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Probabilistic Boolean network2

The evolution of a probabilistic Boolean network (PBN) is determined by a set of
n logic first order difference equations:

X1(t+ 1) = f1
(
X1(t),X2(t), . . . ,Xn(t)

)
X2(t+ 1) = f2

(
X1(t),X2(t), . . . ,Xn(t)

)
...

Xn(t+ 1) = fn
(
X1(t),X2(t), . . . ,Xn(t)

)

X (t) ∈ Bn

fi ∈ {f 1i , f 2i , . . . , f lii }, with f γi
i (·) : Bn → B, and with Pr{fi = f γi

i } = pγi
i ,

γi ∈ {1, 2, . . . , li}, i ∈ {1, 2, . . . ,n}, and∑li
γi=1 p

γi
i = 1

There are N =
∏n

i=1 li possible realizations of the network. The probability for
each model

∑
γ to be active is

Pγ = Pr{network Σγ is selected} = Pr{f1 = f γ1
1 , . . . , fn = f γn

n︸ ︷︷ ︸
independent

} =
n∏

i=1

pγi
i

2D. Cheng, H. Qi, and Z. Li (2010). Analysis and Control of Boolean Networks: A Semi-tensor Product
Approach. Communications and Control Engineering. Springer London.
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PBNs as switched systems

PBN

BN ΣγBN Σ1 BNΣN

· · · · · ·
P1 Pγ PN

At each t a model Σγ is selected, and the next state of the PBN is determined
according to the corresponding BN

PBN→ switching systems, with σ(t) taking values in {1, 2, . . . , γ, . . . ,N}, and
Pr{σ(t) = γ} = Pγ

PBN

BNΣNBNΣ1

Pr{σ(t) = 1} = P1 Pr{σ(t) = N} = PN

· · ·
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Probabilistic Boolean control network

PBCN

BCN ΣγBCN Σ1 BCN ΣN

· · · · · ·
P1 Pγ PN

· · · · · ·
u2u1 um

A probabilistic Boolean control network (PBCN) is a combination of PBN and
Boolean control network (BCN)
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Logical form of PBCN

The evolution of a PBCN in logical form is
X1(t+ 1) = f1

(
X1(t),X2(t), . . . ,Xn(t);µ1(t), µ2(t), . . . , µm(t)

)
X2(t+ 1) = f2

(
X1(t),X2(t), . . . ,Xn(t);µ1(t), µ2(t), . . . , µm(t)

)
...

Xn(t+ 1) = fn
(
X1(t),X2(t), . . . ,Xn(t);µ1(t), µ2(t), . . . , µm(t)

)

where
X (t) ∈ Bn, µ(t) ∈ Bm

at each time-step t, fi ∈ {f 1i , f 2i , . . . , f lii }, with f γi
i (·) : Bn × Bm → B, and with

Pr{fi = f γi
i } = pγi

i , γi ∈ {1, 2, . . . , li}, i ∈ {1, 2, . . . , n}, and
∑li

γi=1 p
γi
i = 1

Σγ models, with γ = 1, 2, . . . ,N, and N =
∏n

i=1 li :

Pγ = Pr{network
∑
γ

is selected} =
n∏

i=1

pγi
i
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Algebraic form of PBCN
PBCN can be converted into its algebraic form using semi-tensor product (STP):

x1(t+ 1) = f1
(
x1(t), x2(t), . . . , xn(t);u1(t),u2(t), . . . ,um(t)

)
=

= Mf1 ⋉ u(t)⋉ x(t)
x2(t+ 1) = f2

(
x1(t), x2(t), . . . , xn(t);u1(t),u2(t), . . . ,um(t)

)
=

= Mf2 ⋉ u(t)⋉ x(t)
...

xn(t+ 1) = fn
(
x1(t), x2(t), . . . , xn(t);u1(t),u2(t), . . . ,um(t)

)
=

= Mfn ⋉ u(t)⋉ x(t)

x(t) = ⋉n
i=1xi(t) ∈ L2n ,u(t) = ⋉m

j=1uj(t) ∈ L2m , Mfi ∈ L2n×2n+m
, and Mfi ∈

{M1
fi ,M

2
fi , . . . ,M

li
fi}

PBCN can be rewritten as:

x(t+ 1) = Lγ(t) ⋉ u(t)⋉ x(t),

where Lγ(t) ∈ L2n×2n+m
is one of the N structure matrices
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PBCN as switched system

