Practical Applications of STP-Based Logical Networks in Automotive Powertrain Control Design

Yuhu Wu²⁾, Tielong Shen¹⁾

1) Dalian University of Technology, Dalian, China

2) Sophia University, Tokyo, Japan

IEEE CDC, December 12-15, 2023@Singapore

Prologue

Approach to Control Practice with Logical Network Framework Physics: Continues Domain revolution in Discrete-time

Modeling: Quantitative representation of the State

Description with Logical variables Why:

Essentially Controlling precise Low sensitivity of Stochastic system value doesn't make sense actuator

Combustion Engine

The RGF: internal exhaust gas recirculation

Physics: Stochasticity

Modeling:
$$\Pr\{x_{k+1} = s_j\} = T(x_k, u_k, \omega_k)$$
 ($x_{k+1} = f(x_k, u_k, w_k)$)

IEEE CDC 2023, December 12

 Derivation of Optimal Control Policy
 Example i: RGF control of Combustion Engines

 Example ii: Energy management strategy design for HEVs

Developing an Design Method

Stochastic Logical Networks: System Description

[1] D. Cheng, H. Qi, and Z. Li, Analysis and control of Boolean networks: a semi-tensor product approach. Springer, 2011.

Stochastic Logical Networks: Optimal Control

Admissible policy (reachable logical set)

$$\Pi = \{\mu_0, \mu_1, \cdots, \mu_{N-1}, \cdots\}, \qquad \mu_k : S \to U, k = 0, 1, \cdots, N-1.$$

Cost Index

$$J_{\pi}(x_0) = \mathop{E}_{\substack{w_k \\ k=0,1,\cdots}} \sum_{k=0}^{N} \alpha^k g(x_k, u_k), \quad \text{per stage cost}$$

Finite Horizon problem

Find the optimal policy $\pi^* \in \Pi$ s.t.

$$J_{\pi^*}(x_k) = J^*(x_k) \triangleq \inf_{\pi \in \Pi} \mathop{E}_{\substack{w_k \\ k=0,1,\dots}} \sum_{k=0}^{N-1} \alpha^k g(x_k, u_k),$$

Infinite Horizon problem

$$J_{\pi^*}(x_k) = J^*(x_k) \triangleq \inf_{\pi \in \Pi} \lim_{N \to \infty} \sum_{\substack{w_k \\ k=0,1,\dots}} \sum_{k=0}^{N-1} \alpha^k g(x_k, u_k),$$

Algebraic Representation

For a control law $\mu \in \mathcal{U}$, the transition probability matrix P_{μ} is defined by

$$P_{\mu} = \begin{pmatrix} p_{11}(\mu(\delta_s^1)) & \cdots & p_{1s}(\mu(\delta_s^1)) \\ \vdots & \vdots & \vdots \\ p_{s1}(\mu(\delta_s^s)) & \cdots & p_{ss}(\mu(\delta_s^s)) \end{pmatrix},$$

and the cost vector g_{μ} is defined by $g_{\mu} = \left(g(\delta_s^1, \mu(\delta_s^1)), \cdots, g(\delta_s^s, \mu(\delta_s^s))\right)^T$.

Proposition A

For any control law $\mu \in \mathcal{U}$, the transition probability matrix P_{μ} associated with control law μ can be calculated by

$$P_{\mu} = M_{\mu} \mathbb{P},$$

where the matrix $M_{\mu} \in M_{s \times (sr)}$ is defined by

$$M_{\mu} = \begin{pmatrix} (\delta_s^1)^T \ltimes (\mu(\delta_s^1))^T \\ (\delta_s^2)^T \ltimes (\mu(\delta_s^2))^T \\ \vdots \\ (\delta_s^s)^T \ltimes (\mu(\delta_s^s))^T \end{pmatrix}.$$

Transition probability matrix of "Closed Loop System under Control ¥mu" can be generated by multiplying a matrix

Optimal Control—Policy Iteration

Definition

We define a hyperplane \mathbb{D}^{s+1} of \mathbb{R}^{s+1} as $\mathbb{D}^{s+1} = \{(x_0, x_1, \cdots, x_s) \in \mathbb{R}^{s+1} : x_0 = 1\}$. For any control law $\mu \in \mathcal{U}$, we define operator $Q_{\mu} : \mathbb{D}^{s+1} \to \mathbb{D}^{s+1}$ as

$$Q_{\mu}x = \begin{pmatrix} 1 & 0\\ g_{\mu} & \alpha P_{\mu} \end{pmatrix} x, \quad \forall x \in \mathbb{D}^{s+1},$$
(1)

and define operator $Q:\mathbb{D}^{s+1}\to\mathbb{D}^{s+1}$ as

$$[Qx]_{i} = \inf_{\mu} [Q_{\mu}x]_{i}, \quad \forall i = 1, \cdots, s+1, \quad x \in \mathbb{D}^{s+1}.$$
 (2)

