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I. Introduction: Dimension-Varying
Systems

+ Background of Dimension-Varying Systems

In natura and engineering systems there are many dimension-
varying systems.
Centralized DV Dystems:

(a) Spacecraft docking (b) Vehicle clutch system

Figure 1: Centralized DV Systems
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Distributed DV Dystems:

(a) Internet (b) Genetic regulatory networks

Figure 2: Distributed DV Systems
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Systems with Various Dimension Models: String

Figure 3: String in Physics

Space-time: dimension 4 (Einstein Relativity), 5 (Kalabi-
Klein theory), 10 (Type 1 string), 11 (M-theory) or even 26
(Bosonic model)

M. Kaku, Introduction to Supersting and M-Theory, 2nd
Ed., Springer-Verlag, New York, 1999.
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Systems with Multiple Models: Power Generator

Figure 4: Stand Alone System

A single generator can be modeled as a 2, 3, or 5, 6, or
even 7, dimensional dynamic system.

Models of different dimensions may be used to de-
scribe same objects!

J. Machowski, J.W. Bialek, J.R. Bumby, Power Sys-
tem Dynamics and Stability, John Wiley and Sons, Inc.,
Chichester, 1997.
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II. Mix-Dimension Euclidean Space

+ Natural Topology on R∞

Mix-Dimension Space:

Vn := Rn, n = 1, 2, · · · ,
V(= R∞) :=

⋃∞
n=1 Rn.

Remark 2.1
R∞ has a natural topology, denoted by TN, which consists
of
(i) each Rn, as an Euclidian space, has its standard topol-

ogy within Rn;
(ii) over R∞ each Rn is a clopen subset.
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+ Cross Dimensional Structure

Vector Space Structure:

Definition 2.2
Let x ∈ Rm ⊂ R∞, y ∈ Rn ⊂ R∞, t = m ∨ n. Then

x~±y := (x⊗ 1t/m)± (y⊗ 1t/n) ∈ Rt ⊂ R∞. (1)

R∞ becomes a pseudo-vector space.

R. Abraham, J.E. Marsden, Foundations of Mechanics,
2nd Ed., Benjamin/Cummings Pub. London, 1978.
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Topological Structure

Definition 2.3
Let x ∈ Rm ⊂ R∞, y ∈ Rn ⊂ R∞.
(i) Inner product (of x and y):

〈x, y〉V := 1
t

〈
(x⊗ 1t/m), (y⊗ 1t/n)

〉
,

x ∈ Rm, y ∈ Rn, t = m ∨ n.
(2)

(ii) Norm (of x):

‖x‖V :=
√
〈x, x〉V . (3)

(iii) Distance (of x and y):

dV(x, y) := ‖x~−y‖V . (4)
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The topology deduced by the distance dV , denoted by Td.
Then

Ω := (R∞, Td) . (5)

Definition 2.4
Let x, y ∈ R∞. x and y are equivalent, denoted by x↔ y, if
(i) dV(x, y) = 0.

or equivalently,

(ii) There exist 1p and 1q such that

x⊗ 1p = y⊗ 1q. (6)
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Definition 2.5
(i)

x̄ := {y ∈ R∞ | y↔ x}.

(ii)

x̄~±ȳ := x~±y. (7)

(iii)

dV(x̄, ȳ) := dV(x, y), x ∈ x̄, y ∈ ȳ, x̄, ȳ ∈ Ω. (8)

Proposition 2.6
(i) Topologically,

Ω = R∞/↔ . (9)

(ii) Ω is a topological vector space.
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+ Projection From Rs to Rb

Definition 2.7
Let ξ ∈ Rs. The projection of ξ on Rb, denoted by πs

b(ξ), is
defined as

πs
b(ξ) := argminx∈Rb‖ξ~−x‖V , (10)

where the norm is defined by (3).

