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Boolean control networks and observability

Boolean (control) networks

Boolean networks (genetic regulatory networks, 0 ∼ OFF, 1 ∼ ON)a

aS.A. Kauffman (1969). “Metabolic stability and epigenesis in randomly constructed genetic nets”. In: Journal of
Theoretical Biology 22.3, pp. 437–467.

Boolean control networks (BCNs), Boolean networks with external
regulation or perturbation includeda

aT. Ideker, T. Galitski, and L. Hood (2001). “A new approach to decoding life: systems biology”. In: Annual Review of
Genomics and Human Genetics 2, pp. 343–372.

Monographsabc

aD. Cheng, H. Qi, and Z. Li (2011). Analysis and Control of Boolean Networks: A Semi-tensor Product Approach.
Springer-Verlag London.

bT. Akutsu (2018). Algorithms for Analysis, Inference, and Control of Boolean Networks. World Scientific.
cK. Zhang, L. Zhang, and L. Xie (2020). Discrete-Time and Discrete-Space Dynamical Systems. Communications and

Control Engineering. Springer International Publishing.
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Boolean control networks and observability

The definition of Boolean (control) network

B := {0, 1}, Z+: the set of positive integers

A Boolean network
x(t + 1) = f(x(t)),

y(t) = h(x(t)), (1)

where t ∈ Z+; x(t) ∈ Bn, y(t) ∈ Bq denote the state and output at time t,
respectively; f : Bn → Bn, h : Bn → Bq.

A Boolean control network
x(t + 1) = f(u(t), x(t)),

y(t) = h(x(t)), (2)

where t ∈ Z+; x(t) ∈ Bn, u(t) ∈ Bm, y(t) ∈ Bq denote the state, input, and
output at time t, respectively; f : Bn+m → Bn, h : Bn → Bq.
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Boolean control networks and observability

Observability: (U , Y) =⇒ X0

Observability means one can use an input sequence and the corresponding
output sequence to determine the initial state of a partially-observed
dynamical system, a fundamental property in computer sciencea and
control scienceb

aE.F. Moore (1956). “Gedanken-experiments on sequential machines”. In: Automata Studies, Annals of Math. Studies 34,
pp. 129–153.

bR.E. Kalman (1963). “Mathematical description of linear dynamical systems”. In: Journal of the Society for Industrial and
Applied Mathematics Series A Control 1.12, pp. 152–192.

Lay foundation for state estimation, observer design, identification,
disturbance decoupling, controller synthesis, system decomposition, etc.a

aK. Zhang (2023). “A survey on observability of Boolean control networks”. In: Control Theory and Technology 21.2,
pp. 115–147.
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Boolean control networks and observability

Definition 1
A BCN (2) is called arbitrary-experiment observable if for every two
different initial states, every sufficiently long input sequence is their
distinguishing input sequence (DIS), i.e., for every two different initial
states x1 and x2, under every sufficiently long input sequence U, the
generated output sequences Y(x1, U) and Y(x2, U) are different.

Necessary and sufficient conditionsab

aE. Fornasini and M.E. Valcher (2013). “Observability, reconstructibility and state observers of Boolean control networks”.
In: IEEE Transactions on Automatic Control 58.6, pp. 1390–1401.

bK. Zhang and L. Zhang (2016). “Observability of Boolean control networks: A unified approach based on finite automata”.
In: IEEE Transactions on Automatic Control 61.9, pp. 2733–2738.
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The observability graph and observability verification

Content

1 Boolean control networks and observability

2 The observability graph and observability verification

3 Closed-loop Boolean control networks based on state feedback

4 How state feedback affects observability

5 Observability synthesis based on state feedback
Basic theorems
Observability synthesis algorithm

6 Further development based on the observability graph

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 7 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The observability graph and observability verification

Definition 2 (weighted pair grapha (later renamed observability graph))
aK. Zhang and L. Zhang (2014). “Observability of Boolean control networks: A unified approach based on the theories of

finite automata and formal languages”. In: Proceedings of the 33rd Chinese Control Conference, pp. 6854–6861.

Consider a BCN (2). A weighted directed graph Go = (V, E , W) is called
its observability graph if

V ={{x, x′}|x, x′ ∈ Bn, h(x) = h(x′)},
E ={({x1, x′

1}, {x2, x′
2}) ∈ V × V|(∃u ∈ Bm)[(f(x1, u) = x2 ∧ f(x′

1, u) =
x′

2) ∨ (f(x1, u) = x′
2 ∧ f(x′

1, u) = x2)]}, W(({x1, x′
1}, {x2, x′

2})) ={u ∈
Bm|(f(x1, u) = x2 ∧ f(x′

1, u) = x′
2) ∨ (f(x1, u) = x′

2 ∧ f(x′
1, u) = x2)}. A

vertex {x, x′} is called diagonal if x = x′, called non-diagonal otherwise.
The diagonal subgraph and non-diagonal subgraph of Go are denoted by
[ ·

· ] and [ ·
· ], respectively.
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The observability graph and observability verification

Proposition 3 (K. Zhang and L. Zhang, 2014; K. Zhang and L. Zhang,
2016)
Consider a BCN (2) and its observability graph Go = (V, E , W). In the
diagonal subgraph [ ·

· ] of Go, there is at least one cycle and every diagonal
vertex will lead to a cycle. [ ·

· ] ↛ [ ·
· ].

