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A Boolean network is described by the following equations

X(t+1) = fX(0), )
Y(t) = WX(t), telZ
X (+) is the n-dimensional Boolean state
Y'(-) is the p-dimensional Boolean output
f and h are logic functions.
If we represent the Boolean vectors X (¢) and Y (¢) by means of
their “canonical equivalent" x(¢) and y(¢), the BN (1) can be
described as
x(t+1) = Lx(t), @)
y(t) = Hx(t), teZy,

where L € Lonyon and H € Lopyon.
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Reconstructability of Boolean Networks

BNs: reconstructability definition

Definition 1 A BN (2) is reconstructable if there exists T € Z .
such that the knowledge of the output trajectory
y(t),t €{0,1,..., T}, allows to uniquely determine x (7).
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Reconstructability of Boolean Networks

BNs: reconstructability definition

Definition 1 A BN (2) is reconstructable if there exists T € Z .

such that the knowledge of the output trajectory
y(t),t €{0,1,..., T}, allows to uniquely determine x (7).

In other words, a BN (2) is reconstructable if 3 7' > 0 such that

uniquely
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Reconstructability of Boolean Networks

BNs: reconstructability characterization (1)

Every BN (2) of dimension N = 2" can be associated with a
directed graph.
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Reconstructability of Boolean Networks

BNs: reconstructability characterization (1)

Every BN (2) of dimension N = 2" can be associated with a
directed graph.

The graph has N vertices, say {1,2,..., N}, each of them
associated to one of the possible states ¢%,i € {1,2,..., N}.

There is an arc, denoted by (j, ), from j to 4, if Léfv = 0%y,
namely &%, is the successor of ¢%; in the network evolution.
To each vertex i we associate a output label representing the

value of the output associated with the state &%, namely
Yy = Héfv.
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Reconstructability of Boolean Networks

BNs: reconstructability characterization (2)
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Reconstructability of Boolean Networks

BNs: reconstructability characterization (3)

Theorem 1 For a BN (2) the following facts are equivalent:
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Reconstructability of Boolean Networks

BNs: reconstructability characterization (3)

Theorem 1 For a BN (2) the following facts are equivalent:

¢ the BN is reconstructable;

e in the graph associated with the BN, each cycle of length &
identifies a periodic output label sequence of minimal period #,
and distinct cycles identify distinct periodic output label
sequences;

o for every pair of distinct periodic state trajectories of the same
minimal period &, described by the two ordered ktuples

(Xl,XQ, - ,Xk) 7é ()21,}22, - 75(};),

the corresponding output trajectories are periodic of minimal
period k and described by two different ordered ktuples, i.e.

(Hxy, Hxo, . .. ,ka) # (Hxy, HXa, ..., HXy)

M.E. Valcher Reconstruction of BNs and optimal control 7/26



Reconstructability of Boolean Networks

BNs: reconstructability characterization (4)
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Reconstructability of Boolean Networks

BNs: reconstructability characterization (5)
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Reconstructability of Boolean Networks

BNs: remarks on reconstructability (1)

Every logical matrix L € Lono» can be brought, by means of
row-column permutations, to the following form:
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Reconstructability of Boolean Networks

BNs: remarks on reconstructability (1)

Every logical matrix L € Lono» can be brought, by means of
row-column permutations, to the following form:

each C; being a cyclic permutation matrix.
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Reconstructability of Boolean Networks

BNs: remarks on reconstructability (2)

We can accordingly partition / as

H = [Hw Hc].
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Reconstructability of Boolean Networks

BNs: remarks on reconstructability (2)

We can accordingly partition / as

H = [Hw Hc].

The BN described by (L, H) is reconstructable if and only if all
columns of the matrix

He

HoC
O¢ := ]
Hch_l

are distinct.
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Boolean Control Networks

BCNs: from logic to algebraic representations (1)

A Boolean control network (BCN) is described by the following
equations
X(E+1) = FX(0),U®), @
Y(t) = hX(), teZy,
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Boolean Control Networks

BCNs: from logic to algebraic representations (1)

A Boolean control network (BCN) is described by the following
equations

X(t+1) = FX@0,U0)), -
Y(t) = MX(t), teZ,

X (), U(-) and Y () are the Boolean state (dim = n), input (dim

=m), and output (dim = p)

f and h are logic functions.

If we represent the Boolean vectors by means of their

“canonical equivalent", the BCN (3) can be described as

x(t+1) = Lxu(t)xx(t), teiy, (4)
y(t) = Hx(t)

Where L € £271,><2(n+m) and H € 'C2p><2"'
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Boolean Control Networks

BCNSs: reconstructability definition

Definition 2 A BCN (4) is reconstructable if if there exists

T € Z. such that, for every input sequence and every initial
condition x(0), the knowledge of the input and of the
corresponding output trajectory, u(t) and y(¢),t € {0,1,..., T},
allows to uniquely determine x(7').
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BCNSs: reconstructability definition

Definition 2 A BCN (4) is reconstructable if if there exists

T € Z. such that, for every input sequence and every initial
condition x(0), the knowledge of the input and of the
corresponding output trajectory, u(t) and y(¢),t € {0,1,..., T},
allows to uniquely determine x(7').