Let ξ ∈ Rs, x ∈ Rb, s ∨ b = t, and set α := t/s, β := t/b.
Then

πs
b(ξ) = x0 = argminx∈Rb ‖ξ~−x‖2

V ∈ Rb. (11)

(11) yields

xi
0 =

t
b

(
β∑

j=1

η(i−1)β+j

)
, i = 1, · · · , b. (12)
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where
ξ ⊗ 1t/s := (η1, η2, · · · , ηt)

T .

Moreover, it is easy to verify that
〈
ξ~−x0, x0

〉
V = 0. Hence,

we have
Proposition 2.8
Let ξ ∈ Vs. The projection of ξ on Vb, denoted by x0, is
determined by (12). Moreover, ξ~−x is orthogonal to x0.
(Ref. Figure 5.)

�
�
�
�
�
�
�
�
��>

?

Rs 3 ξ

x0

ξ − x0 ∈ Rt

Rb

Figure 5: Cross-dimensional Projection
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+ Matrix Expression of πs
b

Proposition 2.9
Let s ∨ b = t, α := t/s, and β := t/b. Then

πs
b(ξ) = Πs

bξ, ξ ∈ Vs, (13)

where

Πs
b =

1
β

(
Ib ⊗ 1T

β

)
(Is ⊗ 1α) . (14)

Proposition 2.10
1 Assume s ≥ b, then Πs

b is of full row rank, and hence
Πs

b(Π
s
b)

T is non-singular.
2 Assume s ≤ b, then Πs

b is of full column rank, and
hence (Πs

b)
TΠs

b is non-singular.
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+ Projection of Linear Systems

Original System:

ξ(t + 1) = Aξ(t), ξ(t) ∈ Rn. (15)

Projected system:

x(t + 1) = Aπx(t), x(t) ∈ Rm. (16)

Idea Goal:

x(t) = πn
m(ξ(t)). (17)

Realizable Goal:

min ‖x(t)− πn
m(ξ(t))‖ . (18)

D. Cheng, On equivalence of matrices, Asian J. Math.,
Vol. 23, No. 2, 257-348, 2019.
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+ Least Square Approximated System

Proposition 2.11

Aπ =

{
Πn

mA(Πn
m)T (Πn

m(Πn
m)T)

−1 n ≥ m
Πn

mA ((Πn
m)TΠn

m)
−1

(Πn
m)T n < m.

(19)

Corollary 2.12
Consider a continuous linear system

ξ̇(t) = Aξ(t), ξ(t) ∈ Rn. (20)

Its least square approximated system is

ẋ(t) = Aπx(t), x(t) ∈ Rm, (21)

where Aπ is defined by (19).
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+ For Control System

Corollary 2.13
Consider a discrete time linear control system{

ξ(t + 1) = Aξ(t) + Bu, ξ(t) ∈ Rn

y(t) = Cξ(t), y(t) ∈ Rp.
(22)

Its least square approximated linear control system is{
x(t + 1) = Aπx(t) + Πn

mBu, x(t) ∈ Rm

y(t) = Cπx(t),
(23)

where Aπ is defined by (19), and

Cπ =

{
C(Πn

p)
T
(
Πn

p(Π
n
p)

T
)−1

, n ≥ p
C
(
(Πn

p)
TΠn

p

)−1
(Πn

p)
T , n < p.

(24)
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Corollary 2.13(cont’d)
Consider a continuous time linear control system{

ξ̇(t) = Aξ(t) + Bu, ξ(t) ∈ Rn

y(t) = Cξ(t), y(t) ∈ Rp.
(25)

Its least square approximated linear control system is{
ẋ(t) = Aπx(t) + Πn

mBu, x(t) ∈ Rm

y(t) = Cπx(t), y(t) ∈ Rp,
(26)

where Aπ is defined by (19), and Cπ is defined by (24).