PBCN

BCNΣγBCNΣ1 BCN ΣN

· · · · · ·
P1 Pγ PN

· · · · · ·
u2u1 um

As a switching system, a PBCN can be written as
x(t+ 1) = L⋉ γ(t)⋉ u(t)⋉ x(t),

where L = [L1 L2 . . . LN ], γ(t) ∈ LN selects with Pr{γ(t) = δγN} = Pγ

the active structure matrix Lγ ∈ L2n×2n+m
taking values in {1, 2, . . . ,N}, and

u(t) ∈ L2m is the input selecting the sub-model of Lγ

Denote with u[0,T−1] := {u(0), . . . ,u(T − 1)}, T ∈ Z+ a control sequence, and
with x(t; x(0),u[0,T−1]) the state of a PBCN at time t ∈ Z+
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Delving into PBCN

PBCNs were first introduced by Shmulevich in 20023

The motivation for adopting PBCNs stems from several modeling advantages
and applications:

Modeling complexity and uncertainty
Developing therapeutic interventions
Predictive modeling

The study of stabilization problems for PBCN is crucial for ensuring reliable and
predictable behavior in complex biological and engineered systems

3I. Shmulevich et al. (Feb. 2002). “Probabilistic Boolean networks: a rule-based uncertainty model for
gene regulatory networks ”. In: Bioinformatics 18.2, pp. 261–274.
Carmen Del Vecchio | CDC Workshop 2023 – STP of Matrices and Its Applications
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Feedback stabilisation problem of PBCN4

Control fixed point
A state xe ∈ L2n is called a control fixed point if

∃ u(t) ∈ L2m : Pr{x(t+ 1; xe,u(t)) = xe} = 1

Stabilisation in distribution
Given xe ∈ L2n , a PBCN is said to be stabilisable at xe in distribution if

∃ u[0,t−1] : limt→∞
Pr{x(t; x(0),u[0,t]) = xe} = 1, ∀x(0) ∈ L2n

Stabilisation w.p.o.
Given xe ∈ L2n , a PBCN is said to be finite-time stabilisable at xe w.p.o. if

∃ u[0,T−1] : Pr{x(t; x(0),u[0,T−1]) = xe} = 1, ∀t ≥ T, ∀x(0) ∈ L2n

Feedback stabilisation problem
Find a state feedback control law u(t) = K(x(t)), ∀x(t) ∈ L2n such that the
PBCN is stabilised at xe

4X. Yang and H. Li (2022). “On state feedback asymptotical stabilization of probabilistic Boolean control
networks”. In: Systems & Control Letters 160, p. 105107.
Carmen Del Vecchio | CDC Workshop 2023 – STP of Matrices and Its Applications
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State feedback control of PBCN5

The problem of stabilisation can be solved using a time-invariant feedback law
as:

u(t) = K ⋉ x(t),

where K ∈ L2m×2n is the structure feedback matrix of the control law

The overall closed-loop system

x(t+ 1) = Lin ⋉ K ⋉ x(t)⋉ x(t)

is stable w.p.o., where Lin ∈ L2m×2n+m
is defined as:

Lin =

N∑
γ=1

Lγ

5R. Li, M. Yang, and T. Chu (2014). “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4, pp. 1272–1278.
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State feedback control of PBCN

Recursive sets
Assume xe ∈ L2n is the fixed point to which the network needs to be stabilised.
Define {Ωk(xe)} as

Ω1(xe) = {a ∈ L2n : there is a u ∈ L2m such that
Pr{x(t+ 1) = xe|x(t) = a,u(t) = u} = 1}

Ωk+1(xe) = {a ∈ L2n : there is a u ∈ L2m such that the conditions
Pr{x(t+ 1) = b|x(t) = a,u(t) = u} > 0, b ∈ L2n

imply that b ∈ {Ωk(xe)}, k = 1, 2, . . . }

Remark. The structure of Ωk(xe) does not depend on the probabilities
P1,P2, . . . ,PN that a certain BCN is selected. → Does not influence whether a
PBCN can be stabilised by state feedback
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State feedback control of PBCN

[Theorem]Consider a PBCN, and let xe = ⋉n
i=1xei(t). If there is a state feedback

control u(·) such that the PBCN is sabilisable at xe w.p.o., then it holds that
xe ∈ Ω1(xe)
There exists an integer G ≤ 2n − 1 such that ΩG(xe) = L2n

Li et al.6 defined a constructive method to obtain vi, i = 1, . . . , 2n such that,
when the structure matrix K of the feedback law has the following shape

K = [v1 v2 · · · v2n ],

the PBCN is stabilisable at xe w.p.o.
Remark. If a PBCN can be stabilised at xe w.p.o., then every x can be steered to
xe w.p.o. using random control.