Equivalently, this is nothing but minimization of "one step" in Bellman DP

•
$$\Delta_s := \{\delta_s^i | i = 1, 2, \cdots, s\}.$$

• $S \sim \Delta_s \iff x^i \sim \delta_s^i, \quad i = 1, 2, \cdots, s,$
• $U \sim \Delta_r \iff u^j \sim \delta_r^j, \quad i = 1, 2, \cdots, r.$

Optimality Condition

Proposition B

For any control law $\mu : \Delta_s \to \Delta_r$, for any vector $J \in \mathbb{R}^s$, the operator $Q_\mu : \mathbb{D}^{s+1} \to \mathbb{D}^{s+1}$ and the corresponding cost vector $J_\mu \in \mathbb{R}^s$ of μ satisfies

$$\lim_{N \to \infty} Q^N_{\mu} \overline{J} = \overline{J}_{\mu}.$$
 (3)

A stationary policy μ is optimal if and only if

$$Q\overline{J}^* = Q_\mu \overline{J}^*,\tag{4}$$

where J^* is the vector form of optimal cost,

$$J^* = \left(J^*(\delta_s^1), J^*(\delta_s^2), \cdots, J^*(\delta_s^s)\right)^T$$

[2] Yuhu Wu, and Tielong Shen, A finite convergence criterion for the discounted optimal control of stochastic logical networks, *IEEE Transactions on Automatic Control*, 2017.

IEEE CDC 2023, December 12

Dalian Univ. of Technology, Sophia Univ.

Optimal Control—Policy Improvement

Algorithm

The optimal control problem can be solved as follows.

Step 0. Initialization: Guess an initial policy $\mu^0 \in \mathcal{U}$.

Step 1. Policy Evaluation: For given stationary policy μ^k , compute the corresponding J_{μ^k} from

$$Q_{\mu^k}\overline{J}_{\mu^k} = \overline{J}_{\mu^k}.\tag{1}$$

Step 2. Policy Improvement: Obtain a new stationary policy μ_{k+1} by $\mu^{k+1}(x) = \Phi_{k+1}x$, $\forall x \in \Delta_s$, where the structure matrix Φ_{k+1} of μ^{k+1} is calculated by

$$\begin{cases} \Phi_{k+1} = L_r[q_1^{k+1}, \cdots, q_s^{k+1}], \text{ with } i = 1, \cdots, s, \\ q_i^{k+1} = j_{j=1, \cdots, r} \{G_{ij} + (\delta_s^i)^T \ltimes (\delta_r^j)^T \mathbb{P} J_{\mu^k} \}. \end{cases}$$

If $\overline{J}_{\mu^k} = Q\overline{J}_{\mu^k}$, then the process is terminated; otherwise return to Step 2 and repeat the process.

Short Summary on Algorithm Developing

☆ Transition Probability matrix of CLS → multiply a policy-associated matrix M to basis vector

 \Rightarrow Benefit from the definition of Q_¥mu matrix

found that the optimal cost J^{^*} is a "fixed-point" of Q!
 provides a condition "policy evaluation" which enables us to construct a policy iteration algorithm.

Example of the Combustion Engine

Testbench: getting the physics

Testbench: Measuring and controlling

Dalian Univ. of Technology, Sophia Univ.

Modeling as logical system

The statistic properties of RGF displayed in Fig. 3 implies VVT evidently affects the distribution of RGF.

VVT can be regard as the control input with three discrete degrees 0, 8,16,24, 32.

	Mean Value	Standard Variation
VVT=0	0.0628	0.0086
VVT=8	0.0707	0.0098
VVT=16	0.0849	0.0146
VVT=24	0.1069	0.0205
VVT=32	0.1316	0.0260

The probability density of RGF under various constant VVT.