Theorem 4 (K. Zhang and L. Zhang, 2016)
A BCN (2) is not arbitrary-experiment observable (Def. 1) iff in Go, there
is v ∈ [ ·

· ] and a cycle C such that v −→ C.

Zhang, K. and L. Zhang (2014). “Observability of Boolean control networks: A unified approach based on the theories of finite
automata and formal languages”. In: Proceedings of the 33rd Chinese Control Conference, pp. 6854–6861.

— (2016). “Observability of Boolean control networks: A unified approach based on finite automata”. In: IEEE Transactions on
Automatic Control 61.9, pp. 2733–2738.
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— (2016). “Observability of Boolean control networks: A unified approach based on finite automata”. In: IEEE Transactions on
Automatic Control 61.9, pp. 2733–2738.
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The observability graph and observability verification

Example 5
Consider the following BCN

x1(t + 1) = x2(t) ∧ u(t),
x2(t + 1) = ¬x1(t) ∨ u(t),

y(t) = x1(t),
(3)

where t ∈ Z+; x1(t), x2(t), u(t), y(t) ∈ B. The BCN is not
arbitrary-experiment observable by its observability graph as follows and
Thm. 4.

00, 01 [ ·
· ] 10, 110

0

Figure 1: Observability graph of BCN (3).
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Closed-loop Boolean control networks based on state feedback

Semitensor product

Definition 6 (Cheng, Qi, and Z. Li, 2011)
Let A ∈ Rm×n, B ∈ Rp×q, and α = lcm(n, p) be the least common multiple
of n and p. The semitensor product (STP) of A and B is defined as

A ⋉ B =
(
A ⊗ I α

n

) (
B ⊗ I α

p

)
,

where ⊗ denotes the Kronecker product.

STP generalizes the conventional matrix product: If n = p,
A ⋉ B = AB.
STP preserves many good properties: associative law , distributive
law, inverse-order laws , etc., so A ⋉ B is usually rewritten as AB
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Closed-loop Boolean control networks based on state feedback

Semitensor product
Definition 6 (Cheng, Qi, and Z. Li, 2011)
Let A ∈ Rm×n, B ∈ Rp×q, and α = lcm(n, p) be the least common multiple
of n and p. The semitensor product (STP) of A and B is defined as

A ⋉ B =
(
A ⊗ I α

n

) (
B ⊗ I α

p

)
,

where ⊗ denotes the Kronecker product.

STP generalizes the conventional matrix product: If n = p,
A ⋉ B = AB.
STP preserves many good properties: associative lawa, distributive
law, inverse-order lawsb, etc., so A ⋉ B is usually rewritten as AB

aK. Zhang (2014). On Some Control-theoretic and Dynamical Problems of Logical Dynamical Systems. PhD Dissertation,
Harbin Engineering University, China, in Chinese.

bD. Cheng, H. Qi, and Z. Li (2011). Analysis and Control of Boolean Networks: A Semi-tensor Product Approach.
Springer-Verlag London.
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Closed-loop Boolean control networks based on state feedback

Algebraic form of BCNs based on STP

Col(A): the column set of matrix A, Coli(A): the ith column of A.
∆p := Col(Ip), Lp×q = {X ∈ Bp×q| Col(X) ⊂ Col(Ip)}.
N := 2n, M := 2m, Q := 2q, [k] := {1, . . . , k}, δi

n = Coli(In).

Using STP, identify δi
n ∼ n−i

n−1 , i ∈ [n], BCN (2) can be equivalently
transformed toa

x̃(t + 1) = Lx̃(t)ũ(t) = [L1, . . . , LN]x̃(t)ũ(t),
ỹ(t) = Hx̃(t),

(4)

where t ∈ Z+; x̃(t) ∈ ∆N, ũ(t) ∈ ∆M, ỹ(t) ∈ ∆Q; L ∈ LN×NM and
H ∈ LQ×N are called the structure matrices, Li ∈ LN×M, i ∈ [N].

aD. Cheng, H. Qi, and Z. Li (2011). Analysis and Control of Boolean Networks: A Semi-tensor Product Approach.
Springer-Verlag London.

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 13 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Closed-loop Boolean control networks based on state feedback

Algebraic form of BCNs based on STP

Col(A): the column set of matrix A, Coli(A): the ith column of A.

∆p := Col(Ip), Lp×q = {X ∈ Bp×q| Col(X) ⊂ Col(Ip)}.
N := 2n, M := 2m, Q := 2q, [k] := {1, . . . , k}, δi

n = Coli(In).