D. Cheng, From Dimension-Free Matrix Theory to
Cross-Dimensional Dynamic Systems, Elsevier, Lon-
don, 2019.
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III. Dimension-Free Manifold
+ Lattice Structure on R∞

Definition 3.1
(i) A partial order set L 6= ∅ is a lattice, if for any two

elements x, y ∈ L, there exist least common upper
bound sup(x, y) ∈ L and greatest common lower bound
inf(x, y) ∈ L.

(ii) A subset ∅ 6= S ⊂ L is called a sublattice if for any two
x, y ∈ S, sup(x, y) ∈ S and inf(x, y) ∈ S.

(iii) A sublattice I ⊂ L is an ideal, if for an x ∈ L there exists
y ∈ I such that x ≺ y, then x ∈ I.

(iv) A sublattice F ⊂ L is a filter, if for an x ∈ L there exists
y ∈ F such that x � y, then x ∈ F.

S. Burrus, H.P. Sankappanavar, A Course in Universl
Algebra, Springer, New York, 1981. 19 / 47



+ Hasse Diagram of Lattices
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Figure 6: Hasse Diagram of a Lattice

Filter:
F = {a, b, c, d, e, g, h, k}.

Ideal:
I = {f , i, j, l,m, n, o, p}.
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Proposition 3.2
Consider R∞ =

⋃∞
n=1 Rn. Define

Rn ≺ Rm ⇔ n|m.

Then (R∞,≺) is a lattice, where

sup(Rp,Rq) = Rp∨q;

inf(Rp,Rq) = Rp∧q.

Example 3.3
(i) Define

R[k,∞) := {Rt | k|t}.

Then R[k,∞) is a filter of R∞.
(ii) Define

R[·,k] := {Rt | t|k}.

Then R[·,k] is an ideal of R∞.
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+ Fiber Bundle

Definition 3.4
Let T, B be two topological spaces, Pr : T → B be an onto
continuous mapping. (T,Pr,B) is called a fiber bundle. T:
total space, B: base space, Pr−1(b), b ∈ B, is the fiber over
b.

Proposition 3.5
Let T = (R∞, TN), B = Ω = (R∞, Td), Pr : x→ x̄. Then

R∞ Pr−→ Ω

is a fiber bundle.

D. Husemoller, Fibre Budles, 2nd Ed., Springer-Verlag,
New York, 1994.
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+ Coordinate Filter (Coordinate Frame)
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Figure 7: Bundle of coordinate filter
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+ Differentiable Manifold Structure
Smooth Functions (Cr(Ω)):

Definition 3.6
Let f̄ : Ω → R. Define fn : Rn → R by fn(x) := f̄ (x̄), x ∈ Rn.
f̄ ∈ Cr(Ω) if

fn ∈ Cr(Rn),∀n ≥ 1. (27)

Proposition 3.7
Let fn ∈ Cr(Rn). x̄ ∈ Ω with dim(x̄) = dim(x1) = m (where
x1 ∈ x̄). Define

f̄ (x̄) := fn(π
m
n (x1)), x̄ ∈ Ω. (28)

Then f̄ ∈ Cr(Ω).

D. Cheng, Z. Ji, From dimension-free manifolds to
dimension-varying control systems, Commun. Inform.
Sys., Vol. 23, No. 1, 85-150, 2023.
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Vector Fields (Vr(Ω)):
Assume V̄ be a set of equivalent vectors.

dim(V̄) := min
V∈V̄

dim(V). (29)

Definition 3.8
The Cr vector field (V̄) over Ω is a rule, which assigns to
each x̄ ∈ Ω an V̄x̄, satisfying
(i) dim(V̄x̄), denoted by µx̄, depends on dim(x̄) only.
(ii) There exists a µ <∞, such that

µ = max
x̄∈Ω

µx̄ <∞. (30)

(iii) Assume k � dim(x̄) ∨ µ, then for each x ∈ Rk

V(x) ∈ V̄x̄, x ∈ Rk, (31)

is uniquely determinant. Moreover, V(x) ∈ Vr(Rk).
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+ Constructing V̄(x̄) ∈ Vr(Ω)

Tangent Space:

T(Ω) = R∞; Tx̄ = R[dim(x̄),∞), x̄ ∈ Ω.