Modeling: Quantization & Logical System Representation

The range of RFG is divided into seven intervals A^1, A^2, \dots, A^7 , where

The values of RGF are quantified in following identification way:

$$y_t \in A^i \leftrightarrow x_t = \delta_7^i, \ i = 1, 2, \dots, 7.$$

IEEE CDC 2023, December 12

Fitting Transition Probability under Control

Fitting Transition Probability under Control

The conditional probability density for Residual Gas Fraction

$$Y_{i,t} = \{y_{t+1} | x_t \in A^i, u_t = \delta_5^k\},\ i = 1, 2, \cdots, 7, k = 1, 2, \cdots, 5.$$

$$P(y_{t+1}|y_t \in A^i, u_t = \delta_5^4)$$

Then the transition probabilities can be calculated

$$P_{ij}(\delta_r^k) = \int_{X_j} \frac{1}{\sqrt{2\pi\sigma_{i,k}}} \exp\left(-\frac{(y-\mu_{i,k})^2}{2\sigma_{i,k}^2}\right) dy.$$

IEEE CDC 2023, December 12

Formulation of Optimal Control Problem

The weight coefficients is chosen as $\lambda_1 = 1, \lambda_2 = 0.25.$

Table 1: Engine Specification			
V6 type 3.5 L			
Port & Direct injection			
94 × 83			
11.8:1			
228 @ 6400 rpm			
375 @ 4800 rpm			
3456			

Table 3.2: WORKING CONDITIONS

	C_1	C_2	C_3	C_4	C_5	C_6
Engine speed (rpm)	900	900	1200	1200	1500	1500
Load torque (Nm)	90	150	90	150	90	150

The experiment is carried out on the test bench for the 5-th cylinder

Engine speed is 1500 rpm Water temperature is 353.15 K Throttle stochastically change from 6.4-10.4 degree

Experimental Result with VVT

Experimental Result with VVT

[5] Yuhu Wu, Tielong Shen, Policy iteration approach to control residual gas fraction in IC engines under the framework of stochastic logical dynamics, *IEEE Transactions on Control Systems Technology*, 2016.

IEEE CDC 2023, December 12

Dalian Univ. of Technology, Sophia Univ.

Example of Energy Management of Hybrid Electric Vehicles

Fundamental Issue in HEV

Contents

IEEE CDC 2023, December 12

Modeling by Quantization

Finite disjoint interval of state range:

$$S^{i} = \left[\text{SoC}_{min} + (i-1) \cdot \sigma_{x}, \text{ SoC}_{min} + i \cdot \sigma_{z} \right] \quad i = 1, 2, \cdots, n_{x}$$

Define $X_n = \{x^1, \dots, x^n\}$, and $U_m = U_1 \times U_2$, $U_1 = \{u_1^1, \dots, u_1^{m_1}\}$, $U_2 = \{u_2^1, \dots, u_2^{m_2}\}$

$$\begin{aligned} x^{i} &= \operatorname{SoC}_{min} + (i-1)\sigma_{x} & n_{x} = \frac{\operatorname{SoC}_{max} - \operatorname{SoC}_{min}}{\sigma_{x}} \\ u^{j}_{1} &= \omega_{emin} + (j-1)\sigma_{u_{1}}, \ j = 1, 2 \cdots, m_{1} & m_{1} = \frac{\omega_{emax} - \omega_{emin}}{\sigma_{u1}} \\ u^{j}_{2} &= \tau_{emin} + (j-1)\sigma_{u_{2}}, \ j = 1, 2 \cdots, m_{2} & m_{1} = \frac{\omega_{emax} - \omega_{emin}}{\sigma_{u1}} \\ m_{2} &= \frac{\tau_{emax} - \tau_{emin}}{\sigma_{u2}} \end{aligned}$$

 σ_x : quantized value of state

 σ_{u1}, σ_{u2} : quantized value of control variables

Formulation of Optimal Control Problem

Approximate optimal control problem

 $SoC(t+1) = SoC(t) + \Delta SoC(\tau_m(t), \omega_m(t))$ $SoC(0) = SoC_0$

-Problem $(AP)_m^n$ -

Given the quantified dynamical system (QS) find an optimal control input sequence u_m

such that the corresponding cost functional reaches the optimal cost

$$J^*(\hat{f}_m^n, x_0) = \inf_{u_m \in U_m} J(\hat{f}_m^n, x_0, u_m)$$

Quantified dynamical system:

QS)
$$\begin{cases} \hat{x}_n(t+1) = \hat{f}_m^n(\hat{x}_n(t), u_m(t)) \\ \hat{x}_n(0) = q_n(x_0) \end{cases}$$

$$\hat{f}_m^n(x,u) = q_n \left(f(x, q_m(u)) \right), \ \forall x \in X_n, u \in U_m$$
$$q_n(x) = \sum_{i=1}^{\Upsilon_n} x_n^i \mathbb{1}_{S_n^i}(x), \ \forall x \in X$$
$$\mathbb{1}_S(x) = \begin{cases} 1, & x \in S \\ 0, & x \notin S \end{cases}$$

Remark: Solving the problem $(AP)_m^n$ obtains an approximated solution of the original problem.