Using STP, identify δi
n ∼ n−i

n−1 , i ∈ [n], BCN (2) can be equivalently
transformed toa
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H ∈ LQ×N are called the structure matrices, Li ∈ LN×M, i ∈ [N].

aD. Cheng, H. Qi, and Z. Li (2011). Analysis and Control of Boolean Networks: A Semi-tensor Product Approach.
Springer-Verlag London.

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 13 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Closed-loop Boolean control networks based on state feedback

Algebraic form of BCNs based on STP

Col(A): the column set of matrix A, Coli(A): the ith column of A.
∆p := Col(Ip), Lp×q = {X ∈ Bp×q| Col(X) ⊂ Col(Ip)}.
N := 2n, M := 2m, Q := 2q, [k] := {1, . . . , k}, δi

n = Coli(In).

Using STP, identify δi
n ∼ n−i
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Closed-loop Boolean control networks based on state feedback

State-feedback controller

ũ(t) = Gx̃(t)ṽ(t) = [G1, . . . , GN]x̃(t)ṽ(t) (5)

with external input ṽ(t) ∈ ∆P, Gi ∈ LM×P, i ∈ [N].

Inserting (5) into BCN (4) yields the closed-loop state-feedback BCN

x̃(t + 1) = Lx̃(t)Gx̃(t)ṽ(t),
ỹ(t) = Hx̃(t).

(6)

Controller Systemuv x

Figure 2: A closed-loop BCN based on state feedback with external input.
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Closed-loop Boolean control networks based on state feedback

Proposition 7 (a)
aK. Zhang (2022). “Synthesis for observability of logical control networks”. In: Automatica 144, 110481(1–9).

Eqn (6) is equivalent to

x̃(t + 1) = [L1G1, ..., LNGN]x̃(t)ṽ(t),
ỹ(t) = Hx̃(t).

(7)

Proof.
By calculation based on STP:

x̃(t + 1) = [L1, . . . , LN]x̃(t)ũ(t)
= [L1, . . . , LN]x̃(t)[G1, . . . , GN]x̃(t)ṽ(t)
= [L1G1, ..., LNGN]x̃(t)ṽ(t).
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How state feedback affects observability
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How state feedback affects observability

Theorem 8 (Zhang and Johansson, 2019)
For a BCN (2), state feedback never enforces its controllability, but
sometimes weakens its controllability; state feedback sometimes enforces
its observability, sometimes weakens its observability.

Zhang, K. and K.H. Johansson (2019). “Synthesis for controllability and observability of logical control networks”. In: 2019
IEEE 58th Conference on Decision and Control (CDC), pp. 108–113.
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Observability synthesis based on state feedback Basic theorems

Problem 9 (a)
aK. Zhang (2022). “Synthesis for observability of logical control networks”. In: Automatica 144, 110481(1–9).

Given an unobservable BCN (2), is there a state-feedback controller

ũ(t) = Gx̃(t)ṽ(t)

as in (5) with external input ṽ(t) such that the closed-loop BCN

x̃(t + 1) = [L1G1, ..., LNGN]x̃(t)ṽ(t),
ỹ(t) = Hx̃(t).

as in (7) is observable?

Remark 1
Not easy to solve, because there are infinitely many state-feedback
controllers with external input.
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Observability synthesis based on state feedback Basic theorems

Remark 2
Problem 9 is solvable because there are finitely many state-feedback
controllers ũ(t) = Gx̃(t) (with no external input), where G ∈ LM×N, and
the following result holds.

Theorem 10 (a)
aK. Zhang (2022). “Synthesis for observability of logical control networks”. In: Automatica 144, 110481(1–9).

Consider an unobservable BCN (4). If it can be made observable by a
state-feedback controller (5) with external input, then it can also be made
observable by a state-feedback controller.

Remark 3
By Thm. 10, Problem 9 is solvable algorithmically, because there are
finitely many state-feedback controllers. Problem 9 is a difficult problem
because it is NP-hard to verify observability of BCNsa.

aD. Laschov, M. Margaliot, and G. Even (2013). “Observability of Boolean networks: A graph-theoretic approach”. In:
Automatica 49.8, pp. 2351–2362.
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Observability synthesis based on state feedback Basic theorems

Proof of Theorem 10.
Consider an unobservable BCN Σ:

x̃(t + 1) = [L1, . . . , LN]x̃(t)ũ(t),
ỹ(t) = Hx̃(t),

and a state-feedback controller ũ(t) = Gx̃(t)ṽ(t) as in (5) with external
input ṽ(t), such that the closed-loop BCN Σũ:

x̃(t + 1) = [L1G1, ..., LNGN]x̃(t)ṽ(t),
ỹ(t) = Hx̃(t)

is observable.