However, the above constructive method and
the theorem ensure the shortest path to stabilise the network

6R. Li, M. Yang, and T. Chu (2014). “State feedback stabilization for probabilistic Boolean networks”. In:
Automatica 50.4, pp. 1272–1278.
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Model-based methods for PBCN stabilisation

Some modifications to PBCN stabilisation problem:
Y. Liu et al.7 built a state feedback controller to reach a target state while avoiding
undesirable states
X. Yang et al.8 proposed a computationally efficient solution for the asymptotic
stabilisation of PBCN
A. Yerudkar et al.9 developed the solution of the output tracking model and showed
that for a constant reference signal the problem can be cast to a state feedback
stabilisation problem

✗ Require a full knowledge of the underlying dynamics of the system

✗ The humongous nature of biological systems proves to be a bottleneck of the
modeling part and hinders the applicability of model-based methods

✗ Model-based methods are limited by the computational complexity

7Y. Liu et al. (Feb. 2015). “Controllability of Probabilistic Boolean Control Networks Based on
Transition Probability Matrices”. In: Automatica 52.C, pp. 340–345.

8X. Yang and H. Li (2022). “On state feedback asymptotical stabilization of probabilistic Boolean control
networks”. In: Systems & Control Letters 160, p. 105107.

9A. Yerudkar, C. Del Vecchio, and L. Glielmo (2019). “Output Tracking Control of Probabilistic Boolean
Control Networks”. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).
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Model-free state feedback control: a reinforcement
learning (RL) approach

PBCN
(Bn, Bm, P, G)

Controller
Ut Xt

≈

Xt+1

gt+1

Bn is the set of states

Bm is the set of actions

P : Bn × Bm × Bn → [0, 1] is the
state transition probability distribu-
tion, with PUt

Xt,Xt+1
= P{Xt+1|Xt,Ut}

G : Bn × Bm × Bn → R is the
cost function, with GUt

Xt,Xt+1
=

E[gt+1|Xt,Ut]

Generated trajectory
X0, U0, X1, g1, U1, X2, g2, U2, . . .
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Model-free state feedback control: an RL approach

PBCN
(Bn, Bm, P, G)

Controller
Ut Xt

≈

Xt+1

gt+1
RL objective
Find a policy π : Bn × Bm → [0, 1]
such that

min
π

Eπ,P

[ ∞∑
t=0

γtgt+1

]
,∀X0 ∈ Bn,

where γ ∈ [0, 1) is the discount factor

Generated trajectory
X0, U0, X1, g1, U1, X2, g2, U2, . . .
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Dynamic programming (DP) solutions
The policy can be learned indirectly using the value function

vπ(X0) := Eπ,P

[ ∞∑
i=0

γigi+1

∣∣∣∣X0

]
, for all X0 ∈ Bn,

and the action-value function

qπ(X0,U0) := Eπ,P

[ ∞∑
i=0

γigi+1

∣∣∣∣X0,U0

]
, for all X0 ∈ Bn

Recursive Bellman equation

qπ(Xt,Ut) =
∑
X∈Bn

PUt
Xt,X

[
GUt

Xt,X + γ
∑
U∈Bm

π(U|X )qπ(X ,U)
]

Bellman optimality equation

q∗(Xt,Ut) := qπ
∗
(Xt,Ut) =

∑
X∈Bn

PUt
Xt,X

[
GUt

Xt,X + γmin
U

q∗(X ,U)
]

Exact DP requires knowledge of the model!
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| Feedback stabilisation problem of PBCN | Model-free methods

The “tabular” model-free approach: Q-Learning (QL)
QL algorithm solves the recursive Bellman equation iteratively using samples

It updates estimates of Q(·, ·) based on other learned estimates, with the follow-
ing update rule

Qt+1(Xt,Ut) = Qt(Xt,Ut) + αt[gt+1 + γ min
U∈Bm

Qt(Xt+1,U)−Qt(Xt,Ut)]

States\Actions U0 U1 U2 . . .
X0 Q(X0,U0) Q(X0,U1) Q(X0,U2) . . .
X1 Q(X1,U0) Q(X1,U1) Q(X1,U2) . . .
X2 Q(X2,U0) Q(X2,U1) Q(X2,U2) . . .
...

...
...

...
. . .