Algorithm 3.9
Step 1: Find k > 0, the smallest dimension such that
X̄ is defined over whole Rk (k ≤ µ). Set

X̄|Rk := X ∈ Vr(Rk). (32)

Step 2: Extend X to Tx̄. Assume dim(x̄) = α, denote
k ∨ α = s. Then FV

x̄ = {Rs,R2s, · · · } Let dim(x) = js,
j = 1, 2, · · · . For x ∈ Rjs define

Vjs = X̄(x) := Πk
jsX(Πjs

k x), j = 1, 2, · · · . (33)
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+ Vector Field
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Theorem 3.10
(i) The X̄ generated by Algorithm 3.9 is a Cr vector field,

that is, X̄ ∈ Vr(Ω).
(ii) X̄ ∈ Vr(Ω) can be generated by Algorithm 3.9.

Example 3,11
Let X = (x1 + x2, x2

2)
T ∈ Cω(R2). Assume X̄ ∈ Cω(Ω) is

generated by X.
(i) Consider ȳ ∈ Ω, dim(ȳ) = 3, Denote y1 = (ξ1, ξ2, ξ3)

T ∈
R3. Since 2 ∨ 3 = 6, X̄ at

ȳ
⋂

R6j = {y2, y4, y6, · · · }

is well defined.
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Example 3.11(cont’d)
Now consider y2.

X̄(y2) = Π2
6X(Π6

2(y2)) = (I2 ⊗ 13)X
(

1
3(I2 ⊗ 1T

3 )(y1 ⊗ 12)
)

=



2
3(ξ1 + ξ2 + ξ3)
2
3(ξ1 + ξ2 + ξ3)
2
3(ξ1 + ξ2 + ξ3)

1
9(ξ2 + 2ξ3)

2

1
9(ξ2 + 2ξ3)

2

1
9(ξ2 + 2ξ3)

2


Consider y4, similar calculation shows that

X̄(y4) = Π2
12X(Π12

2 (y4)) = X̄(y2)⊗ 12.

In fact, we have

X̄(y2j) = X̄(y2)⊗ 1j, j = 1, 2, · · · .
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Example 3.11(cont’d)
(ii) Consider X̄|R6:

Assume z = (z1, z2, z3, z4, z5, z6)
T ∈ R6. Then

X6 := X̄z = Π2
6X(Π6

2z) =



1
3(z1 + z2 + z3 + z4 + z5 + z6)
1
3(z1 + z2 + z3 + z4 + z5 + z6)
1
3(z1 + z2 + z3 + z4 + z5 + z6)

1
9(z4 + z5 + z6)

2

1
9(z4 + z5 + z6)

2

1
9(z4 + z5 + z6)

2

 .
(34)

X6 ∈ Vω(R6) is a standard vector field.
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Integral curve of V̄(x̄):

Definition 3.12
Assume X̄ ∈ Cr(Ω), X ∈ Cr(Rn) is its generator, if X = X̄|Rn.
The generator of smallest dimension is called the minimum
generator.

Proposition 3.13
Assume X̄ ∈ Vr(Ω).
(i) If X ∈ Vr(Rn) is its generator, then X ⊗ 1s ∈ Vr(Rsn) is

also its generator.
(ii) If X ∈ Vr(Rn) is its generator, Y ∈ Vr(Rm), m < n is

also its generator, then m|n, and X = Y ⊗ 1n/m.
(iii) Assume X̄ ∈ Vr(Ω) is dimension bounded, then it has

at least one generator, and hence has a minimum gen-
erator.