By Thm. 4, in the observability graph G̃o = (Ṽ, Ẽ , W̃) of Σũ,

there exists no cycle in [ ·
· ] (⟲ /∈ [ ·

· ]), (9a)
and there exists no edge from [ ·

· ] to [ ·
· ] ([ ·

· ] ↛ [ ·
· ]). (9b)
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Proof of Theorem 10.
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input ṽ(t), such that the closed-loop BCN Σũ:

x̃(t + 1) = [L1G1, ..., LNGN]x̃(t)ṽ(t),
ỹ(t) = Hx̃(t)

is observable. By Thm. 4, in the observability graph G̃o = (Ṽ, Ẽ , W̃) of Σũ,

there exists no cycle in [ ·
· ] (⟲ /∈ [ ·
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Observability synthesis based on state feedback Basic theorems

Proof of Theorem 10 (cont’d).
Choose a state-feedback controller

û(t) = [Coli(G1), . . . , Coli(GN)] x̃(t), (10)

by setting ṽ(t) ≡ δi
P in ũ(t) = Gx̃(t)ṽ(t), where i ∈ [P], and consider the

observability graph Ĝo = (V̂, Ê , Ŵ) of the closed-loop BN Σû

x̃(t + 1) = [L1 Coli(G1), ..., LN Coli(GN)]x̃(t),
ỹ(t) = Hx̃(t)

obtained by inserting (10) into (4).

V̂ = Ṽ. Ê ⊂ Ẽ , because Col(Lj Coli(Gj)) ⊂ Col(LjGj), j ∈ [N]. Therefore,
Ĝo also satisfies (9), Σû is also observable.
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Observability synthesis based on state feedback Basic theorems

Proof of Theorem 10 (cont’d).
Choose a state-feedback controller

û(t) = [Coli(G1), . . . , Coli(GN)] x̃(t), (10)

by setting ṽ(t) ≡ δi
P in ũ(t) = Gx̃(t)ṽ(t), where i ∈ [P], and consider the

observability graph Ĝo = (V̂, Ê , Ŵ) of the closed-loop BN Σû

x̃(t + 1) = [L1 Coli(G1), ..., LN Coli(GN)]x̃(t),
ỹ(t) = Hx̃(t)

obtained by inserting (10) into (4).
V̂ = Ṽ.

Ê ⊂ Ẽ , because Col(Lj Coli(Gj)) ⊂ Col(LjGj), j ∈ [N]. Therefore,
Ĝo also satisfies (9), Σû is also observable.
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Observability synthesis based on state feedback Basic theorems

Proof of Theorem 10 (cont’d).
Choose a state-feedback controller

û(t) = [Coli(G1), . . . , Coli(GN)] x̃(t), (10)

by setting ṽ(t) ≡ δi
P in ũ(t) = Gx̃(t)ṽ(t), where i ∈ [P], and consider the

observability graph Ĝo = (V̂, Ê , Ŵ) of the closed-loop BN Σû

x̃(t + 1) = [L1 Coli(G1), ..., LN Coli(GN)]x̃(t),
ỹ(t) = Hx̃(t)

obtained by inserting (10) into (4).
V̂ = Ṽ. Ê ⊂ Ẽ , because Col(Lj Coli(Gj)) ⊂ Col(LjGj), j ∈ [N].

Therefore,
Ĝo also satisfies (9), Σû is also observable.

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 22 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Basic theorems

Proof of Theorem 10 (cont’d).
Choose a state-feedback controller

û(t) = [Coli(G1), . . . , Coli(GN)] x̃(t), (10)

by setting ṽ(t) ≡ δi
P in ũ(t) = Gx̃(t)ṽ(t), where i ∈ [P], and consider the

observability graph Ĝo = (V̂, Ê , Ŵ) of the closed-loop BN Σû

x̃(t + 1) = [L1 Coli(G1), ..., LN Coli(GN)]x̃(t),
ỹ(t) = Hx̃(t)

obtained by inserting (10) into (4).
V̂ = Ṽ. Ê ⊂ Ẽ , because Col(Lj Coli(Gj)) ⊂ Col(LjGj), j ∈ [N]. Therefore,
Ĝo also satisfies (9),

Σû is also observable.
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Observability synthesis based on state feedback Basic theorems

Proof of Theorem 10 (cont’d).
Choose a state-feedback controller

û(t) = [Coli(G1), . . . , Coli(GN)] x̃(t), (10)

by setting ṽ(t) ≡ δi
P in ũ(t) = Gx̃(t)ṽ(t), where i ∈ [P], and consider the

observability graph Ĝo = (V̂, Ê , Ŵ) of the closed-loop BN Σû

x̃(t + 1) = [L1 Coli(G1), ..., LN Coli(GN)]x̃(t),
ỹ(t) = Hx̃(t)

obtained by inserting (10) into (4).
V̂ = Ṽ. Ê ⊂ Ẽ , because Col(Lj Coli(Gj)) ⊂ Col(LjGj), j ∈ [N]. Therefore,
Ĝo also satisfies (9), Σû is also observable.
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Observability synthesis based on state feedback Basic theorems

Theorem 11 (Zhang, 2022)
An unobservable BCN (4) can be made observable by state feedback with
external input, if and only if, it can be made observable by state feedback,
if and only if, there exist i1, . . . , iN ∈ [M] such that the BN

x̃(t + 1) = [Coli1(L1), . . . , ColiN(LN)]x̃(t),
ỹ(t) = Hx̃(t)

(11)

is observable.

