model and showed that for a constant reference signal the problem can be cast to a state feedback stabilisation problem

⁷Y. Liu et al. (Feb. 2015). "Controllability of Probabilistic Boolean Control Networks Based on Transition Probability Matrices". In: *Automatica* 52.C, pp. 340–345.

⁸X. Yang and H. Li (2022). "On state feedback asymptotical stabilization of probabilistic Boolean control networks". In: *Systems & Control Letters* 160, p. 105107.

⁹A. Yerudkar, C. Del Vecchio, and L. Glielmo (2019). "Output Tracking Control of Probabilistic Boolean Control Networks". In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).

Model-based methods for PBCN stabilisation

- Some modifications to PBCN stabilisation problem:
 - Y. Liu et al.⁷ built a state feedback controller to reach a target state while avoiding undesirable states
 - X. Yang et al.⁸ proposed a computationally efficient solution for the asymptotic stabilisation of PBCN
 - A. Yerudkar et al.⁹ developed the solution of the output tracking model and showed that for a constant reference signal the problem can be cast to a state feedback stabilisation problem
- X Require a full knowledge of the underlying dynamics of the system
- The humongous nature of biological systems proves to be a bottleneck of the modeling part and hinders the applicability of model-based methods
- X Model-based methods are limited by the computational complexity

⁷Y. Liu et al. (Feb. 2015). "Controllability of Probabilistic Boolean Control Networks Based on Transition Probability Matrices". In: *Automatica* 52.C, pp. 340–345.

⁸X. Yang and H. Li (2022). "On state feedback asymptotical stabilization of probabilistic Boolean control networks". In: *Systems & Control Letters* 160, p. 105107.

⁹A. Yerudkar, C. Del Vecchio, and L. Glielmo (2019). "Output Tracking Control of Probabilistic Boolean Control Networks". In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).

Feedback stabilisation problem of PBCN | Model-free methods

Model-free state feedback control: a reinforcement learning (RL) approach

Model-free state feedback control: a reinforcement learning (RL) approach

• \mathcal{B}^n is the set of states				
• \mathcal{B}^m is the set of actions				
• \mathbf{P} : $\mathcal{B}^n \times \mathcal{B}^m \times \mathcal{B}^n \rightarrow [0,1]$ is the				
state transition probability distribu-				
tion, with $\mathbf{P}_{\mathcal{X}_t, \mathcal{X}_{t+1}}^{\mathcal{U}_t} = P\{\mathcal{X}_{t+1} \mathcal{X}_t, \mathcal{U}_t\}$				
G : $\mathcal{B}^n \times \mathcal{B}^m \times \mathcal{B}^n \to \mathbb{R}$ is the				
cost function, with $\mathbf{G}_{\mathcal{X}_{t}}^{\mathcal{U}_{t}}$ =				
$\mathbb{E}[g_{t+1} \mathcal{X}_t,\mathcal{U}_t]$				

Model-free state feedback control: a reinforcement learning (RL) approach

Generated trajectory

 $\mathcal{X}_0, \mathcal{U}_0, \mathcal{X}_1, g_1, \mathcal{U}_1, \mathcal{X}_2, g_2, \mathcal{U}_2, \ldots$

Model-free state feedback control: an RL approach

RL objective

Find a policy $\pi : \mathcal{B}^n \times \mathcal{B}^m \rightarrow [0, 1]$ such that

$$\min_{\pi} \mathbb{E}_{\pi, \mathbf{P}} \bigg[\sum_{t=0}^{\infty} \gamma^t g_{t+1} \bigg], \forall \mathcal{X}_0 \in \mathcal{B}^n,$$

where $\gamma \in [0,1)$ is the discount factor

Generated trajectory $\mathcal{X}_0, \mathcal{U}_0, \mathcal{X}_1, g_1, \mathcal{U}_1, \mathcal{X}_2, g_2, \mathcal{U}_2, \dots$