31 / 47



Definition 3.14
Let X̄ ∈ Cr(Ω). x̄(t, x̄0) is called the integral curve of X̄
with initial value x̄0, denoted by x̄(t, x̄0) = ΦX̄

t (x̄0), if for each
initial value x0 ∈ x̄0

⋂
Rn, and each generator of X̄, denoted

by X = X̄|Rn, the following condition holds:

ΦX̄
t (x̄0)|Rn = ΦX

t (x0), t ≥ 0. (35)

Example 3.15
Recall Example 3.11. Let X̄ ∈ Ω be generated by

X = (x1 + x2, x2
2)

T ∈ Cω(R2),

with
x̄0 ∈ Ω and dim(x̄0) = 3,

i.e., x1 = (ξ1, ξ2, ξ3)
T . Find ΦX̄(x̄0)?
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Example 3.15(cont’d)

Since 2 ∨ 3 = 6, the integral curve is on R6k, k = 1, 2, · · · .
First calculate the one defined on R6, X|R6 := X6, which is
(34).

Note that x0
2 := x̄0

⋂
R6, then x0

2 = (ξ1, ξ1, ξ2, ξ2, ξ3, ξ3)
T .

Hence the integral curve is ΦX6

t (x0
2).

It follows that

ΦX̄
t (x̄0) =

{
ΦX6

t (x0
2)⊗ 1k | k = 1, 2, · · ·

}
. (36)
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+ Other Differentiable Objects over Ω

Distributions Dx̄(Ω) ⊂ Tx̄(Ω):

Covector fields σx̄(Ω) ∈ T∗x̄ (Ω):

Tensor fields T r
s (Ω):

T r
s (Ω) : Tr(ω)× T∗s(ω)→ R.

Riemannian Geometry:

All these objects can be constructed in a similar way.

D. Cheng, Z. Ji, From dimension-free manifolds to
dimension-varying control systems, Commun. Inform.
Sys., Vol. 23, No. 1, 85-150, 2023.
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IV. Dimension-Varying Dynamic
(Control) Systems

+ Projection of dynamic (control) systems

Definition 4.1
(i) Consider a dynamic system over Rp, described as

Σ : ẋ = F(x), x ∈ Rp. (37)

Its projection onto Rq is a dynamic system over Rq,
described as

πp
q(Σ) : ż = F̃(z), z ∈ Rq, (38)

where

F̃(z) = Πp
qF(Πq

p(z)). (39)
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Definition 4.1(cont’d)
(ii) Consider a control system

ΣC : ẋ = F(x, u), x ∈ Rp, u ∈ Rr. (40)

Its projection to Rq is

πp
q(ΣC) : ż = F̃(z, u), z ∈ Rq, u ∈ Rr, (41)

where

F̃(z, u) = Πp
qF(Πq

p(z), u). (42)
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Example 4.2
Consider the following control system Σ:{

ẋ1 = u1 sin(x1 + x2),

ẋ2 = u2 cos(x1 + x2).
(43)

(i) Project (43) onto R3. It is ready to calculate that

Π3
2 =

1
3

[
2 1 0
0 1 2

]
, Π2

3 =
1
2

2 0
1 1
1 2

 .
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Example 4.2(cont’d)
Then the projected system π2

3(Σ) is calculated as
ż1 = u1 sin(2

3(z1 + z2 + z3)),

ż2 = 1
2

(
u1 sin(2

3(z1 + z2 + z3)) + u2 cos(2
3(z1 + z2 + z3))

)
,

ż3 = u2 cos(2
3(z1 + z2 + z3)).

(44)

(ii) Project (43) onto R4. We have

Π4
2 =

1
2

[
1 1 0 0
0 0 1 1

]
, Π2

4 =


1 0
1 0
0 1
0 1

 .
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Example 4.2(cont’d)
Then the projected system π2

4(Σ) is easily obtained as
ż1 = u1 sin(1

2(z1 + z2 + z3 + z4)),

ż2 = u1 sin(1
2(z1 + z2 + z3 + z4)),

ż3 = u2 cos(1
2(z1 + z2 + z3 + z4)),

ż4 = u2 cos(1
2(z1 + z2 + z3 + z4)).