Zhang, K. (2022). “Synthesis for observability of logical control networks”. In: Automatica 144, 110481(1–9).
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Observability synthesis based on state feedback Basic theorems

Remark 4
Thm. 11 implies an algorithm for solving Problem 9, that is, it implies an
upper bound on how many state-feedback controllers are needed to be
inserted into an unobservable BCN (4) to check if (4) can be made
observable by state feedback with external input.

Denote
Col(H) =

{
δk1

Q , . . . , δkℓ
Q

}
, (12)

where δk1
Q , . . . , δkℓ

Q are distinct. For each i ∈ [ℓ], denote

Ski :=
{

δj
N

∣∣∣ j ∈ [N], Hδj
N = δki

Q

}
,

ci := |Ski | , (number of states producing output δki
N)

Ski =:
{

δi1
N, . . . , δ

ici
N

}
. (set of states producing output δki

N)

(13)

The collection of state sets Sk1 , . . . , Skℓ
partitions ∆N.
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Remark 4
Thm. 11 implies an algorithm for solving Problem 9, that is, it implies an
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, (12)

where δk1
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Q are distinct. For each i ∈ [ℓ], denote
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Observability synthesis based on state feedback Basic theorems

Theorem 12 (K. Zhang, 2022)
Consider an unobservable BCN (4). In order to verify whether (4) can be
made observable by state feedback, it is sufficient to insert

ℓ∏
i=1

Numi (14)

state-feedback controllers ũ(t) = [g1, . . . , gN]x̃(t) with each gi in LM×1
into (4) to check whether some closed-loop BN is observable, where

Numi =
∣∣∣{(αi1 , . . . , αici

)
∣∣∣ αik ∈ Col(Lik), k ∈ [ci],

αi1 , . . . , αici
are distinct}|,

(15)

ℓ is defined in (12), ci and i1, . . . , ici are defined in (13). In addition, for
every two such controllers G1 = [g1

1, . . . , g1
N] and G2 = [g2

1, . . . , g2
N],[

Lj1g1
j1 , . . . , Ljcj

g1
jcj

]
̸=

[
Lj1g2

j1 , . . . , Ljcj
g2

jcj

]
for some j ∈ [ℓ]. (16)
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Theorem 12 (K. Zhang, 2022)
Consider an unobservable BCN (4). In order to verify whether (4) can be
made observable by state feedback, it is sufficient to insert

ℓ∏
i=1

Numi (14)

state-feedback controllers ũ(t) = [g1, . . . , gN]x̃(t) with each gi in LM×1
into (4) to check whether some closed-loop BN is observable, where

Numi =
∣∣∣{(αi1 , . . . , αici

)
∣∣∣ αik ∈ Col(Lik), k ∈ [ci],

αi1 , . . . , αici
are distinct}|,

(15)

ℓ is defined in (12), ci and i1, . . . , ici are defined in (13). In addition, for
every two such controllers G1 = [g1

1, . . . , g1
N] and G2 = [g2
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N],[
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j1 , . . . , Ljcj
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]
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Theorem 12 (K. Zhang, 2022)
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Observability synthesis based on state feedback Observability synthesis algorithm

An example I

Consider the following BCN

x̃(t + 1) =δ8[1, 1, 2, 3,
......2, 3, 1, 4,

......3, 5, 7, 6,
......6, 7, 8, 1,

2, 3, 7, 6,
......1, 2, 3, 4,

......3, 4, 7, 8,
......5, 6, 7, 4]x̃(t)ũ(t),

ỹ(t) =δ4[1, 1, 1, 1, 1, 2, 2, 2]x̃(t),

(17)

where t ∈ Z+, x̃(t) ∈ ∆8, ũ(t), ỹ(t) ∈ ∆4. The observability graph of (17)
contains a path

{
δ2

8 , δ5
8
} δ2

4−→
{

δ3
8 , δ3

8
} δ1

4−→
{

δ3
8 , δ3

8
}

,

hence (17) is not observable by Thm. 4.
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Observability synthesis based on state feedback Observability synthesis algorithm

An example II
Compute the upper bound on the number of tested state-feedback
controllers.

Col(H) =
{

δ1
4 , δ2

4
}

,

where denote k1 = 1 and k2 = 2. Then

Sk1 =
{

δ1
8 , δ2

8 , δ3
8 , δ4

8 , δ5
8
}

, c1 = |Sk1 | = 5,

Sk2 =
{

δ6
8 , δ7

8 , δ8
8
}

, c2 = |Sk2 | = 3,

Col(L1) =
{
δ1

8 , δ2
8 , δ3

8
}

, Col(L2) =
{
δ1

8 , δ2
8 , δ3

8 , δ4
8
}

,
Col(L3) =

{
δ3

8 , δ5
8 , δ6

8 , δ7
8
}

, Col(L4) =
{
δ1

8 , δ6
8 , δ7

8 , δ8
8
}

,
Col(L5) =

{
δ2

8 , δ3
8 , δ6

8 , δ7
8
}

, Col(L6) =
{
δ1

8 , δ2
8 , δ3

8 , δ4
8
}

,
Col(L7) =

{
δ3

8 , δ4
8 , δ7

8 , δ8
8
}

, Col(L8) =
{
δ4

8 , δ5
8 , δ6

8 , δ7
8
}

.