Feedback stabilisation problem of PBCN | Model-free methods

Dynamic programming (DP) solutions

The policy can be learned indirectly using the value function

$$v^{\pi}(\mathcal{X}_0) := \mathbb{E}_{\pi, \mathbf{P}} \Big[\sum_{i=0}^{\infty} \gamma^i g_{i+1} \Big| \mathcal{X}_0 \Big], \text{ for all } \mathcal{X}_0 \in \mathcal{B}^n,$$

and the action-value function

$$q^{\pi}(\mathcal{X}_0,\mathcal{U}_0) := \mathbb{E}_{\pi,\mathbf{P}} \bigg[\sum_{i=0}^{\infty} \gamma^i g_{i+1} \bigg| \mathcal{X}_0,\mathcal{U}_0 \bigg], \text{ for all } \mathcal{X}_0 \in \mathcal{B}^n$$

Recursive Bellman equation

$$q^{\pi}(\mathcal{X}_{t},\mathcal{U}_{t}) = \sum_{\mathcal{X}\in\mathcal{B}^{n}} \mathbf{P}_{\mathcal{X}_{t},\mathcal{X}}^{\mathcal{U}_{t}} \bigg[\mathbf{G}_{\mathcal{X}_{t},\mathcal{X}}^{\mathcal{U}_{t}} + \gamma \sum_{\mathcal{U}\in\mathcal{B}^{m}} \pi(\mathcal{U}|\mathcal{X})q^{\pi}(\mathcal{X},\mathcal{U}) \bigg]$$

Bellman optimality equation

$$q^*(\mathcal{X}_t, \mathcal{U}_t) := q^{\pi^*}(\mathcal{X}_t, \mathcal{U}_t) = \sum_{\mathcal{X} \in \mathcal{B}^n} \mathbf{P}_{\mathcal{X}_t, \mathcal{X}}^{\mathcal{U}_t} \left[\mathbf{G}_{\mathcal{X}_t, \mathcal{X}}^{\mathcal{U}_t} + \gamma \min_{\mathcal{U}} q^*(\mathcal{X}, \mathcal{U}) \right]$$

Feedback stabilisation problem of PBCN | Model-free methods

Dynamic programming (DP) solutions

The policy can be learned indirectly using the value function

$$v^{\pi}(\mathcal{X}_0) := \mathbb{E}_{\pi, \mathbf{P}} \Big[\sum_{i=0}^{\infty} \gamma^i g_{i+1} \Big| \mathcal{X}_0 \Big], \text{ for all } \mathcal{X}_0 \in \mathcal{B}^n,$$

and the action-value function

$$q^{\pi}(\mathcal{X}_0,\mathcal{U}_0) := \mathbb{E}_{\pi,\mathbf{P}} \Big[\sum_{i=0}^{\infty} \gamma^i g_{i+1} \Big| \mathcal{X}_0,\mathcal{U}_0 \Big], \text{ for all } \mathcal{X}_0 \in \mathcal{B}^n$$

Recursive Bellman equation

$$q^{\pi}(\mathcal{X}_{t},\mathcal{U}_{t}) = \sum_{\mathcal{X}\in\mathcal{B}^{n}} \mathbf{P}_{\mathcal{X}_{t},\mathcal{X}}^{\mathcal{U}_{t}} \left[\mathbf{G}_{\mathcal{X}_{t},\mathcal{X}}^{\mathcal{U}_{t}} + \gamma \sum_{\mathcal{U}\in\mathcal{B}^{m}} \pi(\mathcal{U}|\mathcal{X})q^{\pi}(\mathcal{X},\mathcal{U}) \right]$$

Bellman optimality equation

$$q^{*}(\mathcal{X}_{t},\mathcal{U}_{t}) := q^{\pi^{*}}(\mathcal{X}_{t},\mathcal{U}_{t}) = \sum_{\mathcal{X}\in\mathcal{B}^{\eta}} \mathbf{P}_{\mathcal{X}_{t},\mathcal{X}}^{\mathcal{U}_{t}} \mathbf{G}_{\mathcal{X}_{t},\mathcal{X}}^{\mathcal{U}_{t}} + \gamma \min_{\mathcal{U}} q^{*}(\mathcal{X},\mathcal{U})]$$

Exact DP requires knowledge of the model!