More in detail, a BCN (4) is reconstructable if 3 7" > 0 such that

w(0),u(l),...,u(T"—1)
{ y(0),y(1),...,y(T) } uni;ely 2(T).
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Boolean Control Networks

BCNs: reconstructability characterization (1)

Every BCN (4) of dimension N = 2" with M/ = 2" inputs can be
associated with a directed graph.
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Boolean Control Networks

BCNs: reconstructability characterization (1)

Every BCN (4) of dimension N = 2" with M/ = 2" inputs can be
associated with a directed graph.

The graph has N vertices, say {1,2,..., N}, each of them
associated to one of the possible states ¢%,i € {1,2,..., N}.

There is an arc of type k, denoted by (j,)x, from j to 4, if
L x &%, x & = 85

To each state i we associate a label representing the value of
the output associated with it, namely y = Hd',.
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Boolean Control Networks

reconstructability characterization (2)
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Boolean Control Networks

BCNs: reconstructability characterization (3)
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Theorem 2 For a BCN (4) the following facts are equivalent:
e the BCN is reconstructable

e in the graph associated with the BCN, distinct cycles, consisting of
distinct vertices, but having the same type of arcs,

(7:15 712)]«1 5 (iQa 7:3)k727 EEI) (7:}1,7 il)k:ha (.jl7j2)k71 ) (.j?aj?))ka? B (.jh?jl)k}m

identify distinct periodic output label sequences;
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Boolean Control Networks

BCNs: reconstructability characterization (3)

Theorem 2 For a BCN (4) the following facts are equivalent:
e the BCN is reconstructable

e in the graph associated with the BCN, distinct cycles, consisting of
distinct vertices, but having the same type of arcs,

(7:15 7:2)k71 5 (iQa 7:3)k727 EEI) (7:}1,7 il)k:ha (.jl7j2)k71 ) (.j?a j3)k?27 B (jh,7j1)k;, B
identify distinct periodic output label sequences;

o for every pair of distinct periodic state-input trajectories of the same
minimal period k&, described by the ktuples

((X17u1), ey (X}C,uk)) 75 (()_(1,111), ey ()_(k,uk)),

the corresponding output trajectories are periodic of minimal period k
and described by two different ktuples, i.e.

(HX]7HX2,...7HXk) 75 (H)_(],H)_Cz,...,H)_(k).
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Boolean Control Networks

BCNs: reconstructability characterization (4)
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Finite Horizon Optimal Control Problem: statement

Finite Horizon Optimal Control: Problem statement

Problem: Given a BCN (4), with initial state x(0) = xo € Ly,
determine an input sequence that minimizes the cost function:

T—

Jr(xo,u(-) = Qs (x(T)) + Y Q(u(t), x(t)), ()

t=

[y

where

9Qy(+) is any function defined on Ay, and

(-, -) is any function defined on A x Ay,
N =2", M =2m
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Finite Horizon Optimal Control Problem: statement

By exploiting the fact that the domain of Q,(-) and Q(-,-) is a
finite set,
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T-1

Jr(xo,u(-)) = cfx(T) + > _ ¢’ wu(t) x x(t), (6)

t=0

where c; € RY and ¢ € RVM,

Also, for every choice of a, 8 € R, the input sequence that
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finite set, we can equivalently rewrite the index Jr(xo, u(-)) as:
T-1
Jr(xo,u(-)) = cfx(T) + > _ ¢’ wu(t) x x(t), (6)
t=0
where c; € RY and ¢ € RVM,
Also, for every choice of a, 8 € R, the input sequence that

minimizes the cost function (6) (for any given xg) is the same
one that minimizes

T—-1
Jr(xo,u(-)) = [cf +aln] 'x(T) + > [+ By’ xu(t) x x(t),
t=0
where 1, is the k-dimensional vector with all unitary entries.
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Finite Horizon Optimal Control Problem: statement

By exploiting the fact that the domain of Q,(-) and Q(-,-) is a
finite set, we can equivalently rewrite the index Jr(xo, u(-)) as:
T-1
Jr(xo,u(-)) = cfx(T) + > _ ¢’ wu(t) x x(t), (6)
t=0
where c; € RY and ¢ € RVM,
Also, for every choice of a, 8 € R, the input sequence that

minimizes the cost function (6) (for any given xg) is the same
one that minimizes

T—-1
Jr(xo,u(-)) = [cf +aln] 'x(T) + > [+ By’ xu(t) x x(t),
t=0

where 1, is the k-dimensional vector with all unitary entries.
So, one can assume that in (6)

the weight vectors c; and c are nonnegative.
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Finite horizon optimal control problem: solution

Finite Horizon Optimal Control: Problem solution

For every choice of a family of real vectors m(t),t € [0,7], and
every state trajectory of the BCN x(t),t € [0, T], one has

T-1

Z[m(t + 1) Tx(t+1) — m(t) "x(t)]

t=0
+ m(0) "x(0) — m(T) "x(T).