Num1 · Num2 = 153 · 46 = 7038.
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Observability synthesis based on state feedback Observability synthesis algorithm

Observability synthesis algorithm
Algorithm 1 An observability synthesis algorithm
Input: an unobservable BCN Σ as in (4)
Output: a state-feedback controller C : ũ(t) = [g1, . . . , gN]x̃(t) with each gi in

LM×1 such that the closed-loop BN ΣC is observable if such a C exists
1: initialize a state-feedback controller C0 and substitute it into (4)
2: if ΣC0 is observable then
3: return C0 and stop
4: else
5: repetitively update a single column of C0 each time with the purpose of

reducing the number of cycles in [ ·
· ] and the number of edges [ ·

· ] → [ ·
· ]

in the corresponding observability graph of ΣC0 until both of them
disappear, then return C0 and stop

6: if not possible to continue with the update as in line 5 before finding a
solution then

7: rollback and even reinitialize C0, and then rerun line 5
8: end if
9: end if
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Observability synthesis based on state feedback Observability synthesis algorithm

An illustrative example for Alg. 1 I

Initialize a state-feedback controller

ũ(t) = δ4[1, 1, 1, 1, 3, 1, 1, 1]x̃(t). (18)

Substitute (18) into (17), then get the closed-loop BN

x̃(t + 1) =δ8[1, 1, 2, 3,
......2, 3, 1, 4,

......3, 5, 7, 6,
......6, 7, 8, 1,

2, 3, 7, 6,
......1, 2, 3, 4,

......3, 4, 7, 8,
......5, 6, 7, 4]

x̃(t)δ4[1, 1, 1, 1, 3, 1, 1, 1]x̃(t)
=δ8[1, 2, 3, 6, 7, 1, 3, 5]x̃(t),

ỹ(t) =δ4[1, 1, 1, 1, 1, 2, 2, 2]x̃(t).

(19)

The observability graph of (19) as in Fig. 3 shows that (19) is not
observable: [ ·

· ] ↛ [ ·
· ], but there are cycles in [ ·

· ].
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Observability synthesis based on state feedback Observability synthesis algorithm

An illustrative example for Alg. 1 II
68 78 35 67

15 12 23 13

14 24 25

34 45

[ ·
· ]

Figure 3: Observability graph of BN (19).

In order to remove the self-loop on non-diagonal vertex {δ1
8 , δ2

8}, change
(18) to

ũ(t) = δ4[1, 4, 1, 1, 3, 1, 1, 1]x̃(t) (20)

and substitute (20) into (17), then obtain the following closed-loop BN

x̃(t + 1) = δ8[1, 4, 3, 6, 7, 1, 3, 5]x̃(t),
ỹ(t) = δ4[1, 1, 1, 1, 1, 2, 2, 2]x̃(t).

(21)
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Observability synthesis based on state feedback Observability synthesis algorithm

An illustrative example for Alg. 1 III
In Fig. 4, [ ·

· ] ↛ [ ·
· ], there is a single self-loop in [ ·

· ].

68 78 35 67

15 12 23 13

14 24 25

34 45

[ ·
· ]

Figure 4: Observability graph of BN (21).

Furthermore change (20) to the following

ũ(t) = δ4[1, 4, 2, 1, 3, 1, 1, 1]x̃(t) (22)

and substitute (22) into (17), then obtain the following closed-loop BN
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Observability synthesis based on state feedback Observability synthesis algorithm

An illustrative example for Alg. 1 IV

x̃(t + 1) = δ8[1, 4, 5, 6, 7, 1, 3, 5]x̃(t),
ỹ(t) = δ4[1, 1, 1, 1, 1, 2, 2, 2]x̃(t).

(23)

In Fig. 5, there is no cycle in [ ·
· ], and [ ·

· ] ↛ [ ·
· ], BN (23) is observable.