Feedback stabilisation problem of PBCN Model-free methods

The "tabular" model-free approach: *Q*-Learning (*Q*L)

- *QL* algorithm solves the recursive Bellman equation iteratively using samples
- \blacksquare It updates estimates of $Q(\cdot, \cdot)$ based on other learned estimates, with the following update rule

 $Q_{t+1}(\mathcal{X}_t, \mathcal{U}_t) = Q_t(\mathcal{X}_t, \mathcal{U}_t) + \alpha_t [g_{t+1} + \gamma \min_{\mathcal{U} \in \mathcal{B}^m} Q_t(\mathcal{X}_{t+1}, \mathcal{U}) - Q_t(\mathcal{X}_t, \mathcal{U}_t)]$

States \Actions	\mathcal{U}_0	\mathcal{U}_1	\mathcal{U}_2	
\mathcal{X}_0	$Q(\mathcal{X}_0,\mathcal{U}_0)$	$Q(\mathcal{X}_0,\mathcal{U}_1)$	$Q(\mathcal{X}_0,\mathcal{U}_2)$	
\mathcal{X}_1	$Q(\mathcal{X}_1,\mathcal{U}_0)$	$Q(\mathcal{X}_1,\mathcal{U}_1)$	$Q(\mathcal{X}_1, \mathcal{U}_2)$	
\mathcal{X}_2	$Q(\mathcal{X}_2,\mathcal{U}_0)$	$Q(\mathcal{X}_2, \mathcal{U}_1)$	$Q(\mathcal{X}_2,\mathcal{U}_2)$	
			•	·.

¹⁰C. J. Watkins and P. Dayan (1992). "Q-learning". In: Machine learning 8.3-4, pp. 279-292.

Feedback stabilisation problem of PBCN | Model-free methods

The "tabular" model-free approach: *Q*-Learning (*Q*L)

- *QL* algorithm solves the recursive Bellman equation iteratively using samples
- \blacksquare It updates estimates of $Q(\cdot, \cdot)$ based on other learned estimates, with the following update rule

 $Q_{t+1}(\mathcal{X}_t, \mathcal{U}_t) = Q_t(\mathcal{X}_t, \mathcal{U}_t) + \alpha_t [g_{t+1} + \gamma \min_{\mathcal{U} \in \mathcal{B}^m} Q_t(\mathcal{X}_{t+1}, \mathcal{U}) - Q_t(\mathcal{X}_t, \mathcal{U}_t)]$

States \ Actions	\mathcal{U}_0	\mathcal{U}_1	\mathcal{U}_2	
\mathcal{X}_0	$Q(\mathcal{X}_0,\mathcal{U}_0)$	$Q(\mathcal{X}_0,\mathcal{U}_1)$	$Q(\mathcal{X}_0,\mathcal{U}_2)$	
\mathcal{X}_1	$Q(\mathcal{X}_1,\mathcal{U}_0)$	$Q(\mathcal{X}_1,\mathcal{U}_1)$	$Q(\mathcal{X}_1, \mathcal{U}_2)$	
\mathcal{X}_2	$Q(\mathcal{X}_2,\mathcal{U}_0)$	$Q(\mathcal{X}_2, \mathcal{U}_1)$	$Q(\mathcal{X}_2,\mathcal{U}_2)$	
•				·.

✓ QL has been proven to converge at least asymptotically to $Q^*(\cdot, \cdot)$ under standard stochastic approximation conditions¹⁰. The optimal policy can be obtained as

$$\pi^*(\mathcal{X}) = rgmin_{\mathcal{U}\in\mathcal{B}^m} Q^*(\mathcal{X},\mathcal{U}), \;\; orall \mathcal{X}\in\mathcal{B}^n$$

- \checkmark It is a simple yet powerful algorithm
- X The tabular architecture only applies to relatively small state-action spaces

¹⁰C. J. Watkins and P. Dayan (1992). "Q-learning". In: Machine learning 8.3-4, pp. 279–292.