✓ QL has been proven to converge at least asymptotically toQ∗(·, ·) under standard
stochastic approximation conditions10. The optimal policy can be obtained as

π∗(X ) = argmin
U∈Bm

Q∗(X ,U), ∀X ∈ Bn

✓ It is a simple yet powerful algorithm

✗ The tabular architecture only applies to relatively small state-action spaces

10C. J. Watkins and P. Dayan (1992). “Q-learning”. In: Machine learning 8.3-4, pp. 279–292.
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Non-tabular RL approach: deep Q network (DQN)
Given a state Xt, the action-value function is estimated using function approxi-
mators, e.g., with an artificial neural network (ANN)

PBCN

L
os
s
fu
n
ct
io
n

Xt

gt+1Ut

Update main
network

The ANN is trained tominimize a differentiable loss function, namely the Bellman
error

E(W) =
1
2

∣∣∣∣∣∣∣∣Q(Xt,Ut,W)− Yt+1

∣∣∣∣∣∣∣∣2,
where Yt+1 = gt+1 + γ min

U∈Bm
Q(Xt+1,U ,W) is the target value

Then,W can be updated through stochastic gradient descent (SGD) method

W = W − α∇WE(W) = W − α
[
Q(Xt,Ut,W)− Yt+1

]
∇WQ(Xt,Ut,W)
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DQN limitations

✗ Sequential states are strongly correlated, and SGDmethod assumes that samples
are uncorrelated

✗ Target value depends on the ANN parameters W, and consequently its value
changes over time-steps

E(W) =
1
2

∣∣∣∣∣∣∣∣Q(Xt,Ut,W)−
(
gt+1 + γ min

U∈Bm
Q(Xt+1,U ,W)

)∣∣∣∣∣∣∣∣2

High variance
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Double deep Q network with prioritized experience
replay (DDQN + PER)11

To limit stability issues, DDQN + PER introduces the prioritized experience replay, and
a double network

PBCN

Mini-batch M1
Replay
Memory

L
os
s
fu
n
ct
io
n

Xt

gt+1Ut

Store
Transition

(Xt,Ut, gt+1,Xt+1) Prioritized
extraction

Update main
network

Update target
network

✗ There are still no convergence guarantees

✓ Very effective in practice

11H. van Hasselt, A. Guez, and D. Silver (2016). “Deep Reinforcement Learning with Double Q-learning”.
In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.
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| Example | Finite-time feedback stabilization

Example: finite-time stabilization of PBCN using QL12

Lactose operon in Escherichia Coli (9 genes, 2 input genes)

X 1 X 2 X 3 X 4 X 5

X 6 X 7 X 8 X 9

U1

U2

0.7

0.7

0.7

0.3

0.6
0.6

0.6

0.4

Equilibrium state: X̄e = (1, 1, 1, 1, 1, 1, 0, 1, 1) ≡ the lactose operon attains the
ON state

Cost function: gt+1 =


−1 if Xt+1 = X̄e

1 if (Xt+1 ̸= X̄e) ∧ (Xt+1 = Xt)

0 otherwise

12A. Acernese, A. Yerudkar, L. Glielmo, and C. Del Vecchio (Jan. 2021). “Reinforcement Learning
Approach to Feedback Stabilization Problem of Probabilistic Boolean Control Networks”. In: IEEE Control
Systems Letters 5.1, pp. 337–342.
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Comparison with model-based methods
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×105

0
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Episode
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20
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er
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e
er
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r

Comparison with:
Semi-tensor product (STP)
Value iteration (VI)

Performance evaluated as the average error (over M episodes) between the opti-
mal value function v∗VI and the current estimate of the action-value function (in
VI case), and between the optimal state feedback law and the current estimated
policy (in STP case)

As the error tends to zero towards the end of the training, QL approaches an
optimal solution
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Performance of the proposed algorithm

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Time-step t

Av
er
ag
e
va
lu
e X 1 X 2 X 3

X 4 X 5 X 6

X 7 X 8 X 9

X̄e = (1, 1, 1, 1, 1, 1, 0, 1, 1).
Average evolution of genes over 5.12× 105 episodes.
The agent is able to stabilize the lactose operon system at X̄e w.p.o. in at most
23 steps.
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Example: constant reference tracking of a PBCN13

28-genes, 3-inputs, with |Bn| × |Bm| ∼= 2× 109
Xrt : B̄n → (0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0)
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e
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X{5,6,7,11,20,21,26,27}