68 78 35 67

15 12 23 13

14 24 25

34 45

[ ·
· ]

Figure 5: Observability graph of BN (23).
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Observability synthesis based on state feedback Observability synthesis algorithm

An illustrative example for Alg. 1 V

STEP controller C closed-loop BN ΣC
number of cycles in [ ·

· ]
of the observability graph of ΣC

1 (18) (19) 3
2 (20) (21) 1
3 (22) (23) 0

Table 1: A summary of the illustrative example for Alg. 1, where all closed-loop
BNs (19), (21), and (23) satisfy (9b), i.e., [ ·

· ] ↛ [ ·
· ]. Finally, (23) is observable.
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Observability synthesis based on state feedback Observability synthesis algorithm

Initialize a state-feedback controller

ũ(t) = δ4[1, 1, 1, 1, 3, 1, 1, 1]x̃(t). (18)

Inserting (18) into (17) yields the closed-loop BN

x̃(t + 1) =δ8[1, 1, 2, 3,
......2, 3, 1, 4,

......3, 5, 7, 6,
......6, 7, 8, 1,

2, 3, 7, 6,
......1, 2, 3, 4,

......3, 4, 7, 8,
......5, 6, 7, 4]

x̃(t)δ4[1, 1, 1, 1, 3, 1, 1, 1]x̃(t)
=δ8[1, 2, 3, 6, 7, 1, 3, 5]x̃(t),

ỹ(t) =δ4[1, 1, 1, 1, 1, 2, 2, 2]x̃(t).

(19)

The observability graph of (19) as in Fig. 3 shows that (19) is not observ-
able: [ ·

· ] ↛ [ ·
· ], but there are cycles in [ ·

· ].

68 78 35 67

15 12 23 13

14 24 25

34 45

[ ·
· ]

Figure 3: Observability graph of BN (19).

In order to remove the self-loop on non-diagonal vertex {δ1
8 , δ2

8}, change
(18) to

ũ(t) = δ4[1, 4, 1, 1, 3, 1, 1, 1]x̃(t) (20)

and substitute (20) into (17), then obtain the following closed-loop BN

x̃(t + 1) = δ8[1, 4, 3, 6, 7, 1, 3, 5]x̃(t),
ỹ(t) = δ4[1, 1, 1, 1, 1, 2, 2, 2]x̃(t).

(21)

•

In Fig. 4, [ ·
· ] ↛ [ ·

· ], there is a single self-loop in [ ·
· ].

68 78 35 67

15 12 23 13

14 24 25

34 45

[ ·
· ]

Figure 4: Observability graph of BN (21).

Furthermore change (20) to the following

ũ(t) = δ4[1, 4, 2, 1, 3, 1, 1, 1]x̃(t) (22)

and substitute (22) into (17), then obtain the following closed-loop BN

•

x̃(t + 1) = δ8[1, 4, 5, 6, 7, 1, 3, 5]x̃(t),
ỹ(t) = δ4[1, 1, 1, 1, 1, 2, 2, 2]x̃(t).

(23)

In Fig. 5, there is no cycle in [ ·
· ], and [ ·

· ] ↛ [ ·
· ], BN (23) is observable.
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[ ·
· ]

Figure 5: Observability graph of BN (23).
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Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure

Initialize a state-feedback controller C0,
if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],
if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient
flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure

Initialize a state-feedback controller C0,
if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],
if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient
flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure

Initialize a state-feedback controller C0,
if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],
if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient
flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure
Initialize a state-feedback controller C0,

if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],
if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient
flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure
Initialize a state-feedback controller C0,
if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],

if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient
flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure
Initialize a state-feedback controller C0,
if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],
if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient
flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure
Initialize a state-feedback controller C0,
if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],
if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient
flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure
Initialize a state-feedback controller C0,
if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],
if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient

flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Observability synthesis based on state feedback Observability synthesis algorithm

Summary of the observability synthesis algorithm

philosophy
Design a state-feedback controller to make the observability graph of the
obtained closed-loop BCN satisfy

there is no cycle in [ ·
· ] and [ ·

· ] ↛ [ ·
· ].

procedure
Initialize a state-feedback controller C0,
if necessary, change a single column of C0 each time to reduce the
numbers of cycles in [ ·

· ] and edges of the form [ ·
· ] → [ ·

· ],
if necessary, rollback and reinitialize C0.

possible to find a solution but not efficient
flexible to adjust search strategies — promising to be more efficient

Kuize Zhang (SurreyU) IEEE CDC’23, Singapore 12/12/2023 35 / 45



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Further development based on the observability graph

Content

1 Boolean control networks and observability

2 The observability graph and observability verification

3 Closed-loop Boolean control networks based on state feedback

4 How state feedback affects observability

5 Observability synthesis based on state feedback
Basic theorems
Observability synthesis algorithm

6 Further development based on the observability graph
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Further development based on the observability graph

Definition 13
A BCN (2) is called strongly multiple-experiment observable if every initial
state x0 has a (finitely long) distinguishing input sequence (DIS) U,
formally, the output sequence generated by x0 and U is different from the
output sequence generated by any x′

0 different from x0 and U.

Definition 14
A BCN (2) is called multiple-experiment observable if every two different
initial states x0 and x′

0 have a distinguishing input sequence (DIS) U,
formally, the output sequences generated by x0 and U and generated by x′

0
and U are different.

Definition 15
A BCN (2) is called single-experiment observable if (2) has a
distinguishing input sequence (DIS) U, formally, for every two different
initial states x0 and x′

0, the output sequences generated by x0 and U and
generated by x′

0 and U are different.
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Further development based on the observability graph

observability
graph

graph and
automaton1

matrix2345graph6

Figure 6: Representations of the fundamental idea of observability graph in
different mathematical forms.