Feedback stabilisation problem of PBCN | Model-free methods

Non-tabular RL approach: deep Q network (DQN)

Given a state X_t, the action-value function is estimated using function approximators, e.g., with an artificial neural network (ANN)

The ANN is trained to minimize a differentiable loss function, namely the Bellman error

$$\mathcal{E}(\mathbf{W}) = \frac{1}{2} \left\| Q(\mathcal{X}_t, \mathcal{U}_t, \mathbf{W}) - \mathcal{Y}_{t+1} \right\|^2,$$

where $\mathcal{Y}_{t+1} = g_{t+1} + \gamma \min_{\mathcal{U} \in \mathcal{B}^m} Q(\mathcal{X}_{t+1}, \mathcal{U}, \mathbf{W})$ is the target value

Then, W can be updated through stochastic gradient descent (SGD) method

$$\mathbf{W} = \mathbf{W} - \alpha \nabla_{\mathbf{W}} \mathcal{E}(\mathbf{W}) = \mathbf{W} - \alpha \big[Q(\mathcal{X}_t, \mathcal{U}_t, \mathbf{W}) - \mathcal{Y}_{t+1} \big] \nabla_{\mathbf{W}} Q(\mathcal{X}_t, \mathcal{U}_t, \mathbf{W})$$

DQN limitations

- Sequential states are strongly correlated, and SGD method assumes that samples are uncorrelated
- X Target value depends on the ANN parameters **W**, and consequently its value changes over time-steps

$$\mathcal{E}(\mathbf{W}) = \frac{1}{2} \left\| Q(\mathcal{X}_t, \mathcal{U}_t, \mathbf{W}) - \left(g_{t+1} + \gamma \min_{\mathcal{U} \in \mathcal{B}^m} Q(\mathcal{X}_{t+1}, \mathcal{U}, \mathbf{W}) \right) \right\|^2$$

High variance

Double deep Q network with prioritized experience replay $(DDQN + PER)^{11}$

To limit stability issues, DDQN + PER introduces the *prioritized experience replay*, and a *double network*

- X There are still no convergence guarantees
- ✓ Very effective in practice

¹¹H. van Hasselt, A. Guez, and D. Silver (2016). "Deep Reinforcement Learning with Double Q-learning". In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.

Contents

1 Probabilistic Boolean control network (PBCN)

- Probabilistic Boolean network
- Logic and algebraic forms of PBCN

2 Feedback stabilisation problem of PBCN

- Model-based methods
- Model-free methods

3 Example

- Finite-time feedback stabilization
- Self-triggered control co-design

4 Conclusions and perspectives

Example: finite-time stabilization of PBCN using QL¹²

Lactose operon in Escherichia Coli (9 genes, 2 input genes)

Equilibrium state: $\bar{\mathcal{X}}_e = (1, 1, 1, 1, 1, 1, 0, 1, 1) \equiv$ the lactose operon attains the ON state

Cost function: $g_{t+1} = \begin{cases} -1 & \text{if } \mathcal{X}_{t+1} = \bar{\mathcal{X}}_e \\ 1 & \text{if } (\mathcal{X}_{t+1} \neq \bar{\mathcal{X}}_e) \land (\mathcal{X}_{t+1} = \mathcal{X}_t) \\ 0 & \text{otherwise} \end{cases}$

¹²A. Acernese, A. Yerudkar, L. Glielmo, and C. Del Vecchio (Jan. 2021). "Reinforcement Learning Approach to Feedback Stabilization Problem of Probabilistic Boolean Control Networks". In: *IEEE Control Systems Letters* 5.1, pp. 337–342.

Comparison with model-based methods

- Performance evaluated as the average error (over M episodes) between the optimal value function v_{VI}^* and the current estimate of the action-value function (in VI case), and between the optimal state feedback law and the current estimated policy (in STP case)
- As the error tends to zero towards the end of the training, QL approaches an optimal solution

Performance of the proposed algorithm

- $\bar{\mathcal{X}}_e = (1, 1, 1, 1, 1, 1, 0, 1, 1).$
- Average evolution of genes over 5.12×10^5 episodes.
- The agent is able to stabilize the lactose operon system at \bar{X}_e w.p.o. in at most 23 steps.