0 p—
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Finite horizon optimal control problem: solution

Finite Horizon Optimal Control: Problem solution

For every choice of a family of real vectors m(t),t € [0,7], and
every state trajectory of the BCN x(t),t € [0, T], one has

T—1

0 = Z[m(t + 1) 'x(t 4 1) — m(t) "x(t)]
t=0
+ m(0) "x(0) — m(T) "x(T).
Consequently, the cost function can be equivalently rewritten
J(x0,u(-)) = m(0) 'x(0) + [c; — m(T)] "x(T)
T-1 T—1

+) el xult) xx(t) + Y [m(t+1)x(t+1) — m(t) "x(t)].
t=0 t=0
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Finite horizon optimal control problem: solution

By making use of the state update equation of the BCN (4) and
of the fact that, for every choice of u(t) € £, one has

m(t) ' x(t) = m@®)" m@)" ... m@®)"] xut)xx(),
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Finite horizon optimal control problem: solution

By making use of the state update equation of the BCN (4) and
of the fact that, for every choice of u(t) € £, one has

m(t) ' x(t) = m@®)" m@)" ... m@®)"] xut)xx(),
we get this final version of the cost function:

J(xo,u()) = m(0) ' x(0) + [e; — m(T)]"x(T)

5 (€T mE+ )L - [m®)T ... m()7]) x ut) x x(t).
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Finite horizon optimal control problem: solution

Set and
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Finite horizon optimal control problem: solution

Set and

L=[Li Ly ... Lu|
and

CT: [ClT C; CXI]'

Then, the term in the summation becomes:
(cT +m(t+1)TL— [m@#)T ... m(t)T]) w u(t) x x(t) =

[cf +m(t+1)"Li — m(t)" ... cj,+m(t+1)"Ly — m(t)T]
xu(t) x x(t).
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Finite horizon optimal control problem: solution

Now, since the vectors m(t),t € [0, 7], can be freely chosen
without affecting the value of the index, we choose them
according to the following ALGORITHM:
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Finite horizon optimal control problem: solution

Now, since the vectors m(t),t € [0, 7], can be freely chosen
without affecting the value of the index, we choose them
according to the following ALGORITHM:

[Initialization] Set m(7T") := cy;

[Recursion]Fort =T —1,T —2,...,1,0, the jth entry of

the vector m(¢) is chosen according to the recursive rule:

m(t)); = min ([e] +m(t+1)TLY;), ¥ € [1N]
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Finite horizon optimal control problem: solution

As a result, the index takes the form
J(x0,u(-)) = m(0) "x(0)

YT W) wa®)T o war(®)T] X u(t) x x(2)

and for each j € [1, N], there is some row vector w;(t) whose
jth entry is zero, while the jth entry of all the other row vectors
wy(t) is nonnegative.
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and for each j € [1, N], there is some row vector w;(t) whose
jth entry is zero, while the jth entry of all the other row vectors
wy(t) is nonnegative.

Therefore the cost function is minimized by any input sequence
u(t),t € [0,T — 1], that is obtained according to this rule:
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Finite horizon optimal control problem: solution

As a result, the index takes the form
J(x0,u(-)) = m(0) "x(0)

3 @ wa T L wa ()] xu(t) x x(t)
and for each j € [1, N], there is some row vector w;(t) whose
jth entry is zero, while the jth entry of all the other row vectors
wy(t) is nonnegative.

Therefore the cost function is minimized by any input sequence
u(t),t € [0,T — 1], that is obtained according to this rule:

x(t) =6, —  u(t)=4""
where

i*(j,t) = arg Lerﬁlil]] [wi(t)]; = arg Lgﬁlﬁll] ([ci +m(t + l)TLi]j).
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Finite horizon optimal control problem: solution

In this way,
* J*(x0) = miny(. J(xo, u(-)) = m(0) "xo,
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algorithm.
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a time-varying feedback law:
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Finite horizon optimal control problem: solution

In this way,
* J*(x0) = miny( J(xo, u(-)) = m(0) "xo,
where m(0) is obtained according to the previous
algorithm.
+ The optimal control input can be implemented by means of
a time-varying feedback law:

where the (not necessarily unique) feedback matrix is
expressed as

(e cr(2t i*(N,t)
K(t) = [y sy 20 sh ).

M.E. Valcher Reconstruction of BNs and optimal control 25/26



Finite horizon optimal control problem: solution

Thanks for your attention!

Questions?
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