1K. Zhang and L. Zhang (2014). “Observability of Boolean control networks: A unified approach based on the theories of
finite automata and formal languages”. In: Proceedings of the 33rd Chinese Control Conference, pp. 6854–6861.

2D. Cheng, H. Qi, T. Liu, and Y. Wang (2016). “A note on observability of Boolean control networks”. In: Systems &
Control Letters 87, pp. 76–82.

3Y. Guo (2018). “Observability of Boolean control networks using parallel extension and set reachability”. In: IEEE
Transactions on Neural Networks and Learning Systems 29.12, pp. 6402–6408.

4R. Zhou, Y. Guo, and W. Gui (2019). “Set reachability and observability of probabilistic Boolean networks”. In:
Automatica 106, pp. 230–241.

5Y. Yu, M. Meng, J. Feng, and G. Chen (2022). “Observability criteria for Boolean networks”. In: IEEE Transactions on
Automatic Control 67.11, pp. 6248–6254.

6Q. Zhu, Y. Liu, J. Lu, and J. Cao (2018). “Observability of Boolean control networks”. In: Science China Information
Sciences 61.9, p. 092201.
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Further development based on the observability graph

Table 2: Complexity upper bounds for verifying observability in Boolean control
networks (BCNs), where the same color represents equivalent methods.

Def. 13 Def. 14 Def. 15 Def. 1
(Cheng and Qi, 2009) sufficientAutomatica Best Paper

(Zhao, Qi, and Cheng, 2010) sufficient
(Fornasini and Valcher, 2013) O(24n+m)

(R. Li, M. Yang, and Chu, 2014) O(222n+m)
(K. Zhang and L. Zhang, 2014)

O(2n+22n+m) O(24n+m) O(222n+m) O(22n+m)(K. Zhang and L. Zhang, 2016)
(weighted pair graph (WPG),

O(22n+m))
(R. Li, M. Yang, and Chu, 2015)

O(222n+m)(computational algebra,
very fast in sparse BCNs)

(Cheng, Qi, T. Liu, and Y. Wang, 2016)
O(22n+m)observability matrix

(adjacency matrix of WPG)
(Q. Zhu, Y. Liu, Lu, and Cao, 2018)

O(22n+m)observability graph
(i.e., WPG)

(Y. Guo, 2018) O(26n+m) O(2n22n+1+m) O(2n22n+1+m)parallel extension
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Further development based on the observability graph

Applications of observability graph or its adjacency matrix

reconstructibility verification of BCNs
and singular BCNs (K. Zhang,
L. Zhang, and Su, 2016; T. Li, Feng,
and B. Wang, 2020)

observability of switched BCNs
(X. Zhang, Meng, Y. Wang, and
Cheng, 2021)

minimal observability and
reconstructiblity of BCNs (Y. Liu,
L. Wang, Y. Yang, and Wu, 2022; X. Li,
Y. Liu, Cao, and Abdel-Aty, 2023)

observability categorization of BCNs
(Lin and Lam, 2023)

observability verification for probabilistic
BNs/graphs (Zhou, Y. Guo, and Gui,
2019; Yu, Meng, Feng, and Chen, 2022;
S. Zhu et al., 2023)

observability perturbation analysis of
BNs (S. Wang and H. Li, 2021)
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(X. Zhang, Meng, Y. Wang, and
Cheng, 2021)

minimal observability and
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Applications of observability graph or its adjacency matrix

reconstructibility verification of BCNs
and singular BCNs (K. Zhang,
L. Zhang, and Su, 2016; T. Li, Feng,
and B. Wang, 2020)

observability of switched BCNs
(X. Zhang, Meng, Y. Wang, and
Cheng, 2021)

minimal observability and
reconstructiblity of BCNs (Y. Liu,
L. Wang, Y. Yang, and Wu, 2022; X. Li,
Y. Liu, Cao, and Abdel-Aty, 2023)

observability categorization of BCNs
(Lin and Lam, 2023)

observability verification for probabilistic
BNs/graphs (Zhou, Y. Guo, and Gui,
2019; Yu, Meng, Feng, and Chen, 2022;
S. Zhu et al., 2023)

observability perturbation analysis of
BNs (S. Wang and H. Li, 2021)
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Further development based on the observability graph

Applications of observability graph or its adjacency matrix
reconstructibility verification of BCNs
and singular BCNs (K. Zhang,
L. Zhang, and Su, 2016; T. Li, Feng,
and B. Wang, 2020)

observability of switched BCNs
(X. Zhang, Meng, Y. Wang, and
Cheng, 2021)

minimal observability and
reconstructiblity of BCNs (Y. Liu,
L. Wang, Y. Yang, and Wu, 2022; X. Li,
Y. Liu, Cao, and Abdel-Aty, 2023)

observability categorization of BCNs
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