Example: constant reference tracking of a PBCN¹³

■ 28-genes, 3-inputs, with $|\mathcal{B}^n| \times |\mathcal{B}^m| \cong 2 \times 10^9$ ■ $\mathcal{X}_{r_t} : \bar{\mathcal{B}}^n \to (0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0)$

¹³A. Acernese, A. Yerudkar, L. Glielmo, and C. Del Vecchio (2020). "Double Deep-Q Learning-Based Output Tracking of Probabilistic Boolean Control Networks". In: *IEEE Access* 8, pp. 199254–199265.

Self-triggered control (STC) co-design for PBCNs

The STC co-design of PBCNs consists in collectively computing the feedback control action to take and the next time instant to update the action, being in the current state

$$\mathbf{u}(t) = \mathcal{K}(\mathbf{x}(t_k)), \quad t \in [t_k, t_{k+1}), \ k \in \mathbb{Z}_+,$$

$$t_{k+1} = t_k + \tau(\mathbf{x}(t_k))^a$$

 ${}^{a}\mathbf{u}, \mathbf{x}$, are in canonical vector form

- Unlike the conventional state feedback control that is updated at each time-step, the STC follows a self-triggering schedule to provide an optimal control law when necessary
- Resource-aware control: perform actions when needed and share resources considering the limited availability

Model-free STC co-design with QL

Define the macro-action (MA) $U_t := (\mu_{act}(\mathcal{X}_t), \mu_{com}(\mathcal{X}_t))$, where $\mu_{act} : \mathcal{B}^n \to \mathcal{B}^m$, and $\mu_{com} : \mathcal{B}^n \to \mathbb{Z}_+$

¹⁴A. Acernese* et al. (Nov. 2021). "Model-Free Self-Triggered Control Co-Design for Probabilistic Boolean Control Networks". In: *IEEE Control Systems Letters* 5.5, pp. 1639–1644.

Model-free STC co-design with QL

- Define the macro-action (MA) $U_t := (\mu_{act}(\mathcal{X}_t), \mu_{com}(\mathcal{X}_t))$, where $\mu_{act} : \mathcal{B}^n \to \mathcal{B}^m$, and $\mu_{com} : \mathcal{B}^n \to \mathbb{Z}_+$
- Define multi-time models for MAs, that predict expected states and expected costs after performing MAs, appropriately discounted
- Bellman's equations also hold on MAs with multi-time models:

$$q_{\pi}(\mathcal{X}_{t_k}, \mathsf{U}_{t_k}) = \mathbf{G}_{\mathcal{X}_{t_k}, \mathcal{X}_{t_{k+1}}}^{\mathsf{U}_{t_k}} + \sum_{\mathcal{X}_{t_{k+1}}} \mathcal{P}_{\mathcal{X}_{t_k}, \mathcal{X}_{t_{k+1}}}^{\mathsf{U}_{t_k}} \sum_{\mathsf{U} \in \mathcal{B}^{m^+}} \pi(\mathcal{X}_{t_{k+1}}, \mathsf{U}) q_{\pi}(\mathcal{X}_{t_{k+1}}, \mathsf{U})$$

¹⁴A. Acernese* et al. (Nov. 2021). "Model-Free Self-Triggered Control Co-Design for Probabilistic Boolean Control Networks". In: *IEEE Control Systems Letters* 5.5, pp. 1639–1644.

Model-free STC co-design with QL

- Define the macro-action (MA) $U_t := (\mu_{act}(\mathcal{X}_t), \mu_{com}(\mathcal{X}_t))$, where $\mu_{act} : \mathcal{B}^n \to \mathcal{B}^m$, and $\mu_{com} : \mathcal{B}^n \to \mathbb{Z}_+$
- Define multi-time models for MAs, that predict expected states and expected costs after performing MAs, appropriately discounted
- Bellman's equations also hold on MAs with multi-time models:

$$q_{\pi}(\mathcal{X}_{t_k}, \mathsf{U}_{t_k}) = \mathbf{G}_{\mathcal{X}_{t_k}, \mathcal{X}_{t_{k+1}}}^{\mathsf{U}_{t_k}} + \sum_{\mathcal{X}_{t_{k+1}}} \mathcal{P}_{\mathcal{X}_{t_k}, \mathcal{X}_{t_{k+1}}}^{\mathsf{U}_{t_k}} \sum_{\mathsf{U} \in \mathcal{B}^{m^+}} \pi(\mathcal{X}_{t_{k+1}}, \mathsf{U}) q_{\pi}(\mathcal{X}_{t_{k+1}}, \mathsf{U})$$