The demonstrations on the quantitative analysis and convergence of the approximated solution to the accurate one are omitted here.

IEEE CDC 2023, December 12

Proposition-

 $\forall \ n,m\in N,$

 \exists a unique logical matrix $\hat{L}_m^n \in L_{n \times m}$

such that quantified dynamics given by (QS) can be expressed in the following linear multi-valued logical dynamics

 $\hat{x}_n(t+1) = \hat{L}_m^n \ltimes \hat{u}_m(t) \ltimes \hat{x}_n(t)$

Restrict the per-step cost function g on $X_n \times U_m$, then it can be expressed in the form

$$g(x, u) = x^{\top} G u, \quad \forall x \in \Delta_n, \ u \in \Delta_m,$$
$$G = (G_{i,j})_{\Upsilon_n \times \Upsilon_m} \text{ with } G_{i,j} = g(\delta_s^i, \delta_r^j).$$

Hence, $\forall x_0 \in \delta_n$, the objective function becomes

$$J(f, x_0, u) = \sum_{t=0}^{T-1} x(t)^{\top} G u.$$

IEEE CDC 2023, December 12

Simulation Results

Weighting factors:Control period: $\gamma_f = 1$ $\Delta t = 1[s]$ $\gamma_e = 800$ Horizon: T = 200 $\operatorname{SoC}_{ref} = 0.5$

SoC $\in [0.4, 0.6]$ $\omega_e \in [1000, 4500]$ [rpm] $\tau_e \in [10, 150]$ [Nm]

	σ_{SoC}	$\sigma_{\omega e}$ [rpm]	$\sigma_{\tau e}[\text{Nm}]$
case 1	$3.1 imes 10^{-3}$	218.75	8.75
case 2	$3.1 imes 10^{-3}$	109.375	4.375
case 3	$7.812 imes10^{-4}$	109.375	4.375

Quantization values of state and control variables

Validation Results

IEEE CDC 2023, December 12

Validation Results

 $SoC_0 \in \{0.4: 0.02: 0.6\}$

 $SoC \rightarrow SoC_{ref}, \forall SoC_0$

Each solution guarantees the constraints

If SoC_0 is closed to SoC_{ref} engine provides more power

otherwise, motor provides the most demand power

SoC ₀		Fuel	Electricity	Cost	Computation
		[L]	[KWN]		time [s]
	case 1	0.1636	0.2947	166.952	33.9
0.55	case 2	0.1596	0.2981	164.597	123.1
	case 3	0.1461	0.356	155.1753	504.5
	case 1	0.2388	0.0078	177.1273	33.9
0.5	case 2	0.2299	0.0111	173.9524	123.1
	case 3	0.2144	0.0736	162.3491	504.5

When take smaller quantification factors in terms of both the state and control variables, less cost is achieved, moreover, the fuel economy is improved.

Special Thanks to

Research on Data Propagation under TOYOTA connected Environment

Cross-ministerial Strategic Innovation Program On-board optimization algorithm for super lean burn engines

[1] Wu Yuhu, M Kumar, Tielong Shen, A stochastic logical system approach to model and optimal control of cyclic variation of residual gas fraction in combustion engines, Applied Thermal Engineering, 2016.

[2] JunYang, Tielong Shen, and Xiaohong Jiao, "Modelbased stochastic optimal air—fuel ratio control with residual gas fraction of spark ignition engines," IEEE Trans. Control Systems Technology, vol. 22, no. 3, pp.896–910, 2014.

[3]Yuhu Wu, Jiangyan Zhang and Tielong Shen, Logical Network-based Approximated Optimal Control of Continuous Domain System and Application to HEV, Science China Information sciences. 2023

Dr. Jiangyan Zhang Dalian Minzu University

Dr. Kumar Madan Guangdong Technion Israel Institute of Technology

Dr. Jun Yang Shandong Jiaotong University