(45)

Proposition 4.3
Let f (x) ∈ V∞(Rp) and q = kp. Then

πq
p ◦ πp

q(f (x)) = f (x). (46)
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Definition 4.4
Consider a dynamic system

˙̄x = F̄(x̄), x̄ ∈ Ω. (47)

ẋ = F(x), x ∈ Rn ⊂ R∞, (48)

is called a lifting of (47), if for each x̄ there exists x ∈ x̄, such
that the corresponding vector field F(x) ∈ F̄(x̄). Meanwhile,
system (47) is called a project system of (48).

Proposition 4.5
x̄(t) = x̄(t, x̄0) is the solution of (47), if and only if, x(t) =
x(t, x0) is the solution of (48), where x(t) ∈ x̄(t), t ∈ [0,∞).
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+ Switching dimension-varying control systems

Assume the original control system is

ẋ = F(x, u), x ∈ Rm, u ∈ Rp. (49)

The target system is

ż = G(z, v), z ∈ Rn, v ∈ Rq. (50)

Our purpose is to switch system (49) to system (50) at time
t = T. That is,

x̄(T) = z̄(T) ∈ Ω. (51)

Proposition 4.6
Assume (51) is satisfied, and assume system (49) is con-
trollable. Then the dynamic switching from system (49) to
system (50) at time t = T is realizable.
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Example 4.7
Consider two systems

Σ1 : ẋ = Ax + Bu =

[
0 1
0 0

]
x +

[
0
1

]
u, x(0) = (0, 0)T ,

Σ2 : ż = Pz + Qv, z ∈ R3.

Design a control such that Σ1 is switched to Σ2 at T = 1.
Since Σ1 is completely controllable, and 2 ∧ 3 = 1, so we
have to design a control which can drive the system from
x(0) to x(T) with dim(x̄(T)) = 1. We may choose x(T) =
(1, 1)T and z(T) = (1, 1, 1)T . Then

x̄(T) = z̄(T).
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Example 4.7(cont’d)
It is easy to calculate that the controllability Gramian matrix
is

WC(t) =

∫ t

0
e−AτBBTe−ATτdτ =

1
6

[
2t3 −3t2

−3t2 t

]
.

Then the control is

u(t) = −BTe−AT tW−1
C (T)

(
x(0)− e−ATx(T)

)
= −6t.

Using this control, the system can be switched from Σ1 to
Σ2 at T = 1.
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+ Smooth dimension-varying control systems

In this case we require a continuous F̄(x̄, u).
Let X̄0, X̄2 ∈ Vr(Ω). Design X connecting X̄0 and X̄2 smoothly.
Define

X̄ :=


X̄0, t ∈ [t0, 0, t1),

X̄1 = (1− λ)X̄0 + λX̄2, t ∈ (t1, t2),

X̄2, t ∈ (t2,∞),

where λ = t−t1
t2−t1

.
Assume the minimum realization of X̄0 is X0 ∈ Vr(Rp), the
minimum realization of X̄2 is X2 ∈ Vr(Rq). Then the mini-
mum realization of X̄1 is X1 ∈ Vr(Rp∨q). Then the integral
curve of X̄ can be lifted as shown in Fig 9.
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Figure 9: Lift and projection of integral curves
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V. Conclusion

+ Design Dimension-Varying (Control) Systems

(i) Construct dimension-free manifold Ω;
(ii) Build dynamic (control) system on Ω;

(iii) Design control for systems over Ω;
(iv) Lifting it to Euclidian spaces of different dimensions.

Many problems remain for further study. (Say, distributed
dimension-varying systems need a different model to de-
scribe them.)
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Thanks!

Any Question?
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