In a model-free framework, we defined the self-triggered Q learning (STQL)¹⁴ algorithm (proven to converge):

$$Q_{t_{k+1}}(\mathcal{X}_{t_k}, \mathsf{U}_{t_k}) = Q_{t_k}(\mathcal{X}_{t_k}, \mathsf{U}_{t_k}) + \alpha_{t_k} \left[\sum_{i=1}^{\tau(\mathcal{X}_{t_k})} \gamma^{i-1} g_{t_k+i} \right]$$
$$+ \gamma^{\tau(\mathcal{X}_{t_k})} \min_{\mathsf{U} \in \mathcal{B}^{m^+}} Q_{t_k}(\mathcal{X}_{t_{k+1}}, \mathsf{U}) - Q_{t_k}(\mathcal{X}_{t_k}, \mathsf{U}_{t_k}) \right]$$

¹⁴A. Acernese* et al. (Nov. 2021). "Model-Free Self-Triggered Control Co-Design for Probabilistic Boolean Control Networks". In: *IEEE Control Systems Letters* 5.5, pp. 1639–1644.

Example Self-triggered control co-design

Example: STQL for stabilization of GRNs

We consider a 4-gene PBCN model of the bacteriophage λ, a virus which can infect Escherichia coli bacteria:

$$\mathcal{X}^1_+ = \neg \mathcal{X}^2 \land \neg \mathcal{X}^4 \qquad \qquad \mathcal{X}^3_+ = \begin{cases} \neg \mathcal{X}^2 \\ 0, \end{cases}$$

$$\mathcal{X}_{+}^{2} = \neg \mathcal{X}^{4} \land \neg \mathcal{U} \land (\mathcal{X}^{2} \lor \mathcal{X}^{3})$$

$$\mathcal{X}_{+}^{3} = \begin{cases} \neg \mathcal{X}^{2} \land \neg \mathcal{X}^{4} \land \mathcal{X}^{1}, \mathsf{P} = 0.7 \\ 0, \qquad \mathsf{P} = 0.3 \end{cases}$$
$$\mathcal{X}_{+}^{4} = \neg \mathcal{X}^{2} \land \neg \mathcal{X}^{3}$$

• Equilibrium state: $\bar{\mathcal{X}}_e = (0, 0, 0, 1)$

STQL algorithm stabilizes the system at $\bar{\mathcal{X}}_e$ while minimizing the action changes

Contents

1 Probabilistic Boolean control network (PBCN)

- Probabilistic Boolean network
- Logic and algebraic forms of PBCN

2 Feedback stabilisation problem of PBCN

- Model-based methods
- Model-free methods

3 Example

- Finite-time feedback stabilization
- Self-triggered control co-design

4 Conclusions and perspectives

The stabilization problem of PBCNs has been addressed

The stabilization problem of PBCNs has been addressed

 Model-based solutions for deriving feedback stabilization laws have been discussed, and, in light of their limitations, model-free solutions have been developed

The stabilization problem of PBCNs has been addressed

- Model-based solutions for deriving feedback stabilization laws have been discussed, and, in light of their limitations, model-free solutions have been developed
- The application of model-free method to various gene regulatory networks has been proposed

The stabilization problem of PBCNs has been addressed

- Model-based solutions for deriving feedback stabilization laws have been discussed, and, in light of their limitations, model-free solutions have been developed
- The application of model-free method to various gene regulatory networks has been proposed
- Emerging trends in PBCN control include pinning control and the adaptation of model-based control tools. Broadening the range of PBCN applications represents a promising direction for future research