0 0.5 1 1.5 2
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DDQN + PER

13A. Acernese, A. Yerudkar, L. Glielmo, and C. Del Vecchio (2020). “Double Deep-Q Learning-Based
Output Tracking of Probabilistic Boolean Control Networks”. In: IEEE Access 8, pp. 199254–199265.
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Self-triggered control (STC) co-design for PBCNs

The STC co-design of PBCNs consists in collectively computing the feedback control
action to take and the next time instant to update the action, being in the current
state

u(t) = K(x(tk)), t ∈ [tk, tk+1), k ∈ Z+,

tk+1 = tk + τ(x(tk))a

au, x, are in canonical vector form

Unlike the conventional state feedback control that is updated at each time-step,
the STC follows a self-triggering schedule to provide an optimal control law when
necessary

Resource-aware control: perform actions when needed and share resources con-
sidering the limited availability

Carmen Del Vecchio | CDC Workshop 2023 – STP of Matrices and Its Applications
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Model-free STC co-design with QL
Define themacro-action (MA) Ut :=

(
µact(Xt), µcom(Xt)

)
, whereµact : Bn → Bm,

and µcom : Bn → Z+

Define multi-time models for MAs, that predict expected states and expected
costs after performing MAs, appropriately discounted
Bellman’s equations also hold on MAs with multi-time models:

qπ(Xtk ,Utk) = GUtk
Xtk ,Xtk+1

+
∑
Xtk+1

PUtk
Xtk ,Xtk+1

∑
U∈Bm+

π(Xtk+1 ,U)qπ(Xtk+1 ,U)

In a model-free framework, we defined the self-triggered Q learning (STQL)14

algorithm (proven to converge):

Qtk+1(Xtk ,Utk) =Qtk(Xtk ,Utk) + αtk

[ τ(Xtk )∑
i=1

γi−1gtk+i

+ γτ(Xtk ) min
U∈Bm+

Qtk(Xtk+1 ,U)−Qtk(Xtk ,Utk)

]

14A. Acernese* et al. (Nov. 2021). “Model-Free Self-Triggered Control Co-Design for Probabilistic
Boolean Control Networks”. In: IEEE Control Systems Letters 5.5, pp. 1639–1644.
Carmen Del Vecchio | CDC Workshop 2023 – STP of Matrices and Its Applications



| Example | Self-triggered control co-design

Model-free STC co-design with QL
Define themacro-action (MA) Ut :=

(
µact(Xt), µcom(Xt)

)
, whereµact : Bn → Bm,

and µcom : Bn → Z+

Define multi-time models for MAs, that predict expected states and expected
costs after performing MAs, appropriately discounted
Bellman’s equations also hold on MAs with multi-time models:

qπ(Xtk ,Utk) = GUtk
Xtk ,Xtk+1

+
∑
Xtk+1

PUtk
Xtk ,Xtk+1

∑
U∈Bm+

π(Xtk+1 ,U)qπ(Xtk+1 ,U)

In a model-free framework, we defined the self-triggered Q learning (STQL)14

algorithm (proven to converge):

Qtk+1(Xtk ,Utk) =Qtk(Xtk ,Utk) + αtk

[ τ(Xtk )∑
i=1

γi−1gtk+i

+ γτ(Xtk ) min
U∈Bm+

Qtk(Xtk+1 ,U)−Qtk(Xtk ,Utk)

]

14A. Acernese* et al. (Nov. 2021). “Model-Free Self-Triggered Control Co-Design for Probabilistic
Boolean Control Networks”. In: IEEE Control Systems Letters 5.5, pp. 1639–1644.
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Example: STQL for stabilization of GRNs
We consider a 4-gene PBCN model of the bacteriophage λ, a virus which can
infect Escherichia coli bacteria:

X 1
+ = ¬X 2 ∧ ¬X 4 X 3

+ =

{
¬X 2 ∧ ¬X 4 ∧ X 1, P = 0.7
0, P = 0.3

X 2
+ = ¬X 4 ∧ ¬U ∧ (X 2 ∨ X 3) X 4

+ = ¬X 2 ∧ ¬X 3

Equilibrium state: X̄e = (0, 0, 0, 1)
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STQL algorithm stabilizes the system at X̄e while minimizing the action changes
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Conclusions and perspectives

The stabilization problem of PBCNs has been addressed

Model-based solutions for deriving feedback stabilization laws have been dis-
cussed, and, in light of their limitations, model-free solutions have been developed

The application of model-free method to various gene regulatory networks has
been proposed

Emerging trends in PBCN control include pinning control and the adaptation of
model-based control tools. Broadening the range of PBCN applications
represents a promising direction for future research
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